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Abstract 

Pipelining has become a common technique to increase 
throughput of the instruction fetch, instruction decode, 
and instruction execution portions of modern comput- 
ers. Branch instructions disrupt the flow of instructions 
through the the pipeline, increasing the overall execution 
cost of branch instructions. Three schemes to reduce the 
cost of branches are presented in the context of a gen- 
eral pipeline model. Ten realistic Unix domain programs 
are used to directly compare the cost and performance 
of the three schemes and the results are in favor of the 
software-based scheme. For example, the software-based 
scheme has a cost of 1.65 cycles/branch vs. a cost of 1.68 
cycles/branch of the best hardware scheme for a highly 
pipelined processor (11-stage pipeline). The results are 
1.19 (software scheme) vs. 1.23 cycles/branch (best hard- 
ware scheme) for a moderately pipelined processor (5- 
stage pipeline). 

1 Introduction 

The pipelining of modern computer designs causes prob- 
lems for the execut,ion of branch instructions. Branches 
disrupt sequential instruction supply for pipelined proces- 
sors and introduce non-productive instructions into the 
pipeline. However, approximately one out of every three 
to five instructions is a branch instruction[l][2]. A sig- 
nificant increase in the performance of pipelined comput- 
ers can be achieved through special treatment of branch 
instructions[3][4][1]. 

There have been several schemes proposed to reduce 
the branch performance penalty. These schemes employ 
hardware or software techniques to predict the direction of 
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a branch, provide the target address of a branch, and sup 
ply the first few target instructions [3][4][1][5][6]. When 
the prediction is incorrect, the wrong instructions are in- 
troduced into the pipeline. After the branch instruction 
finishes execution and supplies the correct action to the in- 
struction fetch unit, the incorrect instructions are flushed, 
or squashed from the pipeline [l]. These schemes rely on 
the assumption that the accuracy of the branch prediction 
scheme is high enough to mask the penalty of squashing. 
A small increase in the accuracy of a prediction scheme 
has a large effect on the performance of conditional branch 
instructions if the penalty for squashing an incorrectly 
predicted branch is large. Hence, highly accurate predic- 
tion schemes are desirable. 

There have been many studies that investigate the ef- 
fectiveness of solutions to the branch problem. Most 
of these studies focus on the accuracy of the branch 
prediction scheme employed [3][4][1:][6][7]. Some studies 
also discuss hardware and software approaches to reduc- 
ing the penalty of refilling the instruction fetch unit’s 
pipeline [3][1][6]. 

Some schemes use static code analysis to predict branch 
behavior. One such scheme predic,ts all backward con- 
ditional branches as taken and all forward branches as 
not-taken. This is based on the assumption that back- 
ward branches are usually at the end of loops. In the 
study done by J. E. Smith [4], the average accuracy of 
this approach was 76.5%. However, in some cases this ap 
preach performed as poorly as only 35% accurate. Since 
the benchmarks used in the study were FORTRAN appli- 
cations, which tend to be dominated by loop-structured 
code, the results may have been biased in favor of scien- 
tific workloads. Another study reported a 90% average 
accuracy for a static scheme, however the specific predic- 
tion mechanism was not reported nor was any additional 
statistical information besides the average [7]. 

Many architectures predict every conditional branch to 
either be aJl taken or all not-taken. In [l], this iicheme is 
reported to be only 63% accurate if all branches are pre- 
dicted taken. Similarly, [3] reports approximately 65f5%, 
[2] reports 67%, and [4] reports 76.7% of all branches are 
taken. Another static approach is to associate a predic- 
tion with the opcode of the branch instruction. This pre- 
diction is derived from performance studies and is stored 

0 1909 ACM ,0884-7495/89/0000/0224$01.50 



in a ROM or with the branch’s microcode. The accuracy 
of this scheme is reported to be 66.2% on-average in [3] 
and 86.7% in [4]. 

Several dynamic branch history-based prediction 
schemes are presented in [3] and [4]. Dynamic approaches 
to branch prediction usually include hardware support in 
the form of a specialized cache to store the prediction in- 
formation. For example, some schemes calculate the au- 
tocorrelation of the history vector of a branch instruction 
to generate a prediction; however, there is high hardware 
overhead for this scheme. Another, less-expensive scheme 
uses an up/down counter for prediction. J. E. Smith re- 
ports an accuracy of 92.5% for a two-bit version of this 
counter scheme. He reports a slightly smaller accuracy for 
larger counter sizes, due to the “inertia” caused by large 
counter sizes. 

Another method of reducing the cost of branches 
uses information gathered during profiling a program for 
compile-time branch prediction. Note that this is different 
from static techniques since it uses the observed dynamic 
behavior of the branches for prediction. It is also sepa- 
rate from the other dynamic approaches because it does 
not require a large amount of hardware support. Usually, 
the instruction set is modified to include a prediction bit 
in the branch instruction format. This bit is used by the 
compiler to specify the prediction (i.e., predicted taken or 
not-taken) to the hardware. For example, this approach 
is used in the MIPS architecture [l]. 

Some previous schemes provide special support to make 
up for inaccurate branch prediction schemes. A common 
approach uses condition codes and optional compare in- 
structions [8][9]. A case for single-instruction conditional 
branches is given in [6]. When a compare instruction must 
be added, the two instructions must be placed far-enough 
apart to predict the branch’s behavior. However, this may 
not always be possible. Also, conditional branches now 
take two instructions instead of a single instruction. In 
order to make up for this increase in the dynamic instruc- 
tion count, a hardware mechanism was included in the 
CRISP project to dynamically absorb the actual branch 
instruction into its preceding instruction and store it in 
a partially-decoded form. After all these techniques were 
used, the compiler designers for CRISP later suggested 
that a compiler-supported prediction mechanism might 
be useful to further improve performance [7]. 

To mask the penalty of flushing the pipeline when the 
prediction is incorrect, some schemes provide the first 
few instructions of the branch’s target path. Some hard- 
ware buffer approaches store these instructions along with 
the prediction information. Reduced instruction set com- 
puter architectures often use a delayed branch to mask 
this penalty. For example, delayed branches are used in 
the Stanford MIPS [l] and the Berkeley RISC I [lo]. In 
this approach, the compiler fills the delay slots follow- 
ing the branch instruction with instructions before the 
branch. While the fetch of the target instruction is be- 
ing performed, the instructions in the delay slots are exe- 
cuted. These schemes rely on the compilers ability to fill 
the delay slots. McFarling and Hennessy report that a 

single delay slot can be successfully filled by the compiler 
in approximately 70% of the branches. However, a sec- 
ond delay slot could be filled only approximately 25% of 
the time [I]. Therefore, it is hard to support moderately 
pipelined instruction fetch units using the delayed branch 
technique. 

The issue of which branch prediction scheme to use for 
VLSI-implemented monolithic processors is a topic still 
open to debate. The CRISP processor used significant 
hardware support for a static compiler technique [7][8]. 
The MIPS processor used delayed branches with squash- 
ing for an architecture with a relatively shallow pipeline 
(five stages)[l]. Since the silicon real estate is expensive 
for such processors, schemes that address the branch prob- 
lem for processors implemented in VLSI should use little 
or no hardware support and achieve high performance. As 
more and more systems of all classes are being designed 
with single-chip central processors, new solutions to the 
branch problem that match or exceed the performance of 
traditional approaches must be developed. 

This paper investigates three (two hardware and one 
software) schemes to solve the branch problem. These 
three schemes are presented and compared in the context 
of a very general pipelined microarchitecture. An opti- 
mizing, profiling compiler assists the evaluation of the 

performance of the schemes using a substantial number 
of benchmarks taken from the Unix’ domain [ll]. The 
experiments are controlled to isolate the effects of pipelin- 
ing the instruction fetch unit from those of pipelining the 
instruction decode and instruction execution units. 

The remainder of this paper is organized into three sec- 
tions. Section two provides a concise description of the 
three schemes used to solve the branch problem: a sim- 
ple branch target buffer, a counter-based branch target 
buffer, and a software approach. Section three presents 
the experimental results used for evaluating the perfor- 
mance of the three schemes. Finally, section four offers 
concluding remarks and future directions. 

2 Background 

This section introduces the three architectures that are 
used for the investigation. The first two of these ar- 
chitectures use additional hardware to solve the branch 
problem. The third architecture uses a profiling-compiler- 
driven software approach. All three architectures share a 
common model of a pipelined microarchitecture. This mi- 
croarchitecture is composed of four smaller pipelines, or 
units, connected in series: the instruction fetch unit, the 
instruction decode unit, the instruction execution unit, 
and the state update unit (see Figure 1). 

2.1 Pipeline structure 

The instruction fetch unit is divided into li + 1 stages, 
one stage to select the next address, and k stages to ac- 
cess the address, The next address selection logic takes 
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Figure 1: The pipelined microarchitecture. 

various program counters and variou.s interrupts and ex- 
ception vectors to produce the address of the next instruc- 
tion to fetch. Each branch instruction specifies a vector, 
or branch target, which is the address of the instruction 
to branch to. The subsequent k stages for instruction 
memory access take the instruction address generated and 
access the instruction memory hierarchy (i.e., instruction- 
buffer, instruction-cache, etc.). 

The instruction decode unit is C-stages in length. This 
stage decodes the instruction and calculates its actual 

operand values by decoding the operand the addressing 
modes and possibly accessing the reg;ister file or memory. 
Hence, the actual branch target anad the branch action 
(for unconditional branches) is known at the end of this 
stage. This information is supplied through a feedback 
path to the selection logic of the inst#ruction fetch unit. 

The instruction execution unit is m-stages in length. 
The action of conditional branches is known when a 
branch reaches the end of the unit’s pipeline. This infor- 
mation is supplied as a control signal in a feedback path 
to the selection logic of the instruction fetch unit. This 
pipeline may implement some form of interlocking, such 
as scoreboarding or the Tomasulo a.lgorithm [12][13], or 
interlocking may be statically performed by the compiler. 
The effects of these interlocking strategies are parameter- 
ized to generalize the results (see below). It is assumed 
that comparisons are included in the semantics of the con- 
ditional branch instruction, as opposed to condition-code 
driven branch instructions. Finally, the state update unit 
is assumed to update memory, the register file, and/or the 
data cache with the results of executed instructions. 

The issue of which instruction to fetch next is deter- 
mined by the next address selection stage of the instruc- 
tion fetch unit. In a simple next address selection stage, 
no special treatment is given to branches (i.e., branches 
are always predicted not-taken). If this prediction is in- 
correct, the wrong instructions will ble introduced into the 
pipeline. These incorrectly-fetched instructions must be 
flushed from the pipeline when the actual branch behavior 
is determined. The instruction fetch. unit’s pipeline must 
always be flushed, and so must any incorrectly-fetched 
instructions in the instruction decode and instruction ex- 
ecution units’ pipelines. A scheme should be provided 
for fast access to the k instructions following the branch 
target to hide the cost of flushing the instruction fetch 
unit. 

Since on some machines the time to decode an instruc- 
tion is not fixed but dependent on many factors (e.g., the 
complexity of the addressing modes used, the performance 
of the memory system, etc.), the penalty for flushing the 
pipeline of the instruction decode unit is treated as an 

average, f, where 0 5 J! < L Note that P = l! for many 

RISC architectures. Due to interlocking, the number of 
instructions to flush from the instruction execution unit’s 
pipeline may be determined by dependencies between in- 
structions. Also, since unconditional branches are pre- 
dicted with 100% accuracy, some branch instructions do 
not require any flush of the instruction execution unit. 
Hence, the penalty for flushing this unit’s pipeline is also 
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taken as an average, TR. For compiler-implemented static 
interlocking, r7z = fcondm, where fcond is the fraction of 
branch instructions that are conditional branches. There- 
fore, it is assumed that on average, k-l-E+ m instructions 
must be flushed from the pipeline for each branch. This 
observation will be used in Section 2.3 in stating the gen- 
eral formula for branch cost. 

2.2 Three branch cost-reduction schemes 

A Simple Bmnch Target Buffer, or SBTB, is used to re- 
member as many as possible of the taken branches that 
are encountered in the dynamic instruction stream. To 
mask the penalty of flushing the instruction fetch unit, the 
SBTB stores the first k instructions of a taken branch’s 
target path. For this reason, any branch instruction not 
in the SBTB is predicted to be not-taken. If a branch 
instruction is predicted taken, but when executed it does 
not branch to a new location, the corresponding entry in 
the SBTB is deleted. The SBTB may be thought of as 
cache that uses the branch instruction’s location in mem- 
ory as its associative tag. When it is full, a replacement 
policy is used to select an entry to replace. The accu- 
racy of the SBTB’s predictions is expressed as ASBTB, the 
probability of the prediction being correct. The SBTB in 
this paper is a 256-entry fully-associative SBTB with a 
least-recently-used replacement policy. 

Like the SBTB, a Counter-hased Branch Target Bugler, 
or CBTB, is also a type of cache. It remembers as many as 
possible of the branch instructions encountered in the dy- 
namic instruction stream. As with the SBTB, the CBTB 
also stores the first k instructions of the target branch 
to mask the instruction fetch penalty. The CBTB imple- 
mented for this paper stores a counter used for prediction 
along with each branch instruction [4]. For each new en- 
try in the CBTB, the n-bit counter, C, is initially set to a 
threshold, T, if the branch was taken, or T-l, if it was not 
taken. Subsequently if the branch is taken, the counter is 
incremented, else it is decremented. When C = 2” - 1, it 
remains at this value, and when C = 0, it remains at zero. 
A branch is predicted taken when C > T, else the branch 
is predicted not-taken. Any branch-instruction not al- 
ready in the buffer is predicted not-taken. The accuracy 
of the CBTB’s predictions is expressed as ACBTB, the 
probability of the prediction being correct. The CBTB in 
this paper uses a 256-entry fully-associative CBTB with a 
least-recently-used replacement policy for its branch pre- 
diction hardware. The counters used for prediction are 
2-bits long and T = 2. 

The SBTB or CBTB are accessed using the address 
from the select stage of the instruction fetch unit for ev- 
ery instruction retrieved from memory. This access oc- 
curs in parallel with the actual memory access performed 
in the instruction fetch unit. If the location causes a 

SBTB/CBTB hit, it is then known that the instruction 
is a branch. If the SBTB/CBTB’s predicts the branch as 
taken (the SBTB always predicts a hit as a taken branch), 
the first k instructions following the target are sequen- 
tially supplied to the instruction decode unit (see Fig- 

ure 1). 

The third approach to branch prediction, the Forward 
Semantic, uses an optimizing, profiling compiler to pre- 
dict the direction of all branches in a program. The 
SBTB/CBTB hardware shown in Figure 1 is not used in 
thii scheme. Instead, the program is first compiled into an 
executable intermediate form with probes inserted at the 
entry of each basic block. The program is then run once or 
several times for a representative input suit. During the 
recompilation, predictions are made for each branch and 
stored by setting or clearing a “likely-taken” bit in the 
instruction format of each branch instruction [ll]. The 
accuracy of these predictions is again represented as a 
probability that the prediction is correct, AFS. Based on 
the profiling information, groups of basic blocks that are 
virtually always executed together are then bundled into 
larger blocks called trace3 [11][14]. The result is that all 
conditional branches that are predicted taken are placed 
at the end of these traces. For each branch that is pre- 
dicted taken, k + e locations, or forward slots, following 
the branch instruction are reserved. The k + L instruc- 
tions from the target path of the branch are copied into 
these slots. During the execution., when the instruction 
is determined to be’ a branch .instruction at the end of 
the instruction decode unit, the instructions in the for- 
ward slots will mask the penalty of incorrectly fetching 
the k +e instructions following the branch. Hence, these 
instructions serve the same purpose as the k instructions 
stored with each entry in the SBTB or CBTB. 

To filI the forward slots, the traces are sorted by ex- 
ecution weight. The following algorithm is then used to 
fill the slots, where there are N traces, traceCi1 is the 
trace with the ith largest weight, trace til ->next-trace 
is the target trace, target~ddrCtraceCiI1 is the tar- 
get address of the branch instruction at the end of 
trace trace [il, and trace [il ->of f setinto-trace is the 
branch target address, expressed as an offset from the be- 
ginning of the target trace. 

for i + N downto 1 step -1 do 
next-trace + trace->next-trace ; 
off set + trace->of f setinto-trace; 
length + size-of (next-trace) - offset ; 
if (length 2 k +I) then 

Copy the nezt k + L instructions 
of trace [i] ->next-trace to 
the end of trace&] ; 

tsrgetaddr[traceCilI + 
targetaddr[trace[i]] + k + I; 

else 
Copy the remaining instructions 

of nest-trace to the 
end of trace[i] ; 

Fill the remaining forward alots 
with NO-OP’s; 

tsrgetaddr[trace[il] +- 
targetaddr[traceCill + length; 

endif; 
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An example of the algorithm is shown in Figure 2. The 
branch instruction originally at location 5 is an unlikely 
branch. Therefore, :it can be absorbed into the forward 
slots of the branch instruction at location 2. Note that the 
target for this branch is not altered when it is absorbed 
into the forward slots. The instructions in the forward 
slots at locations 3 and 4 of the altered program fragment 
execute using an alternate program counter register value 
which in the example will be set to location 7. 

1: II 
1: I1 2:beq pc + 5 (likely) 
2:beq pc + 3 (likely) 3:beq pc + 3 (unlikely) 
3: I:, 4: Is 
4: z4 5: 13 

5:beq pc + 3 (unlikely) 6: Za 
6: Ie 7:beq pc + 3 (unlikely) 
7: z7 8: I6 
8: Is 9: 17 
9: zg 10: 18 

11: 19 

Figure 2: An example of the Forward Semantic: origi- 
nal program fragment (ZeJL), and after application of the 
algorithm (right). 

Note that the Forward Semantic is different from the 
“Delayed-Branch with Squashing” scheme presented in 
[l]. In that scheme, no branch instructions could be 
absorbed into the delay slots following the branch in- 
struction. Also, the most-recently prefetched instruction 
and the instructions specified in the delay slots after the 
branch instruction were the instructions that would be 
squashed if the prediction was incorrect. However, in the 
Forward Semantic scheme, although k+l+fi instructions 
are flushed from the pipeline, only k + e forward slots fol- 
lowing the branch are used. Hence, a Forward Semantic 
implementation for the architecture presented in [I] would 
have used only one forward slot following the branch in- 
stead of two, since k = 0, e = 1, m = 2 for MIPS-X. 

2.3 Branch instruction cost 

Whenever an incorrect prediction is made, the entire 
pipeline may potentially be flushed. This means the cost 
for an incorrect prediction for any of the three schemes is 
k+l+ria. When the prediction is correct, each of the three 
schemes successfully covers the flushing of the pipelines. 
Hence, the cost of executing a branch instruction for any 
of the three architectures is, 

cost = A + (k + I+ m)( 1 - A), 

where A = ASBTB, for the SBTB, A = ACBTB, for the 
CBTB, and A = AFS for the Forward Semantic. This 
equation wilI be used in the remainder of this paper to 
calculate the cost of branches for the three architectures 
given the accuracy of the three prediction schemes. As- 
suming that time is measured in clock cycles, and each 
stage of the pipeline has a latency of one clock cycle, 

3 Experimental Results 

Table 1 summarizes several important characteristics of 
the benchmarks used for the experiments below. The 
Lines column shows the static code size of the C bench- 
mark programs measured in the number of program lines. 
The Runs column gives the number of different inputs 
used in the profiling process. The Znst. column gives 
the dynamic code size of the benchmark programs, mea- 
sured in number of compiler interm.ediate instructions. 
The Control column gives the percentage of dynamic con- 
ditional and unconditional branches (executed during the 
profiling process. Both Inst. and Control are accumulated 
across all of the runs. Finally, the Input description col- 
umn describes the nature of the inputs used in the profil- 
ing process. As reported in many other papers, the num- 
ber of dynamic instructions between dynamic branches is 
small (about four). 

The Conditional column of Table 2 confirms that on av- 
erage 61% of the dynamic branches generated by the com- 
piler are not-taken branches. When the SBTB or CBTB 
generates a miss for a given branch, the instruction fetch 
unit cannot fetch the target instructions in time, which 
forces the fetch unit to continue to fetch the next instruc- 
tion. This is equivalent to predicting that the branch is 
not taken. Since the majority of the dynamic branches are 
not taken, the predictions made upon SBTB misses are 
actually accurate. Since only taken branches make their 
way into the SBTB, the low percenta.ge of taken branches 
also reduces the number of entries needed in SBTB to 
achieve high prediction accuracy. Therefore, we can ex- 
pect the SBTB performance reported below to be better 
than equivalent designs reported by the previous papers. 

The Known column in Table 2 gives the percentage 
of availability of the target address for unconditional 
branches. Unconditional branches with known target ad- 
dress can be easily handled by all the three schemes as (ex- 
tremely biased) likely branches. Bra.nches with unknown 
target addresses (i.e., the address is generated as run-time 
data) pose a problem for all three schemes. Fortunately, 
almost all the unconditional branches for the benchmarks 
have known target addresses. Therefore, all the three 
schemes work well with the unconditional branches. 

The performance of the benchmarks for the three archi- 
tectures are presented in Table 3. The miss ratio for the 
SBTB, PSBTB, is much larger than ,the miss ratio for the 
CBTB, PsBTB. This is to be expected since only taken 
branches are saved in the SBTB, whereas all branches are 
eligible to be stored in the CBTB. Note also that the dif- 
ferences in prediction accuracy (i.e., A) between the three 
schemes increases with the complexity of the prediction 
mechanism used. A SBTB uses essentially information 
based on the most recent behavior of a branch instruc- 
tion in the dynamic instruction stream. Since the counter 
used for the CBTB is Z-bits long, the CBTB bases its pre- 
dictions on the four most-recent branches in the dynamic 
instruction stream. Hence, the CBTB predicts branch be- 
havior slightly more accurately than does the SBTB. The 
most accurate scheme, the Forward Semantic, uses the 
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behavior of the branch throughout the entire dynamic in- 
struction stream for its predictions. 

Observe that the accuracy values for all three archi- 
tectures are very similar. However, if context switching 
had been simulated, one would expect the performance 
of the SBTB and the CBTB to be less impressive [3]. 
Note though that the prediction accuracy of the Forward 
Semantic would not have changed in the presence of con- 
text switching. Finally, both the SBTB and the CBTB 
are fully associative to provide the highest possible hit ra- 
tio. With 256 entries, it may not be feasible to implement 
full associativity. Hence, the results are biased slightly in 
favor of the two hardware approaches. 

The values of h = I, 2,4, and 8 and the averages from 
Table 3 of A were used for the four graphs of branch 
cost versus E+ r~ in Figures 3 and 4, where SBTB cost 
is shown as a solid line, CBTB cost is a dashed line, and 
Forward Semantic cost is a dotted line. These figures show 
that as the length of the instruction fetch pipeline grows, 
the difference between the three architectures increases as 
does the overall branch cost. Increasing the length of the 
instruction decode and instruction execution pipeline also 
increases the difference between the three architectures. 

Modern microprocessors have relatively shallow pipe- 
lines with a twostage instruction fetch pipeline (e.g., I+ 
tic:, k= 1). Pipelining the on-chip cache memory 
system is a difficult task. Future increases in pipelining 
may therefore occur in the instruction decode unit. To see 
the effect of this possible design shift, the results for all 
benchmarks for k + .t! = 2 and 3, and rir = 1 is presented 
in Table 4. 

Note that the three schemes do have a slight increase in 
branch cost for the transition from k + i! = 2 to k + .? = 3 
for each benchmark. The average percentage of increase 
in branch cost is 7.7%, 6.9%, and 5.3%, for the SBTB, the 
CBTB, and the Forward Semantic, respectively. Hence, 
the Forward Semantic reacts the best to scaling the degree 
of pipelining, the CBTB is next, and the SBTB is the least 
scalable. 

Although the Forward Semantic has a slightly lower 
branch cost, code-size increases occur due to the copy- 
ing of instructions into forward slots after each predicted- 
taken branch. Table 5 summarizes this effect. Because 
copying instructions into forward slots increases the spa- 
tial locality of the program, the expanded static code size 
does not translate linearly into increased miss ratios of 
instruction caches. Therefore, considering the saving of 
hardware over SBTB and CBTB, the Forward Semantic 
is definitely a favorable choice according to the bench- 
marks. 

4 Conclusions Figure 3: Branch cost vs. E + rig for k = 1 and k = 2. 
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This paper introduced a software approach to reducing 
the cost of branches, the Forward Semantic, which is sup- 
ported by a profiling, optimizing compiler and uncompli- 
cated hardware. A model wan presented for the cost of 
branches which is significantly more general than previous 
models. One of the main features of this model is the in- 
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Figure 4: Branch cost vs. 2 + r?i for k = 4 and k = 8. 

dependent treatment of the instruction prefetch unit and 
the instruction execution unit. 

The measurements performed for this paper were fair 
to all three architectures considered. The exact same 
benchmarks with the same inputs were used to derive the 
data for all three architectures, even though two archi- 
tectures involved hardware schemeis and one involved a 
software/compiler scheme. This provided a fair compari- 
son between the Forward Semantic and the two hardware 
approaches. 

The results of the performance study are encouraging. 
They indicate that the Forward Semantic compares favor- 
ably with the two other approaches. If context switching 
had been simulated, the Forward Semantic’s performance 
would have remained the same, whereas the performance 
of the other two schemes would have suffered. The hard- 
ware needed for the Forward Semantic is considerably less 
complex than required for the other two schemes. Since 
the hardware schemes need to be accessed fast by the 
instruction prefetch pipeline, these schemes would have 
to be implemented on-chip in a microprocessor, using up 
valuable area. The Forward Semantic frees this area for 
other uses without sacrificing performance. Use of the 
Forward Semantic does cause an increase in code size, 
however. This additional code adds to the spatial local- 
ity of the program, since executing the instructions in 
forward slots often will cause the branch target’s instruc- 
tions to be in the instruction cache. For deep pipelines 
(e.g., k+l = 4), the Forward Semantic with its moderate 
14.12% code-size increase seems to be more favorable than 
the the hardware of the SBTB/CBTB schemes, which in- 
crease linearly with k. 
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Table 1: Benchmark characteristics 

Benchmark Lines Runs 
cccp 4660 20 
cmp 371 16 

compress 1941 20 
grep 1302 20 
lex 3251 4 

make 7043 20 
tee 1063 18 
tar 3186 14 
WC 345 20 

vacc 3333 8 

Inst. 
11.7M 

2.2M 
19.6M 
47.1M 

3052.6M 
152.6M 

0.43M 
1lM 

7.8M 
313.4M 

Table 2: Bench Table 2: Benchmark branch statistics nark branch statistics 

Control 
19% 
22% 
16% 
36% 
37% 
21% 
40% 
14% 
28% 
25% 

Input description - 
C progs (100-3000 lines) - 
simiIar/disimilar text fiIe:s 
same as cccp 
exercised various options 
lexers (C, Lisp, awk, pit:) 
makefiles 
text files (100-3000 lines:) 
save/extract files 
same input as cccp 
grammar for C, etc. 

Benchmark 
cccp 

cmp 
compress 

grep 
lex 

make 
tar 
tee 
WC 

yacc 
Average Average 

Condi 
aken 
31% 
20% 
37% 

5% 

. 

49% 
49% 
89% 
44% 
24% 
47% 
40% 

Condi 
Taken 

31% 
20% 
37% 

5% 
49% 
49% 
89% 
44% 
24% 
47% 
40% 

ional ional Una Una 
Not Known Not Known 
69% 69% 81% 81% 
80% 80% 100% 100% 
63% 63% 100% 100% 
95% 95% 100% 100% 
51% 51% 100% 100% 
51% 51% 100% 100% 
11% 11% 100% 100% 
56% 56% 100% 100% 
76% 76% 100% 100% 
53% 53% 100% 100% 
61% 61% 98% 98% 

lditional 
Unknown 

19% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 

1.9% 

Table 3: Branch prediction performance of the benchmarks. 

Benchmark SE 

cccp 

cmp 
compress 

wp 
lex 

make 
tar 
tee 
WC 

Y=c 
Average 
Std. dev. 

PSBTB 

0.57 
0.70 
0.49 
0.76 
0.36 
0.42 
0.11 
0.39 
0.54 
0.46 
0.48 
0.18 

Branch Drediction scheme 

97.1% 0.0032 98.0% 
87.8% 0.0053 86.1% 
93.7% 0.0006 95.9% 
98.2% 0.0002 97.7% 
90.5% 0.012 92.5% 
97.9% 0.005 98.4% 
84.4% 0.0058 88.7% 
85.4% 0.0008 85.7% 
88.9% 0.0012 89.1% 
91.5% 0.0053 92.4% 
5.06% 0.0058 4.92% 
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Table 4: B ranch cost for k f i! = and 3, and TSI = 1 

k+C=2 k-+-e=3 ,-t-e=3 
SBTB SBTB CBTB FS 

1.28 1.28 1.26 1.26 1.31 1.31 
1.09 1.09 1.06 1.06 1.04 1.04 
1.37 1.37 1.42 1.42 1.33 1.33 
1.19 1.19 1.12 1.12 1.12 1.12 
1.06 1.06 1.07 1.07 1.06 1.06 
1.29 1.29 1.23 1.23 1.17 1.17 
1.06 1.06 1.05 1.05 1.04 1.04 
1.47 1.47 1.34 1.34 1.23 1.23 
1.44 1.44 1.43 1.43 1.29 1.29 
1.33 1.33 1.33 1.33 1.35 1.35 
1.26 1.26 1.23 1.23 1.19 1.19 
0.15 0.15 0.15 0.15 0.12 0.12 

=mp 1.06 
compress 1.24 

g rep 1.13 
lex 1.04 

make 1.19 
tar 1.04 
tee 1.31 
WC 1.29 

FS 
1.21 
1.03 
1.22 
1.08 
1.04 
1.11 
1.03 
1.16 
1.19 

Table 5: Percentage of code-size increase as a function of k. 

Benchmark 
cccp 
cmp 

compress 

eqn 
espresso 

r3w 
lex 

make 
tar 
tee 
WC 

vacc 
Average 

Std. dev. 

I 
k+e= 1 

2.79% 
1.87% 
2.10% 
3.50% 
4.19% 
1.55% 
5.68% 
3.93% 
2.82% 
1.29% 
1.70% 
7.41% 
3.24% 
1.84% 

rcentage cc 
1 k+e=2 
I 5.80% 

3.74% 
4.15% 
7.44% 
8.51% 
3.36% 

11.34% 
7.96% 
5.89% 
2.52% 
3.41% 
15.43% 
6.61% 
3.83% 

!e-size incrc se 
k+e=4 k+e=B 

11.75% 2&57% 
7.48% 14.96% 
8.82% 20.26% 

14.87% 44.26% 
17.82% 39.28% 
6.96% 15.81% 

24.08% 53.73% 
16.35% 37.76% 
12.18% 27.17% 
5.34% 10.75% 
8.52% 19.00% 

35.21% 82.92% 
14.12% 32.96% 
8.55% 20.52% 
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