
Comparing Software and Hardware Schemes
For Reducing the Cost of Branches

Wen-mei W. Hwu Thomas M. Conte

Coordinated Science Laboratory
1101 W. Sprintfield Ave.

University of Illinois
Urbana, IL 61801

Pohua P. Chang

Abstract

Pipelining has become a common technique to increase
throughput of the instruction fetch, instruction decode,
and instruction execution portions of modern comput-
ers. Branch instructions disrupt the flow of instructions
through the the pipeline, increasing the overall execution
cost of branch instructions. Three schemes to reduce the
cost of branches are presented in the context of a gen-
eral pipeline model. Ten realistic Unix domain programs
are used to directly compare the cost and performance
of the three schemes and the results are in favor of the
software-based scheme. For example, the software-based
scheme has a cost of 1.65 cycles/branch vs. a cost of 1.68
cycles/branch of the best hardware scheme for a highly
pipelined processor (11-stage pipeline). The results are
1.19 (software scheme) vs. 1.23 cycles/branch (best hard-
ware scheme) for a moderately pipelined processor (5-
stage pipeline).

1 Introduction

The pipelining of modern computer designs causes prob-
lems for the execut,ion of branch instructions. Branches
disrupt sequential instruction supply for pipelined proces-
sors and introduce non-productive instructions into the
pipeline. However, approximately one out of every three
to five instructions is a branch instruction[l][2]. A sig-
nificant increase in the performance of pipelined comput-
ers can be achieved through special treatment of branch
instructions[3][4][1].

There have been several schemes proposed to reduce
the branch performance penalty. These schemes employ
hardware or software techniques to predict the direction of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

a branch, provide the target address of a branch, and sup
ply the first few target instructions [3][4][1][5][6]. When
the prediction is incorrect, the wrong instructions are in-
troduced into the pipeline. After the branch instruction
finishes execution and supplies the correct action to the in-
struction fetch unit, the incorrect instructions are flushed,
or squashed from the pipeline [l]. These schemes rely on
the assumption that the accuracy of the branch prediction
scheme is high enough to mask the penalty of squashing.
A small increase in the accuracy of a prediction scheme
has a large effect on the performance of conditional branch
instructions if the penalty for squashing an incorrectly
predicted branch is large. Hence, highly accurate predic-
tion schemes are desirable.

There have been many studies that investigate the ef-
fectiveness of solutions to the branch problem. Most
of these studies focus on the accuracy of the branch
prediction scheme employed [3][4][1:][6][7]. Some studies
also discuss hardware and software approaches to reduc-
ing the penalty of refilling the instruction fetch unit’s
pipeline [3][1][6].

Some schemes use static code analysis to predict branch
behavior. One such scheme predic,ts all backward con-
ditional branches as taken and all forward branches as
not-taken. This is based on the assumption that back-
ward branches are usually at the end of loops. In the
study done by J. E. Smith [4], the average accuracy of
this approach was 76.5%. However, in some cases this ap
preach performed as poorly as only 35% accurate. Since
the benchmarks used in the study were FORTRAN appli-
cations, which tend to be dominated by loop-structured
code, the results may have been biased in favor of scien-
tific workloads. Another study reported a 90% average
accuracy for a static scheme, however the specific predic-
tion mechanism was not reported nor was any additional
statistical information besides the average [7].

Many architectures predict every conditional branch to
either be aJl taken or all not-taken. In [l], this iicheme is
reported to be only 63% accurate if all branches are pre-
dicted taken. Similarly, [3] reports approximately 65f5%,
[2] reports 67%, and [4] reports 76.7% of all branches are
taken. Another static approach is to associate a predic-
tion with the opcode of the branch instruction. This pre-
diction is derived from performance studies and is stored

0 1909 ACM ,0884-7495/89/0000/0224$01.50

in a ROM or with the branch’s microcode. The accuracy
of this scheme is reported to be 66.2% on-average in [3]
and 86.7% in [4].

Several dynamic branch history-based prediction
schemes are presented in [3] and [4]. Dynamic approaches
to branch prediction usually include hardware support in
the form of a specialized cache to store the prediction in-
formation. For example, some schemes calculate the au-
tocorrelation of the history vector of a branch instruction
to generate a prediction; however, there is high hardware
overhead for this scheme. Another, less-expensive scheme
uses an up/down counter for prediction. J. E. Smith re-
ports an accuracy of 92.5% for a two-bit version of this
counter scheme. He reports a slightly smaller accuracy for
larger counter sizes, due to the “inertia” caused by large
counter sizes.

Another method of reducing the cost of branches
uses information gathered during profiling a program for
compile-time branch prediction. Note that this is different
from static techniques since it uses the observed dynamic
behavior of the branches for prediction. It is also sepa-
rate from the other dynamic approaches because it does
not require a large amount of hardware support. Usually,
the instruction set is modified to include a prediction bit
in the branch instruction format. This bit is used by the
compiler to specify the prediction (i.e., predicted taken or
not-taken) to the hardware. For example, this approach
is used in the MIPS architecture [l].

Some previous schemes provide special support to make
up for inaccurate branch prediction schemes. A common
approach uses condition codes and optional compare in-
structions [8][9]. A case for single-instruction conditional
branches is given in [6]. When a compare instruction must
be added, the two instructions must be placed far-enough
apart to predict the branch’s behavior. However, this may
not always be possible. Also, conditional branches now
take two instructions instead of a single instruction. In
order to make up for this increase in the dynamic instruc-
tion count, a hardware mechanism was included in the
CRISP project to dynamically absorb the actual branch
instruction into its preceding instruction and store it in
a partially-decoded form. After all these techniques were
used, the compiler designers for CRISP later suggested
that a compiler-supported prediction mechanism might
be useful to further improve performance [7].

To mask the penalty of flushing the pipeline when the
prediction is incorrect, some schemes provide the first
few instructions of the branch’s target path. Some hard-
ware buffer approaches store these instructions along with
the prediction information. Reduced instruction set com-
puter architectures often use a delayed branch to mask
this penalty. For example, delayed branches are used in
the Stanford MIPS [l] and the Berkeley RISC I [lo]. In
this approach, the compiler fills the delay slots follow-
ing the branch instruction with instructions before the
branch. While the fetch of the target instruction is be-
ing performed, the instructions in the delay slots are exe-
cuted. These schemes rely on the compilers ability to fill
the delay slots. McFarling and Hennessy report that a

single delay slot can be successfully filled by the compiler
in approximately 70% of the branches. However, a sec-
ond delay slot could be filled only approximately 25% of
the time [I]. Therefore, it is hard to support moderately
pipelined instruction fetch units using the delayed branch
technique.

The issue of which branch prediction scheme to use for
VLSI-implemented monolithic processors is a topic still
open to debate. The CRISP processor used significant
hardware support for a static compiler technique [7][8].
The MIPS processor used delayed branches with squash-
ing for an architecture with a relatively shallow pipeline
(five stages)[l]. Since the silicon real estate is expensive
for such processors, schemes that address the branch prob-
lem for processors implemented in VLSI should use little
or no hardware support and achieve high performance. As
more and more systems of all classes are being designed
with single-chip central processors, new solutions to the
branch problem that match or exceed the performance of
traditional approaches must be developed.

This paper investigates three (two hardware and one
software) schemes to solve the branch problem. These
three schemes are presented and compared in the context
of a very general pipelined microarchitecture. An opti-
mizing, profiling compiler assists the evaluation of the

performance of the schemes using a substantial number
of benchmarks taken from the Unix’ domain [ll]. The
experiments are controlled to isolate the effects of pipelin-
ing the instruction fetch unit from those of pipelining the
instruction decode and instruction execution units.

The remainder of this paper is organized into three sec-
tions. Section two provides a concise description of the
three schemes used to solve the branch problem: a sim-
ple branch target buffer, a counter-based branch target
buffer, and a software approach. Section three presents
the experimental results used for evaluating the perfor-
mance of the three schemes. Finally, section four offers
concluding remarks and future directions.

2 Background

This section introduces the three architectures that are
used for the investigation. The first two of these ar-
chitectures use additional hardware to solve the branch
problem. The third architecture uses a profiling-compiler-
driven software approach. All three architectures share a
common model of a pipelined microarchitecture. This mi-
croarchitecture is composed of four smaller pipelines, or
units, connected in series: the instruction fetch unit, the
instruction decode unit, the instruction execution unit,
and the state update unit (see Figure 1).

2.1 Pipeline structure

The instruction fetch unit is divided into li + 1 stages,
one stage to select the next address, and k stages to ac-
cess the address, The next address selection logic takes

‘Unix is a trademark of AT&T Bell Laboratories

225

PC’s, vectors
. i F

I
k-stages

I

Instruction
Decode Unit

Instruction
Execution
Unit

State
;;p

I................-......:

Figure 1: The pipelined microarchitecture.

various program counters and variou.s interrupts and ex-
ception vectors to produce the address of the next instruc-
tion to fetch. Each branch instruction specifies a vector,
or branch target, which is the address of the instruction
to branch to. The subsequent k stages for instruction
memory access take the instruction address generated and
access the instruction memory hierarchy (i.e., instruction-
buffer, instruction-cache, etc.).

The instruction decode unit is C-stages in length. This
stage decodes the instruction and calculates its actual

operand values by decoding the operand the addressing
modes and possibly accessing the reg;ister file or memory.
Hence, the actual branch target anad the branch action
(for unconditional branches) is known at the end of this
stage. This information is supplied through a feedback
path to the selection logic of the inst#ruction fetch unit.

The instruction execution unit is m-stages in length.
The action of conditional branches is known when a
branch reaches the end of the unit’s pipeline. This infor-
mation is supplied as a control signal in a feedback path
to the selection logic of the instruction fetch unit. This
pipeline may implement some form of interlocking, such
as scoreboarding or the Tomasulo a.lgorithm [12][13], or
interlocking may be statically performed by the compiler.
The effects of these interlocking strategies are parameter-
ized to generalize the results (see below). It is assumed
that comparisons are included in the semantics of the con-
ditional branch instruction, as opposed to condition-code
driven branch instructions. Finally, the state update unit
is assumed to update memory, the register file, and/or the
data cache with the results of executed instructions.

The issue of which instruction to fetch next is deter-
mined by the next address selection stage of the instruc-
tion fetch unit. In a simple next address selection stage,
no special treatment is given to branches (i.e., branches
are always predicted not-taken). If this prediction is in-
correct, the wrong instructions will ble introduced into the
pipeline. These incorrectly-fetched instructions must be
flushed from the pipeline when the actual branch behavior
is determined. The instruction fetch. unit’s pipeline must
always be flushed, and so must any incorrectly-fetched
instructions in the instruction decode and instruction ex-
ecution units’ pipelines. A scheme should be provided
for fast access to the k instructions following the branch
target to hide the cost of flushing the instruction fetch
unit.

Since on some machines the time to decode an instruc-
tion is not fixed but dependent on many factors (e.g., the
complexity of the addressing modes used, the performance
of the memory system, etc.), the penalty for flushing the
pipeline of the instruction decode unit is treated as an

average, f, where 0 5 J! < L Note that P = l! for many

RISC architectures. Due to interlocking, the number of
instructions to flush from the instruction execution unit’s
pipeline may be determined by dependencies between in-
structions. Also, since unconditional branches are pre-
dicted with 100% accuracy, some branch instructions do
not require any flush of the instruction execution unit.
Hence, the penalty for flushing this unit’s pipeline is also

226

taken as an average, TR. For compiler-implemented static
interlocking, r7z = fcondm, where fcond is the fraction of
branch instructions that are conditional branches. There-
fore, it is assumed that on average, k-l-E+ m instructions
must be flushed from the pipeline for each branch. This
observation will be used in Section 2.3 in stating the gen-
eral formula for branch cost.

2.2 Three branch cost-reduction schemes

A Simple Bmnch Target Buffer, or SBTB, is used to re-
member as many as possible of the taken branches that
are encountered in the dynamic instruction stream. To
mask the penalty of flushing the instruction fetch unit, the
SBTB stores the first k instructions of a taken branch’s
target path. For this reason, any branch instruction not
in the SBTB is predicted to be not-taken. If a branch
instruction is predicted taken, but when executed it does
not branch to a new location, the corresponding entry in
the SBTB is deleted. The SBTB may be thought of as
cache that uses the branch instruction’s location in mem-
ory as its associative tag. When it is full, a replacement
policy is used to select an entry to replace. The accu-
racy of the SBTB’s predictions is expressed as ASBTB, the
probability of the prediction being correct. The SBTB in
this paper is a 256-entry fully-associative SBTB with a
least-recently-used replacement policy.

Like the SBTB, a Counter-hased Branch Target Bugler,
or CBTB, is also a type of cache. It remembers as many as
possible of the branch instructions encountered in the dy-
namic instruction stream. As with the SBTB, the CBTB
also stores the first k instructions of the target branch
to mask the instruction fetch penalty. The CBTB imple-
mented for this paper stores a counter used for prediction
along with each branch instruction [4]. For each new en-
try in the CBTB, the n-bit counter, C, is initially set to a
threshold, T, if the branch was taken, or T-l, if it was not
taken. Subsequently if the branch is taken, the counter is
incremented, else it is decremented. When C = 2” - 1, it
remains at this value, and when C = 0, it remains at zero.
A branch is predicted taken when C > T, else the branch
is predicted not-taken. Any branch-instruction not al-
ready in the buffer is predicted not-taken. The accuracy
of the CBTB’s predictions is expressed as ACBTB, the
probability of the prediction being correct. The CBTB in
this paper uses a 256-entry fully-associative CBTB with a
least-recently-used replacement policy for its branch pre-
diction hardware. The counters used for prediction are
2-bits long and T = 2.

The SBTB or CBTB are accessed using the address
from the select stage of the instruction fetch unit for ev-
ery instruction retrieved from memory. This access oc-
curs in parallel with the actual memory access performed
in the instruction fetch unit. If the location causes a

SBTB/CBTB hit, it is then known that the instruction
is a branch. If the SBTB/CBTB’s predicts the branch as
taken (the SBTB always predicts a hit as a taken branch),
the first k instructions following the target are sequen-
tially supplied to the instruction decode unit (see Fig-

ure 1).

The third approach to branch prediction, the Forward
Semantic, uses an optimizing, profiling compiler to pre-
dict the direction of all branches in a program. The
SBTB/CBTB hardware shown in Figure 1 is not used in
thii scheme. Instead, the program is first compiled into an
executable intermediate form with probes inserted at the
entry of each basic block. The program is then run once or
several times for a representative input suit. During the
recompilation, predictions are made for each branch and
stored by setting or clearing a “likely-taken” bit in the
instruction format of each branch instruction [ll]. The
accuracy of these predictions is again represented as a
probability that the prediction is correct, AFS. Based on
the profiling information, groups of basic blocks that are
virtually always executed together are then bundled into
larger blocks called trace3 [11][14]. The result is that all
conditional branches that are predicted taken are placed
at the end of these traces. For each branch that is pre-
dicted taken, k + e locations, or forward slots, following
the branch instruction are reserved. The k + L instruc-
tions from the target path of the branch are copied into
these slots. During the execution., when the instruction
is determined to be’ a branch .instruction at the end of
the instruction decode unit, the instructions in the for-
ward slots will mask the penalty of incorrectly fetching
the k +e instructions following the branch. Hence, these
instructions serve the same purpose as the k instructions
stored with each entry in the SBTB or CBTB.

To filI the forward slots, the traces are sorted by ex-
ecution weight. The following algorithm is then used to
fill the slots, where there are N traces, traceCi1 is the
trace with the ith largest weight, trace til ->next-trace
is the target trace, target~ddrCtraceCiI1 is the tar-
get address of the branch instruction at the end of
trace trace [il, and trace [il ->of f setinto-trace is the
branch target address, expressed as an offset from the be-
ginning of the target trace.

for i + N downto 1 step -1 do
next-trace + trace->next-trace ;
off set + trace->of f setinto-trace;
length + size-of (next-trace) - offset ;
if (length 2 k +I) then

Copy the nezt k + L instructions
of trace [i] ->next-trace to
the end of trace&] ;

tsrgetaddr[traceCilI +
targetaddr[trace[i]] + k + I;

else
Copy the remaining instructions

of nest-trace to the
end of trace[i] ;

Fill the remaining forward alots
with NO-OP’s;

tsrgetaddr[trace[il] +-
targetaddr[traceCill + length;

endif;

227

An example of the algorithm is shown in Figure 2. The
branch instruction originally at location 5 is an unlikely
branch. Therefore, :it can be absorbed into the forward
slots of the branch instruction at location 2. Note that the
target for this branch is not altered when it is absorbed
into the forward slots. The instructions in the forward
slots at locations 3 and 4 of the altered program fragment
execute using an alternate program counter register value
which in the example will be set to location 7.

1: II
1: I1 2:beq pc + 5 (likely)
2:beq pc + 3 (likely) 3:beq pc + 3 (unlikely)
3: I:, 4: Is
4: z4 5: 13

5:beq pc + 3 (unlikely) 6: Za
6: Ie 7:beq pc + 3 (unlikely)
7: z7 8: I6
8: Is 9: 17
9: zg 10: 18

11: 19

Figure 2: An example of the Forward Semantic: origi-
nal program fragment (ZeJL), and after application of the
algorithm (right).

Note that the Forward Semantic is different from the
“Delayed-Branch with Squashing” scheme presented in
[l]. In that scheme, no branch instructions could be
absorbed into the delay slots following the branch in-
struction. Also, the most-recently prefetched instruction
and the instructions specified in the delay slots after the
branch instruction were the instructions that would be
squashed if the prediction was incorrect. However, in the
Forward Semantic scheme, although k+l+fi instructions
are flushed from the pipeline, only k + e forward slots fol-
lowing the branch are used. Hence, a Forward Semantic
implementation for the architecture presented in [I] would
have used only one forward slot following the branch in-
stead of two, since k = 0, e = 1, m = 2 for MIPS-X.

2.3 Branch instruction cost

Whenever an incorrect prediction is made, the entire
pipeline may potentially be flushed. This means the cost
for an incorrect prediction for any of the three schemes is
k+l+ria. When the prediction is correct, each of the three
schemes successfully covers the flushing of the pipelines.
Hence, the cost of executing a branch instruction for any
of the three architectures is,

cost = A + (k + I+ m)(1 - A),

where A = ASBTB, for the SBTB, A = ACBTB, for the
CBTB, and A = AFS for the Forward Semantic. This
equation wilI be used in the remainder of this paper to
calculate the cost of branches for the three architectures
given the accuracy of the three prediction schemes. As-
suming that time is measured in clock cycles, and each
stage of the pipeline has a latency of one clock cycle,

3 Experimental Results

Table 1 summarizes several important characteristics of
the benchmarks used for the experiments below. The
Lines column shows the static code size of the C bench-
mark programs measured in the number of program lines.
The Runs column gives the number of different inputs
used in the profiling process. The Znst. column gives
the dynamic code size of the benchmark programs, mea-
sured in number of compiler interm.ediate instructions.
The Control column gives the percentage of dynamic con-
ditional and unconditional branches (executed during the
profiling process. Both Inst. and Control are accumulated
across all of the runs. Finally, the Input description col-
umn describes the nature of the inputs used in the profil-
ing process. As reported in many other papers, the num-
ber of dynamic instructions between dynamic branches is
small (about four).

The Conditional column of Table 2 confirms that on av-
erage 61% of the dynamic branches generated by the com-
piler are not-taken branches. When the SBTB or CBTB
generates a miss for a given branch, the instruction fetch
unit cannot fetch the target instructions in time, which
forces the fetch unit to continue to fetch the next instruc-
tion. This is equivalent to predicting that the branch is
not taken. Since the majority of the dynamic branches are
not taken, the predictions made upon SBTB misses are
actually accurate. Since only taken branches make their
way into the SBTB, the low percenta.ge of taken branches
also reduces the number of entries needed in SBTB to
achieve high prediction accuracy. Therefore, we can ex-
pect the SBTB performance reported below to be better
than equivalent designs reported by the previous papers.

The Known column in Table 2 gives the percentage
of availability of the target address for unconditional
branches. Unconditional branches with known target ad-
dress can be easily handled by all the three schemes as (ex-
tremely biased) likely branches. Bra.nches with unknown
target addresses (i.e., the address is generated as run-time
data) pose a problem for all three schemes. Fortunately,
almost all the unconditional branches for the benchmarks
have known target addresses. Therefore, all the three
schemes work well with the unconditional branches.

The performance of the benchmarks for the three archi-
tectures are presented in Table 3. The miss ratio for the
SBTB, PSBTB, is much larger than ,the miss ratio for the
CBTB, PsBTB. This is to be expected since only taken
branches are saved in the SBTB, whereas all branches are
eligible to be stored in the CBTB. Note also that the dif-
ferences in prediction accuracy (i.e., A) between the three
schemes increases with the complexity of the prediction
mechanism used. A SBTB uses essentially information
based on the most recent behavior of a branch instruc-
tion in the dynamic instruction stream. Since the counter
used for the CBTB is Z-bits long, the CBTB bases its pre-
dictions on the four most-recent branches in the dynamic
instruction stream. Hence, the CBTB predicts branch be-
havior slightly more accurately than does the SBTB. The
most accurate scheme, the Forward Semantic, uses the

22s

behavior of the branch throughout the entire dynamic in-
struction stream for its predictions.

Observe that the accuracy values for all three archi-
tectures are very similar. However, if context switching
had been simulated, one would expect the performance
of the SBTB and the CBTB to be less impressive [3].
Note though that the prediction accuracy of the Forward
Semantic would not have changed in the presence of con-
text switching. Finally, both the SBTB and the CBTB
are fully associative to provide the highest possible hit ra-
tio. With 256 entries, it may not be feasible to implement
full associativity. Hence, the results are biased slightly in
favor of the two hardware approaches.

The values of h = I, 2,4, and 8 and the averages from
Table 3 of A were used for the four graphs of branch
cost versus E+ r~ in Figures 3 and 4, where SBTB cost
is shown as a solid line, CBTB cost is a dashed line, and
Forward Semantic cost is a dotted line. These figures show
that as the length of the instruction fetch pipeline grows,
the difference between the three architectures increases as
does the overall branch cost. Increasing the length of the
instruction decode and instruction execution pipeline also
increases the difference between the three architectures.

Modern microprocessors have relatively shallow pipe-
lines with a twostage instruction fetch pipeline (e.g., I+
tic:, k= 1). Pipelining the on-chip cache memory
system is a difficult task. Future increases in pipelining
may therefore occur in the instruction decode unit. To see
the effect of this possible design shift, the results for all
benchmarks for k + .t! = 2 and 3, and rir = 1 is presented
in Table 4.

Note that the three schemes do have a slight increase in
branch cost for the transition from k + i! = 2 to k + .? = 3
for each benchmark. The average percentage of increase
in branch cost is 7.7%, 6.9%, and 5.3%, for the SBTB, the
CBTB, and the Forward Semantic, respectively. Hence,
the Forward Semantic reacts the best to scaling the degree
of pipelining, the CBTB is next, and the SBTB is the least
scalable.

Although the Forward Semantic has a slightly lower
branch cost, code-size increases occur due to the copy-
ing of instructions into forward slots after each predicted-
taken branch. Table 5 summarizes this effect. Because
copying instructions into forward slots increases the spa-
tial locality of the program, the expanded static code size
does not translate linearly into increased miss ratios of
instruction caches. Therefore, considering the saving of
hardware over SBTB and CBTB, the Forward Semantic
is definitely a favorable choice according to the bench-
marks.

4 Conclusions Figure 3: Branch cost vs. E + rig for k = 1 and k = 2.

k=l

cost

20;,,,-:::-:-:-:-\

HJJ
@AC . ..A

e--
.o- @’ . *

x
0 r. .*...”

.A.”

0. ..’ . .
. :‘. .

. 7 *
. .

1.0
0 2

t+B
6

k=2

2.0

cost

0 2
I+tt

6

This paper introduced a software approach to reducing
the cost of branches, the Forward Semantic, which is sup-
ported by a profiling, optimizing compiler and uncompli-
cated hardware. A model wan presented for the cost of
branches which is significantly more general than previous
models. One of the main features of this model is the in-

229

k=4

cost

2
tT+i

6

k=8

1.0”““““‘“““‘““““““‘““”
0 2

f+il
6

Figure 4: Branch cost vs. 2 + r?i for k = 4 and k = 8.

dependent treatment of the instruction prefetch unit and
the instruction execution unit.

The measurements performed for this paper were fair
to all three architectures considered. The exact same
benchmarks with the same inputs were used to derive the
data for all three architectures, even though two archi-
tectures involved hardware schemeis and one involved a
software/compiler scheme. This provided a fair compari-
son between the Forward Semantic and the two hardware
approaches.

The results of the performance study are encouraging.
They indicate that the Forward Semantic compares favor-
ably with the two other approaches. If context switching
had been simulated, the Forward Semantic’s performance
would have remained the same, whereas the performance
of the other two schemes would have suffered. The hard-
ware needed for the Forward Semantic is considerably less
complex than required for the other two schemes. Since
the hardware schemes need to be accessed fast by the
instruction prefetch pipeline, these schemes would have
to be implemented on-chip in a microprocessor, using up
valuable area. The Forward Semantic frees this area for
other uses without sacrificing performance. Use of the
Forward Semantic does cause an increase in code size,
however. This additional code adds to the spatial local-
ity of the program, since executing the instructions in
forward slots often will cause the branch target’s instruc-
tions to be in the instruction cache. For deep pipelines
(e.g., k+l = 4), the Forward Semantic with its moderate
14.12% code-size increase seems to be more favorable than
the the hardware of the SBTB/CBTB schemes, which in-
crease linearly with k.

Acknowledgements

The authors would like to thank Sadun Anik, Scott
Mahlke, Nancy Warter, and all members of the IMPACT
research group for their support, comments and sugges-
tions. This research has been supported by the National
Science Fundation (NSF) under Grant MIP-8809478, a
donation from NCR, the National Aeronautics and Space
Administration (NASA) under Contract NASA NAG l-
613 in cooperation with the Illinois Computer laboratory
for Aerospace Systems and Software (ICLASS), the Office
of Naval Research under Contract N00014-88-K-0656, and
the University of Illinois Campus IResearch Board.

References

[l] S. McFarling and J. L. Hennessy, “Reducing the cost
of branches,” in Proc. 13th Annu. Symp. on Comput.
Arch., (Tokyo, Japan), pp. 396-403, June 1986.

[2] J. S. Emer and D. W. Clark, “A characterization of
processor performance in the VAX-11/780,” in Proc.
flth. Annu. Symp. on Comput. Arch., pp. 301-309,
June 1984.

[3] J. K. F. Lee and A. J. Smith, “Branch prediction
strategies and branch target buffer design,” IEEE
Computer, Jan. 1984.

[4] J. E. Smith, “A study of branch predition strate-
gies,” in Proc. 8th Annu. Symp. on Comput. Arch.,
pp. 135-148, June 1981.

[5] D. J. Lilja, “Reducing the branch penalty in
pipelined processors,” IEEE Computer, July 1988.

[6] J. A. DeRosa and H. M. Levy, “An evaluation of
branch architectures,” in Proc. 15th. Annu. Symp.
on Comput. Arch., pp. 10-16, June 1987.

[7] S. Bandyopadhyay, V. S. Begwani, and R. B. Murray,
‘Compiling for the CRISP microprocessor,” in Proc.
1987 Spring COMPCON, pp. 86-96, 1987.

[8] D. R. Ditzel and H. R. McLellan, “Branch folding in
the CRISP microprocessor: reducing branch delay to
zero,” in Proc. 14th Annu. Symp. on Comput. Arch.,
pp. 2-9, June 1987.

[9] Digital Equipment Corp., VAX12 Architecture Hand-
book, 1979.

[lo] D. A. Patterson and C. H. Sequin, “RISC I: a reduced
instruction set VLSI computer,” in Proc. 8th Annu.
Symp. on Comput. Arch., pp. 443-457, May 1981.

[ll] W. W. Hwu and P. P. Chang, “Trace selection
for compiling large C application programs to mi-
crocode,” in Proc. 2lst Annu. Workshop on Mi-
croprogramming and Microarchitectures, (San Diego,
CA.), Nov. 1988.

[12] R. M. Tomasulo, “An efhcient algorithm for exploit-
ing multiple arithmetic units,” IBM Journal of Be-
search and Development, vol. 11, pp. 25-33, Jan.
1967.

[13] J. E. Thornton, “Parallel operation in the Control
Data 6600,” in Proc. AFIPS FJCC, pp. 33-40, 1964.

[14] J. A. Fisher, “Trace scheduling: A technique for
global microcode compaction,” IEEE Trans. Com-
put., vol. c-30, no. 7, pp. 478-490, July 1981.

231

Table 1: Benchmark characteristics

Benchmark Lines Runs
cccp 4660 20
cmp 371 16

compress 1941 20
grep 1302 20
lex 3251 4

make 7043 20
tee 1063 18
tar 3186 14
WC 345 20

vacc 3333 8

Inst.
11.7M

2.2M
19.6M
47.1M

3052.6M
152.6M

0.43M
1lM

7.8M
313.4M

Table 2: Bench Table 2: Benchmark branch statistics nark branch statistics

Control
19%
22%
16%
36%
37%
21%
40%
14%
28%
25%

Input description -
C progs (100-3000 lines) -
simiIar/disimilar text fiIe:s
same as cccp
exercised various options
lexers (C, Lisp, awk, pit:)
makefiles
text files (100-3000 lines:)
save/extract files
same input as cccp
grammar for C, etc.

Benchmark
cccp

cmp
compress

grep
lex

make
tar
tee
WC

yacc
Average Average

Condi
aken
31%
20%
37%

5%

.

49%
49%
89%
44%
24%
47%
40%

Condi
Taken

31%
20%
37%

5%
49%
49%
89%
44%
24%
47%
40%

ional ional Una Una
Not Known Not Known
69% 69% 81% 81%
80% 80% 100% 100%
63% 63% 100% 100%
95% 95% 100% 100%
51% 51% 100% 100%
51% 51% 100% 100%
11% 11% 100% 100%
56% 56% 100% 100%
76% 76% 100% 100%
53% 53% 100% 100%
61% 61% 98% 98%

lditional
Unknown

19%
0%
0%
0%
0%
0%
0%
0%
0%
0%

1.9%

Table 3: Branch prediction performance of the benchmarks.

Benchmark SE

cccp

cmp
compress

wp
lex

make
tar
tee
WC

Y=c
Average
Std. dev.

PSBTB

0.57
0.70
0.49
0.76
0.36
0.42
0.11
0.39
0.54
0.46
0.48
0.18

Branch Drediction scheme

97.1% 0.0032 98.0%
87.8% 0.0053 86.1%
93.7% 0.0006 95.9%
98.2% 0.0002 97.7%
90.5% 0.012 92.5%
97.9% 0.005 98.4%
84.4% 0.0058 88.7%
85.4% 0.0008 85.7%
88.9% 0.0012 89.1%
91.5% 0.0053 92.4%
5.06% 0.0058 4.92%

232

Table 4: B ranch cost for k f i! = and 3, and TSI = 1

k+C=2 k-+-e=3 ,-t-e=3
SBTB SBTB CBTB FS

1.28 1.28 1.26 1.26 1.31 1.31
1.09 1.09 1.06 1.06 1.04 1.04
1.37 1.37 1.42 1.42 1.33 1.33
1.19 1.19 1.12 1.12 1.12 1.12
1.06 1.06 1.07 1.07 1.06 1.06
1.29 1.29 1.23 1.23 1.17 1.17
1.06 1.06 1.05 1.05 1.04 1.04
1.47 1.47 1.34 1.34 1.23 1.23
1.44 1.44 1.43 1.43 1.29 1.29
1.33 1.33 1.33 1.33 1.35 1.35
1.26 1.26 1.23 1.23 1.19 1.19
0.15 0.15 0.15 0.15 0.12 0.12

=mp 1.06
compress 1.24

g rep 1.13
lex 1.04

make 1.19
tar 1.04
tee 1.31
WC 1.29

FS
1.21
1.03
1.22
1.08
1.04
1.11
1.03
1.16
1.19

Table 5: Percentage of code-size increase as a function of k.

Benchmark
cccp
cmp

compress

eqn
espresso

r3w
lex

make
tar
tee
WC

vacc
Average

Std. dev.

I
k+e= 1

2.79%
1.87%
2.10%
3.50%
4.19%
1.55%
5.68%
3.93%
2.82%
1.29%
1.70%
7.41%
3.24%
1.84%

rcentage cc
1 k+e=2
I 5.80%

3.74%
4.15%
7.44%
8.51%
3.36%

11.34%
7.96%
5.89%
2.52%
3.41%
15.43%
6.61%
3.83%

!e-size incrc se
k+e=4 k+e=B

11.75% 2&57%
7.48% 14.96%
8.82% 20.26%

14.87% 44.26%
17.82% 39.28%
6.96% 15.81%

24.08% 53.73%
16.35% 37.76%
12.18% 27.17%
5.34% 10.75%
8.52% 19.00%

35.21% 82.92%
14.12% 32.96%
8.55% 20.52%

233

