
A. Padegs

Systeml360 and Beyond

The evolution of modern large-scale computer architecture within ZBM is described, starting with the announcement of
System1360 in 1964 and covering the latest extensions to Systeml370. Emphasis is placed on key attributes and on the
motivation forproviding them, and an assessment is made of the experience gained in the implementation and use of the
architecture. The main approaches are discussed for obtaining implementations at widely differing performance levels,
and a number of signijicant implementation parameters for all processors are listed.

Introduction
With the introduction of Systed360 in 1964, a major review of* design considerations and alternatives; this
change in the development of computers within IBM took type of review has been published previously [2-91.
place. With the recognition that architecture [l] and
implementation could be separated and that one need not The first two sections review the System1360 and
imply the other, a common machine architecture was System/370 architectures, stating the objectives, con-
established. It was intended for program-compatible em- straints, and contributions. Following this, developments
bodiments over a wide range of performance levels and in 110 architecture are outlined. The introduction of
for various types of applications. various enhancements to the architecture is discussed in

relation to product announcements; and, in a separate
Since its introduction, this architecture has been the section, the significance of microprogramming and the

basis for all intermediate and large computers produced cache to the implementation of a compatible line of
by IBM. It has also become the basis for machines machines is reviewed. The final sections are devoted to
produced by a number of other manufacturers in the an assessment of IBM’s experience with System/360 and
USA, Japan, and the Soviet Union. The architecture has System/370. In an appendix, tables comparing implemen-
provided a firm interface for application development, tation characteristics for all processors provide further
and it has permitted the operating systems to grow illustration of the steps taken to achieve different per-
significantly in size and function. Although the architec- formance levels.
ture was developed when logic technology with a single
device per chip and magnetic cores were used to imple- Systeml360 architecture
ment machines, its fundamental structure is still suitable Systed360 was the result of a major effort to design an
for today’s designs, which use dense arrays and integrat- architecture for a new line of computers that was unen-
ed circuits of thousands of elements per chip. cumbered by the requirement to be compatible with

existing architectures. Work on a new architecture for a
This paper reviews the salient characteristics of the family of machines began in the early 1960s; its specifica-

System1360 architecture and its follow-on, the System/ tions were released in April 1964, when the first models of
370 architecture. The objectives are to cover significant Systed360 were announced.
accomplishments, to give the motivation for key architec-
tural decisions, and to present an assessment; it is not When Systed360 development was initiated, most
intended that the paper provide a complete historical new computer models were, from the viewpoint of their
record of IBM’s architecture developments. Further- logical structure, improved, enlarged, or technologically
more, the paper does not contain a detailed technical recast versions of the machines developed in the early

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor. 377

IBM J. RES. DEVELOP. VOL. 25 NO, 5 SEPTEMBER 1981 A. PADEGS

1950s. IBM products had evolved from 701 to 7094 11,
from 702 to 7080, from 650 to 7074, and from 1401 to 7010
[lo]. Additionally, IBM had produced Stretch, formally
known as the IBM 7030; it had been developed largely as
a project to challenge the state of the art, but from the
point of view of architecture it was a predecessor of
System/360.

In many ways the design concepts underlying System/
360 [2-51 were the same as those for Stretch [Ill. Both
Stretch and System/360 provided, in a single architecture,
facilities suitable for scientific, commercial, and real-time
applications; both placed major emphasis on the general-
ity and code-independence of instruction and data for-
mats; and both provided for the uniform attachment and
control of a wide variety of I/O equipment. Systeml360,
however, was the first demonstration that the concept of
developing an architecture for a family of compatible
machines was practical, with the initial implementations
targeted to yield models with internal performances rang-
ing from that of the IBM 1401 to well beyond that of
Stretch. Intermodel compatibility was probably the most
far-reaching requirement in developing System/36O and
one which affected both the architecture and the proce-
dures for developing and controlling it.

Systed360 incorporated a number of the new architec-
ture concepts introduced in Stretch, such as binary
storage subdivision and the eight-bit byte, storage protec-
tion, and a generalized interruption mechanism. Howev-
er, the System/360 architectural definition of some of
these concepts differed from that in Stretch because the
environment and objectives were different. Since Stretch
had the flavor of an experimental computer, its architec-
ture could aEord to strive for a set of functions of great
logical consistency and completeness. Systeml360, on the
other hand, was defined at its inception as a base for a
product line. As such, its development called for a more
frugal choice in the selection of functions, based on a
critical evaluation of the available experience. The archi-
tecture had to encompass implementations covering wide
performance and cost ranges, and its definition had to
reflect compromises between the performance and cost
objectives of large and small machines. As a result,
Stretch innovations such as storage addressing to the bit
level, variable byte size, and automatic handling of float-
ing-point range exceptions were not included.

The following are the key areas where System/360
introduced innovations or otherwise determined direction
in architecture.

Addressing For efficiency and because of the ease of
378 table utilization, Systed360 uses binary-radix storage

addressing, with 24-bit addresses that designate byte
locations. Thus System/360 can address 16M eight-bit
bytes, as compared to the 2M bytes on Stretch (M stands
for 2’’ or 1 048 576). This addressing capability is, of
course, available on all models and should be considered
in light of the maximum storage sizes available at that
time: 32K 36-bit words on the 7094 I1 (K stands for 21° or
1024), 160 000 six-bit characters on the 7080, 300 000
digits on the 7074, 100 000 seven-bit characters on the
7010, and 16 000 seven-bit characters on the 1460 (the
word-mark bit is included in the 7010 and 1460 character
sizes). The smallest initial System/360 model, Model 30,
offered up to 64K eight-bit bytes, and 1M bytes was
available on the largest initial model, Model 75. The
ability to address and to effectively utilize large storage
was one of the key attributes of Systed360.

Address generation A truncated 12-bit address in an
instruction, in conjunction with a full base-address value
in a register, provides indexing and eliminates the ineffi-
ciency of carrying a full address in each instruction. A
second level of indexing is available in some instructions
to facilitate loop control. The 12-bit displacement, with-
out an index or base value, provides addressability for
loading or saving the base values but normally is so small
that all programs need base addresses and are thus
generally location-independent.

Provision for control program A comprehensive inter-
ruption system, supervisor and problem states, storage
protection, and an interval timer provide a basis for
designing a secure operating system. Input/output in-
structions are invalid in the problem state, and means are
provided for the supervisor to control the duration of
application programs and switching between them. (In
Stretch an operating system could be modified by unau-
thorized input from an I/O device.)

Input and output The multiplexer channel and a com-
mon method of attaching and programming all VO devices
extended the concepts introduced in 702 and Stretch.
These aspects are discussed subsequently in the section
“Input and Output.”

General-purpose registers Sixteen registers serve as
accumulators for fixed-point and logical operations, as
well as sources of base and index values in address
generation, thus bringing the full power of the fixed-point
arithmetic-operation set to bear upon indexing computa-
tions.

Character size In contrast to the straight six-bit ap-
proach used in the IBM 702-7080 and 1401-7010 families,
two character sizes were introduced: eight-bit codes for
alphanumeric, and four-bit codes for numeric characters
This approach, used in the IBM 650-7074 family, has

A. PADEGS IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEFTEMBER 1 9 8 1

greater coding efficiency, with spare code points in the
alphabetic set, and is commensurate with binary subdivi-
sions used in the rest of the system. The length of
operands is specified in the instruction: Decimal operands
can be up to 16 bytes in length; character operands are
variable up to 256 bytes. In Stretch any character size
from one to eight bits could be specified, but variable-
field-length operands were limited to 64 bits.

Floating-point data format Two formats were intro-
duced, both available on all models: a @-bit format for
use in precision-sensitive problems and a 32-bit format for
faster speed and conservation of storage space. The 32-bit
format was intended primarily for the smaller models,
where differences in the execution time for the two
formats were significant. The alternative would have
been a single 48-bit format to succeed the 36-bit format of
the 7094 and the 64-bit format of Stretch. Both the 32-bit
and @-bit formats use the same exponent size, with a
base of 16. This was a departure from base 2 and was
introduced to permit simpler circuitry and to reduce the
frequency of pre-shift, overffow, and precision-loss post-
shift in addition and subtraction [12].

Serviceability The ability to automatically record the
detailed machine state at the instant of an error and to
initialize it to any specified value provides tools for
significant serviceability improvements [131.

The models at both ends of the performance range
introduced architecture changes to meet their particular
cost and performance goals. Model 20, although nominal-
ly called part of the Systed360 family, was incompatible
with System/360. Its architecture provided for a maxi-
mum main storage of 64K bytes, and it had 37 instead of
Systed360’s 143 instructions. Other differences were
that it did not include the supervisor state, had its own set
of I/O instructions, and had a 32-bit instead of the 64-bit
program-status word (PSW). Compatibility for running
application programs was affected because the Model 20
omitted floating-point and 32-bit binary arithmetic, had
eight 16-bit instead of sixteen 32-bit general registers, and
had a special direct-addressing mode for forming storage-
operand addresses.

At the other end of the performance range, the Models
91, 95, and 195 introduced some deviations to accommo-
date their highly overlapped designs by delaying program
interruptions and permitting the result of a divide opera-
tion to be off by one bit in the low-order bit position.
These diEerences required some adjustments in software
but did not affect compatibility for application programs
in any significant way.

Additional functions were introduced by a few of the
later Systed360 models. Model 44, announced in 1965,

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

had a number of extensions for real-time applications,
which, however, were not continued in later models. At
the same time, Model 67 introduced virtual storage [14],
which, with some modifications, became a basic part of
Systed370. The 9020 System, which was developed for
the Federal Aviation Administration, interconnected
modified Model 50s into a multiprocessing system to meet
exceptionally stringent requirements for continuity in
machine operations [15]. Models 65 and 67 both offered
multiprocessing facilities [6], which later were significant-
ly extended for System/370.

Then, in 1968, as part of the extended-precision float-
ing-point facility on the Model 85, the 128-bit floating
point format was introduced [7]. The package also includ-
ed special instructions for rounding floating-point num-
bers when going to a shorter format; they alleviated
somewhat the lack of rounding in the original architec-
ture. Model 85 also removed the original Systed360
requirement that storage operands for unprivileged in-
structions be aligned on boundaries equal to a multiple of
the operand length. Both of these extensions were carried
into Systed370. Additionally, the 2880 Block-Multiplex-
er Channel, on Systed360 Models 85 and 195, had many
of the Systed370 I/O architecture extensions [83.

In two areas the original System/360 decisions on user-
oriented functions were subsequently changed. The first
one concerns floating-point instructions. The original
Systed360 architecture did not anticipate the signifi-
cance of compatibility in the handling of overflow and the
need for indicating the true result value on both overflow
and underflow. Furthermore, it had overlooked the need
for a guard digit in post-normalization. Both of these
functions were changed in 1968, with all installed ma-
chines retrofitted.

The other change concerns the encoding of decimal
data. System/360 anticipated the adoption of a proposal
for a seven-bit American Standard Code for Information
Interchange (ASCII) and of a technique for expanding the
seven-bit code to eight bits. It provided a mode bit in the
PSW that specified, for the code-sensitive instructions,
operation with either the ASCII or the Extended-Binary-
Coded-Decimal-Interchange Code (EBCDIC). The eight-
bit extension of the code was never adopted as a national
standard, and the ASCII mode has subsequently been
deleted in the Systed370 architecture. It was highly
unlikely that any production programs ever used the
eight-bit ASCII code; none have ever been identified. The
mode bit subsequently turned out to be the only unas-
signed one in the PSW and was convenient for distin-
guishing between the original and the extended-control
(EC)-mode PSW format introduced for Systed370.

~

379

A. PADEGS

380

A. PADEGS

In a number of other areas, different architectural
choices, in retrospect, might have been preferable. The
problem of storage-address size is discussed later in the
paper. For some areas, extensions have subsequently
been introduced to solve the constraints set by the initial
decisions; for example, the new EC-mode PSW format
corrected the lack of extensibility in the original PSW
format, and the early release of the CPU during execution
of the new Systeml370 START IIo FAST RELEASE instruction
eliminated the unnecessary delay required by the original
START 110 in high-performance machines. In other areas,
the need to preserve compatibility has been felt to be so
overwhelming that the reevaluation of the original archi-
tectural choices has been of no practical interest. This
applies particularly to problem-program functions, such
as whether the floating-point significance exception is
really useful, and whether the EDIT and EDIT AND MARK

instructions are warranted in view of their very specific
operand formats.

System/37O architecture
In contrast to Systeml360, the objective of Systed370
was an evolutionary extension of System/360 architecture
for a new set of models and for new releases of program-
ming systems [9]. Experience with the System/360 archi-
tecture had identified a number of bottlenecks and limita-
tions in the efficiency of system use and had pointed out
areas where additional machine functions were desirable.
Furthermore, because the cost of technology for main
storage and logic circuitry was becoming lower in relation
to the overall system cost, it was feasible to consider
extending the machine architecture; it was possible, in
fact, to economically include functions that did not ap-
pear justified when Systed360 was developed. For ex-
ample, because of cost considerations in the smaller
models, Systeml360 provided only one 32-bit timer in a
main-storage location, which had to be programmed to
provide all timing functions. System/370 introduced three
distinct facilities, each with a @-bit value: a time-of-day
clock (for real-time indication), a clock comparator (a
real-time alarm clock), and a CPU timer (for measuring
process time) [9].

Systeml370 was constrained to be upward-compatible
for System/360 application programs and for the main-line
operating systems. Even though such operating systems
could not benefit from the new functions available in
System/370, and new support was planned, the ability to
run those operating systems was needed for the transition
period. For this reason, System/370 continued to provide
functions, such as the System/360 timer and the System/
360 PSW format, that had in fact been superseded by
functionally richer extensions. Additionally, System/370
needed to attach and operate System/360 I/O devices.

Systeml370 evolved, and its architecture [16] was re-
leased, in a number of increments. The system was
introduced in June 1970 with the announcement of Mod-
els 155 and 165, at which time the main architectural
extensions were six general-purpose instructions, the
time-of-day clock (with a period of 143 years and a
resolution of one microsecond), and control registers
(they serve as an extension of the PSW). The original
Systeml370 also included a number of extensions to
enhance model-independent recovery by software from
machine malfunctions [17]. Virtual storage, the CPU
timer, the clock comparator, program-event recording
(for software debugging), and the new PSW format and
interruption controls associated with the extended-con-
trol (EC) mode were introduced with the announcement
of Models 158 and 168 in August 1972. Multiprocessing
and the conditional-swapping and PSW-key-handling in-
structions were introduced in February 1973.

Then, with the introduction of the 3033, a number of
extensions were made available that enhanced the per-
formance and function of the MVS operating system.
One-level addressing and the instruction MOVE INVERSE
were introduced as part of the VSE (virtual storage
extended) mode on the 4300 processors to meet the needs
of the DOS/VSE operating system [18, 191. The MOVE

INVERSE instruction is intended primarily for environ-
ments, such as the Arabic language, where text is ar-
ranged in a right-to-left order.

The single item that most distinguishes Systeml37O
from System/360 is the availability of a dynamic-address-
translation facility, which allows the control program to
efficiently implement a group of functions collectively
referred to as virtual storage. The approach incorporates
paging from external storage as introduced in Atlas [20]
and a second level of indirection, segmentation, as sug-
gested by Dennis [21] and as further detailed by Arden et
al. [22].

The System/370 version of this facility is largely pat-
terned after the Systeml360 Model 67 [14]. Experience
with that machine and its operating system, TSS, had
verified the value of many of its concepts and had
provided actual usage data for making Systeml370 design
decisions. In addition to a number of format changes,
System/370 offers two page and segment sizes to accom-
modate both large and small systems, but it does not offer
32-bit virtual addressing, which was available on the
Model 67. The Systeml370 virtual-storage operating sys-
tems were evolutions of the corresponding real-storage
operating systems and could not accommodate 32-bit
addresses.

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

The virtual-storage architecture of the 3033 and other
large processors was enhanced early in 1981 by the
introduction of the dual-address-space facility. This ex-
tension includes a 16-bit address-space number, which is
associated with a set of segment and page tables and
identifies a virtual address space of 224 bytes. A total of
216 address spaces can be established, although at any one
time addressability exists to two address spaces-the
primary and secondary. Instructions and controls are
provided to load an address-space number so as to
establish addressability, call and return from programs in
either the same or another space, move data between
spaces, and establish authorization for these operations.
These facilities extend the size of the addressable virtual
storage and provide a basis for enhancing system integri-
ty

In the VSE mode, the main change was the substitution
of the one-level-addressing facility for the System/370
dynamic-address-translation facility. DOS/VSE offers
one virtual address space of up to 16M bytes, and the
architecture is simplified accordingly by eliminating the
multiple-address-space capability of the System/370.
Storage is directly addressable by the CPU and all
channels, using a uniform set of virtual addresses. The
translation table is in internal machine storage, and
special instructions are provided for setting up the map-
ping. Protection, by means of storage keys, applies to
virtual instead of real storage. Because of the simpler
translation procedure and the ability of channels to use
virtual addresses, performance gains are possible, and the
software for translating addresses in channel programs is
eliminated. The VSE mode is compatible with System/
370 for problem programs, but not for the control pro-
gram. The full System/370 facilities are available on the
4300 processors in the System/370 mode.

Another major functional extension is the inclusion of a
number of facilities that permit formation of a rnultipro-
cessing system, where two or more CPUs share common
main storage and are controlled by a single copy of the
operating system. The concept of using a prefix to offset
the main-storage address when accessing the block con-
taining shared control information is the same as that
used in System/360. The architecture was extended,
however, by making the prefix settable by the program
(instead of manually) and by providing the SIGNAL PRO-
CESSOR instruction and a special interface for communi-
cating between CPUs. On the 3033 a further extension
made it possible for the software to connect a set of
channels to one of two CPUs.

The main extension to the multiprocessing architec-
ture, though, was in the control of accesses to shared

main storage. In a multiprocessing system, the conven-
tions of a uniprocessor communication protocol become
inadequate when one CPU is changing the contents of a
common storage location while the other is observing it,
or when both CPUs are updating the contents of the
location at the same time. The System/370 architecture
includes a number of rules on the concurrency, multiplic-
ity, and order of storage accesses, and specific instruc-
tions are introduced to permit sharing of serially reusable
resources, such as updating chained lists. Specifically, in
Systed360, the TEST AND SET instruction provided a
means whereby the inspection of a bit in storage and the
setting of it to one could be performed indivisibly. In
System/370, the two compare-and-swap instructions indi-
visibly compare a field in storage with a value in a register
and, upon matching, replace the storage operand with a
new value [16].

The ZBM Systern/370 Principles of Operation [161 in the
Spring 1981 edition contained a total of 204 instructions,
as compared to the 143 initially available in System/360
[23]; this provides one indication of the growth of the
architecture. Of the 61 new instructions, 39 are either
privileged or semiprivileged (1 1 of the original Systed360
instructions were privileged), indicating that a relatively
larger portion of the architectural extensions is intended
for system functions.

Input and output
The concept of a common method of 110 attachment and
control evolved gradually. The 702 had a common inter-
face for attaching l/O control units and a common archi-
tecture for controlling I/O operations. The 709 introduced
the concept of a channel. The Stretch “exchange” [lo]
provided a mechanism for sharing equipment for multiple
I/O operations, using a common I/O interface and I/O
architecture (a different interface was used for attaching
the disk unit to the high-speed exchange, and the instruc-
tions for its control differed somewhat). In 1961 a stan-
dard interface was established for attaching I/O to all new
large systems. It was a modification of the Stretch
interface and was available on the IBM 1410/7010, 70401
44, 7070/74, 7080, and 7090/7094 systems for attaching
disk, magnetic tape, and communications control units.

System/360 extended the standardization of I/O attach-
ment and control by applying a common attachment
interface and a uniform program control to a larger
variety of device types and covering a wider spread of
data rates.

Channels
System/360 introduced the subchannel, which for most
purposes gives the appearance of an independently oper-

IBM J. RES. DEVELOP. VOL. 25 e NO. 5 e SEPTEMBER 1981

ating processor that can sustain its own channel program.
Different types of channels were designed, and, depend-
ing on the type of channel, different levels of concurrency
among channel programs were made possible. A selector
channel has one subchannel and permits operation with
one device at a time, normally at a high data rate. A
multiplexer channel can have up to 256 subchannels and,
conceptually, can be executing a channel program for
each subchannel. The actual level of interleaving depends
on the type of multiplexer channel and the device. A byte-
multiplexer channel is designed for low-speed operation
to interleave individual bytes or bursts of bytes from such
devices as keyboards, communications lines, printers,
and card equipment. When it was introduced, it repre-
sented a major advance for communications-based sys-
tems and real-time applications [5]. The block-multiplexer
channel, introduced later for System1360 Model 85, is
intended for high-speed operation and is particularly
advantageous for use with rotating storage devices, such
as disks and drums [8]. When used in conjunction with
rotational-position sensing, it permits a subchannel to be
assigned and a channel program to be established for each
access arm, with each program monopolizing the channel
for the duration of data transfer but releasing channel
facilities during arm movement and during the rotational
delay associated with locating the designated record.

0 I10 interface
The System1360 I10 interface is the connection between a
channel and an I10 control unit; it provides the necessary
physical, electrical, and communications-protocol speci-
fications. It is based on the standard interface of 1961.

The original System/360 I/O interface specification was
adequate for data rates up to about 1M bytes per second
for a cable length of about 100 feet. For cable length of the
order of 20 feet, the IBM 2301 Drum Storage, with a rate
of 1.2M bytes per second, could be accommodated. The
fully interlocked signaling protocol allowed one channel-
cable connection to sustain data transfer over a very wide
range of rates, with both the channel and device having
complete control of the timing of each byte transfer. It
did, however, require an electrical signal to be propagat-
ed between the channel and the control unit four times for
each byte transferred.

With the advent of auxiliary-storage technologies em-
ploying higher recording densities, it was necessary to
increase the data-transfer capacity of the interface. For
some buffered devices a higher data rate was desirable to
reduce the transfer time. Furthermore, many installations
needed longer cable connections. To meet these goals,
Systed370 introduced changes both in the signaling

382 protocol and in the width of the interface.

The System1370 I10 interface [24] includes two addi-
tional tag lines to provide the same level of transfer
interlocks with only two propagation times per byte
transferred. It depends on the control unit whether or not
the new facility is used; thus, control units implemented
to operate with the Systed360 protocols can be attached
to System1370 channels. On some Systed370 channels
and control units the bus width can be extended optional-
ly to two bytes, thus doubling its dath-transfer capacity.

As a result of these two additions, the Systed370 I/O
interface can sustain a data-transfer rate of over 1.5M
bytes per second in the one-byte version and over 3M
bytes per second in the two-byte version, over a cable
length somewhat less than 100 feet; longer distances can
be accommodated at lower data rates.

The data-streaming mode, introduced recently for the
IBM 3380 Disk Storage, eliminates the interlocks be-
tween the request and response signals during data trans-
fer. Data, with the appropriate tag signals, are sent in the
form of fixed-length pulses. This eliminates the dependen-
cy of the data rate on cable length caused by the interface
protocol. The IBM 3380 specifications provide for a
transfer rate of 3M bytes per second over 400 feet with
the one-byte interface.

Systed360 was the first system in which a common
attachment interface was used to connect a large variety
of I10 control units to a line of computers. The interface
has been successful in a number of ways. It has offered an
unprecedented choice of I/O equipment in configuring a
system. It has permitted channels and control units to be
designed independently and at different locations with an
assurance that, assembled into a system on the user’s
premises, they will operate without any adjustments.
Furthermore, the specific interface definition has been
sufficiently general and flexible to accommodate new
device types and to permit extension of function and data
rates in a compatible manner. As a result, a control unit
designed to the original definition (after the 1967 change
to the electrical specifications) can operate with a channel
incorporating the latest extensions, provided the channel
meets the speed requirements.

The standard interface permits other attachment ap-
proaches. At the penalty of losing some configuration
flexibility, the total cost of a system can be reduced by
eliminating a separate frame and power supply for the
control unit, by eliminating the use of an interface cable
and the associated drivers and receivers, and by sharing
some main-frame logic circuits for the control-unit func-
tions. Such integrated designs are offered on the smaller
Systed360 and System/370 models for some common I10
device types. Even though such designs physically merge

A. PADEGS IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

the channel and control unit, they nevertheless maintain
the logical separation and simulate those aspects of the
standard interface that are observable by the program.
Thus, regardless of the implementation, all I/O devices
are controlled by the same set of I/O instructions, com-
mand words, and other program formats.

Implementation approaches
The various levels of performance and cost in the imple-
mentation of the architecture are achieved by appropriate
choices and tradeoffs among such parameters as circuit
speed and cycle time, width of data and logic paths,
overlap of instruction execution, and speed, width, and
interleaving of main storage [25, 261. Two new develop-
ments in machine implementation, however, are particu-
larly significant in the adoption and subsequent extension
of Systed360 architecture: microprogramming and the
cache (high-speed buffer).

Microprogramming
Microprogramming, originally suggested by Wilkes [27],
is the use of simple and fast low-level instructions for
controlling machine sequences [28-301. This type of de-
sign permits sharing a basic data flow for a wide variety of
functions and readily permits tradeoffs between cost and
performance. With conventional logic circuitry, the cost
of controls increases in a roughly linear relationship to the
functional capability. With microprogramming, a base
cost for the microcode-storage device and the supporting
logic must be borne, after which the incremental cost for
adding more storage in order to microprogram additional
function is relatively small.

It was largely because of microprogramming and the
economy associated with sharing hardware that it became
economically feasible to implement the full Systed360
architecture on the smaller models. The savings were
particularly significant in the implementation of input and
output, as microprogramming made it possible to build
integrated channels where the logic capability of the
machine is time-shared between CPU and channel func-
tions. In such an implementation, the channel becomes a
conceptual entity, and one may include a large number of
subchannels at virtually no cost other than the storage
space for the governing control information.

Microprogramming made it possible to incorporate in
Systed360 and Systed370 models the capabilities for
emulating other architectures, such as those of the IBM
1401 and the IBM 7094 [31]. It also made it possible to
extend the original System/360 architecture with assists
for specific operating systems. Furthermore, micropro-
gramming has had a beneficial effect on the architecture-
resolution process, since it permits corrections and

changes in machine functions after the circuitry has been
designed and built; some changes are feasible even after
the machine has been delivered to the customer.

Microprogramming is used to varying extent in all
System/360 and Systed370 models except for Models 44,
75, 91, 95, and 195. The extent and the method of use
depend on performance objectives. Larger models nor-
mally have more bits per microprogram-instruction word
for the control of their more complex data paths. On the
other hand, smaller models have larger microprograms,
since these models require more cycles to accomplish the
same function and use microprogramming for more func-
tions. As an example, the Model 168 has 4K words of 108
bits each, whereas the Model 138 has 64K words of 18
bits each. In the initial Systed360 models, micropro-
grams resided in read-only storage, but in most later
models read-write storage is used. In the smaller models,
microprograms reside in an extension of main storage.

Cache
Starting with Systed360 Model 85, the larger models use
a high-speed buffer, called the cache, for accesses to main
storage. Although the concept had been considered previ-
ously [32], IBM was the first to implement a large cache
in a commercial computer [33-361. The cache was a major
advance in system organization and subsequently has
been extensively analyzed in the literature [37-391. The
cache is interposed between the CPU and main storage,
and its existence is not apparent to the program.

The cache reduces the number of main-storage refer-
ences, because information fetched into the cache can be
reused without access to main storage. Furthermore, by
loading entire “lines” (typically 32-64 bytes) on any
request for storage information, the machine can prefetch
valuable information for future use and thus avoid the
delay associated with additional storage access. The
effectiveness of the cache depends on its size and other
design parameters, as well as on the distribution of
addresses used to access storage. According to Liptay
[34], on the Model 85 with a 16K-byte cache, typically
97% of fetches were satisfied with data from the cache.
With larger caches, in scientific applications “hit” ratios
of 9% and over can be attained, although for interactive
environments a more typical ratio is 96%. Furthermore,
by allowing channels to communicate directly with main
storage, the cache reduces storage interference and im-
proves accessibility of storage for I/O, thus permitting
higher I/O data rates.

The effect of a storage hierarchy using a cache is to
reduce the dependence of CPU operations on storage
access time and to provide a better match between the 383

A. PADEGS IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

operation speeds of main storage and CPU circuitry. The
cache provides more freedom in the choice of storage
technologies and allows for larger storage and longer
access times. The introduction of a cache played a
significant role in the realization of systems with large
main storage.

Experience with Systeml360 and its extensions
The following are some of the major observations to be
made and conclusions to be drawn concerning System/
360 and its extensions.

Implementation of compatible machines
Experience clearly verified that the initial System/360
goals for a compatible line of machines were realistic, and
that it was feasible to build a family of machines within
which programs could be transferred routinely from one
model to another. The validity of the original compatibil-
ity goals was particularly proven by the fact that other
manufacturers have been successful in producing System/
370-compatible machines. In fact, compatibility helped
reduce development costs within IBM. The original Sys-
tem/360 plan called for verifying each element of software
on each model. Because of the growing confidence that
programs which ran on one model would also run on
other models, it was possible to significantly reduce the
amount of cross-verification performed.

The original Systed360 announcement included pro-
cessors with a performance range of 25 to 1. Six years
later this had increased to around 200 to 1, and today the
performance of the 3081 is approximately 450 times that
of the Systed360 Model 25.

0 Main storage
Main-storage sizes grew more rapidly than was anticipat-
ed in the 1960s; the technological improvements, which
reduced the cost, had occurred at a faster rate than was
expected. Thus, it became obvious at the time System/
370 was in the planning stages that the 24-bit main-storage
address size would have to be extended eventually.

The extension of the address size, however, proved to
be more difficult than first expected. The basic addressing
mechanism of Systed360 was well suited to extension,
since it depended on base registers that were already 32
bits wide. The interruption mechanism and the I/O con-
trol formats, however, did not have the required extensi-
bility, since immediate cost and performance conse-
quences in 1962 had outweighed the need to meet eventu-
al long-term requirements. More importantly, operating
systems and compiler-produced application programs had
used the extra bit positions in address words for control

384 purposes and hence required extensive modification.

A. PADEGS

In all new formats introduced for Systed370, such as
the control registers and the EC-mode PSW, main-stor-
age-address fields are assigned 32 bit positions, should
they be needed for address expansion. On the 3033 and
other large machines, however, real storage in excess of
16M bytes is accommodated by making use of unused bit
positions in the translation tables.

0 Precision vs. unpredictability
In. order to ensure compatible implementations, the archi-
tecture has to be complete in that it must cover all
functions of the machine that are observable by the
program, including all the unlikely concurrent occur-
rences of different unusual exceptions. It either must
specify the action the machine performs or state that the
action is unpredictable.

Identical action in all machines is less likely to cause
problems with compatibility and has a certain aesthetic
appeal. Indiscriminately specifying predictable operation,
however, may present problems when the predictable
operation is of insignificant value to the user and some
later machine has difficulty complying with the required
predictability. Whereas specifying initially that an opera-
tion is unpredictable might have been quite acceptable,
relaxing the architecture definition to permit unpredict-
ability has certain risks, because some programs may
have come to depend on the initial, precise definition.
Thus the architect has to make a deliberate decision about
the extent of predictability.

The Systeml360 architecture did not provide adequate
precision and detail in some areas. Because there was no
specification of the priority in which concurrently exist-
ing program exceptions are recognized, programming of
virtual machines was made difficult. Because the se-
quence and concurrency for storage accesses were not
specified, processors could not communicate reliably
using shared main storage. And because not enough
details in machine-check handling were specified, the
possibility of model-independent recovery after an equip-
ment failure was reduced. The 1973 edition of the System/
370 definition was more detailed and precise, but, for the
sake of simplicity of the architectural model, specified as
predictable some aspects that, as experience indicated,
should not have been. An appendix in the 1980 edition of
the System1370 Principles of Operation [16] lists six
changes where the requirements for predictability have
been relaxed. These changes concern such aspects as
indicating an access exception for an operand when the
instruction can be completed without the use of the
operand, and they are unlikely to affect any program.

IBM J . RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER I S 1

Assists
In addition to the general-purpose architecture included
in the Principles of Operation, many CPUs include spe-
cial-purpose functions to improve the performance of a
specific programming system. These functions, referred
to as assists, comprise frequently occurring instruction
sequences of a particular application, and a single opera-
tion code (or the occurrence of some other condition)
may invoke the execution of an extensive procedure.

The assists are made possible by microprogramming
and are implemented mostly (and in most machines
exclusively) in microcode. They are particularly effective
in improving performance when the function includes an
interruption sequence and the associated program action;
for example, when operating under VMl370, depending
on the model and the operating system, a 40-65% reduc-
tion in elapsed time due to the VM assist has been
measured [40].

The assists, however, are temporary internal interfaces
and are not intended for application-program develop-
ment. The functions may change between releases of the
operating system, and, since the design decisions may be
made on the basis of tradeoffs involving only a few
specific machines, they may vary between models.

1

Levels of compatibility
With the establishment of the operating system as an
essential component of a user’s installation, part of the
architected machine interface is becoming an internal
interface between the machine and the operating system.
The dynamic-address-translation mechanism and ma-
chine-check indications are some examples of functions
that do not directly sect the user, but the operating-
system-dependent nature of the interface is particularly
emphasized by the introduction of the assists. Further-
more, since the larger models normally are used with
functionally richer operating systems and since the small-
er models are usually restricted to those with lower
storage requirements, an affinity has developed between
machine power and operating-system power. Because of
the nature of this affinity, it is not essential that the part of
the machine interface affecting only the operating system
be the same on all machines.

IBM I. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

This evolution points out that two types of require-
ments for compatibility have to be considered. In order
that old application programs run on new machines, the
machine, jointly with the system program, must ensure
that the basic facilities intended for application-program
development continue to be available. On the other hand,

changes may be acceptable in those facilities that are
available to and affect only a system program or that can
be masked by the system program from the application
program. Indeed, such changes have to be expected,
since they make it possible to improve the performance of
system functions.

Such changes (as contrasted to extensions) have been
introduced at different times into the Systed360 and
Systed370 architectures. In the VSE mode on the 4300
processors, the one-level-addressing facility replaced the
dynamic-address-translation facility in order to improve
virtual-storage management for small systems; it affected
only the interface between the machine and the DOS/
VSE operating system that uses it. Similarly, it was
feasible to phase in the extended-control (EC) mode, with
the associated changes in interruption control and the
PSW format, since the machine format affected only parts
of the control program. The OSIVS2 operating system,
however, continued for years to maintain the original
PSW format in areas where the format was exposed to the
user, such as in the trace information.

Architecture control
The design of a compatible line of machines required a
strict separation of the architecture and machine-design
functions and the introduction of methodology for the
control of architecture. One of the major effects of
Systed360 was to establish architecture as an autono-
mous function and to introduce the management tools,
discipline, and procedures for adopting and controlling
architecture [9].

Recognizing that any differences in wording may imply
differences in function, consistency is achieved by having
only one specification of the architecture; it tells IBM
machine designers the functions the machine must pro-
vide, and it describes to IBM programmers how the
machine operates. The same specification is made avail-
able outside IBM as the Principles of Operation [16, 181,
and is the only authoritative specification that describes
the architecture. An analogous specification exists for the
I/O interface [24].

A set of procedures have been established for the
development of an architecture, starting with the concep-
tion of the idea and ending with the formal adoption of a
definition. These procedures provide for the assessment
of the cost and value of a function and for the approval of
the architecture by machine and software implementers.
Rules have been established about the extent of architec-
tural compatibility [16], and provision is made for deviat-
ing from the common definition.

Although the implementation of a line of compatible
computers did not take an undue amount of effort, the
design and control of architecture proved to require more
attention to detail than originally anticipated. Further-
more, experience with Systeml360 and its subsequent
extensions has shown that the management of architec-
ture must be an ongoing operation to ensure a consistent
technical interpretation and to ensure that the evolution
of the architecture structure is governed by a consistent
set of principles and a design philosophy.

Conclusion
Systed360 architecture has provided the basis for a
number of machine generations, and it has been able to
evolve to respond to new technologies, programming-
system structures, and user requirements. This has been
possible because of the soundness of its basic structure,
the rigorousness of its definition, and the recognition of
the autonomy of the architecture function.

As machine, software, and system-design technologies
advance, further evolution of the architecture is inevita-
ble. Changes will be made to better meet user needs and
to allow more efficient design of machines and their
associated programming systems. Because of the magni-
tude of the investment in Systeml370 architecture, how-
ever, it will be even more essential to ensure compatibil-
ity with the current architecture for those interfaces that
are exposed to the user and are intended for application-
program development.

Appendix: Model characteristics
This appendix summarizes some attributes of IBM ma-
chines implementing Systed360 and Systed370 archi-
tecture. Only the most recent characteristics are listed;
some of the models were improved after initial announce-
ment. The tables in this section are updated and extended
versions of those published by Case and Padegs [9], and
some corrections have been included.

Table 1 (appearing on pages 388-389) lists some key
characteristics of the CPU and storage. CPU data-flow
width indicates the largest field that can be handled in one
cycle time. Depending on the CPU, a different amount of
“work” is accomplished per CPU cycle; hence the cycle
time cannot be used directly as a measure of relative
speed.

Control storage contains the microprogram. A range in
the size is given for those models where the amount
installed depends on the selection of certain optional
features. The word size is expressed in terms of two

386 numbers: (the number of bits used for logic or control

purposes) + (the number of bits used for checking the
parity of the control-storage contents). When a separate
control storage is provided for the service processor or
channels, the table lists only the parameters of the CPU
control storage.

The bus width for some models is expressed in terms of
two numbers: (basic width) X (interleaving factor). The
basic width is the width of the path from the storage
controller to the CPU or channels. The interleaving factor
indicates the number of accesses to sequential locations
that can be made in one storage cycle; it applies to
implementations where sequential locations are in differ-
ent storage modules. The interleaving factor may be
variable and may depend on the configuration. On some
models the bus width is smaller than the amount of
information accessed in parallel in the storage array; this
is indicated by footnotes. Unless otherwise indicated, the
storage-cycle time is the minimum time between succes-
sive references to the same location.

For the cache, the line-width column gives the number
of bytes in the cache which are considered as one unit for
addressing and replacement purposes. The first element
of the product notation is the minimum transfer unit from
processor storage to cache; the second element is the
number of such transfer units required to make a line.
Where applicable, a two-number notation is used for the
cycle time to indicate the minimum time between succes-
sive read accesses and the total cache-access time. Usual-
ly, the contents of a particular virtual address in storage
may be placed in only a small part of the available cache
locations, where they may be found by an associative
lookup. The column labeled “Associativity” shows the
degree of associativity, that is, the number of different
locations in the cache that may correspond to a particular
virtual address.

Table 2 lists the year, month, and day when the various
machines were announced and the year and month when
they were first shipped.

References and notes
1. The term architecture is used here to describe the attributes

of a system as seen by the programmer, i . e . , the conceptual
structure and functional behavior, as distinct from the orga-
nization of the data flow and controls, the logical design, and
the physical implementation.

2. G. M. Amdahl, G . A. Blaauw, and F. P. Brooks, Jr.,
“Architecture of the IBM Systend360,” IBM J . Res. Devel-

3. G. A. Blaauw and F. P. Brooks, Jr., “The Structure of
Systed360; Part I-Outline of the Logical Structure,” ZBM
Syst. J . 3, 119-135 (1964).

4. G . M. Amdahl, “The Structure of Systed360; Part III-
Processing Unit Design Considerations,” IBM Syst. J . 3,

op. 8 , 87-101 (1964).

144-164 (1964).

A. PADEGS IBM J . RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

5. A. Padegs, “The Structure of Systeml360; Part IV-Channel
Design Considerations,” ZBM Syst. J . 3, 165-180 (1964).

6. G. A. Blaauw, “The Structure of Systeml360; Part V-
Multisystem Organization,” ZBM Syst. J . 3, 181-195 (1964).

7. A. Padegs, “Structural Aspects of the Systeml360 Model 85;
Part 111-Extension to Floating-point Architecture,” ZBM

8. D. T. Brown, R. L. Eibsen, and C. A. Thorn, “Channel and
Direct Access Device Architecture,” ZBM Syst. J . 11, 186-
199 (1972).

9. R. P. Case and A. Padegs, “Architecture of the IBM
Systeml370,” Commun. ACM 21, 73-96 (1978).

10. C. J. Bashe, W. Buchholz, G. V. Hawkins, J. J. Ingram, and
N. Rochester, “The Architecture of IBM’s Early Comput-
ers,” ZBM J . Res. Develop. 25, 363-375 (1981, this issue).

11 . W. Buchholz, Ed., Planning a Computer System (Project
Stretch), McGraw-Hill Book Co., Inc., New York (1%2).

12. D. W. Sweeney, “An Analysis of Floating-point Addition,”

13. W. C. Carter, H. C. Montgomery, R. J. Preiss, and H. J.
Reinheimer, “Design of Serviceability Features for the IBM
Systeml360,” ZBM J . Res. Develop. 8, 115-126 (1964).

14. C. T. Gibson, “Time-Sharing in the IBM Systeml360: Model
67,” AFIPS Conference Proceedings 28 (1966 Sprint Joint
Computer Conference, Boston), 61-78 (1966).

15. G. R. Blakeney, L. F. Cudney, and C. R. Eickhorn, “An
Application-Oriented Multiprocessing System, Part 11-De-

94 (1967).
sign Characteristics of the 9020 System,” ZBM Syst. J . 6,80-

16. ZBM System1370 Principles of Operation, Order No. GA22-
7000, available through IBM branch offices.

17. M. Y. Hsiao, W. C. Carter, J. W. Thomas, and W. R.
Stringfellow, “Reliability, Availability, and Serviceability of
IBM Computer Systems: A Quarter Century of Progress,”
ZBM J . Res. Develop. 25, 453-465 (1981, this issue).

18. ZBM 4300 Processors Principles of Operation for ECPS:VSE
Mode, Order No. GA22-7070, available through IBM branch
offices.

19. H. R. Schwermer, “The ECPS:VSE Mode for the IBM 4300
Processors,” ZEEE COMPCON Spring 1980 Digest of Pa-
pers, San Francisco, Feb. 25-28, 1980.

20. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H.
Sumner, “One-Level Storage System,” IRE Trans. Elec-
tron. Computers 11, 223-235 (1962).

21. J. B. Dennis, “Segmentation and the Design of Multipro-
grammed Computer Systems,” J . ACM 12, 589-602 (1%5).

22. B. W. Arden, B. A. Galler, T. C. O’Brien, and F. H.
Westervelt, “Program and Addressing Structure in a Time-
Sharing Environment,” J . ACM 13, 1-16 (1966).

23. Only instructions published in the Principles of Operation
are included in the counts. The following are not included:
instructions available on a special-contract basis, instruc-
tions that are part of assists for specific operating systems,
and instructions for emulating other architectures. For Sys-
teml360, the special instructions available only on Models
20,44, and 67 are not included. For Systeml370, instructions
associated with the one-level-addressing facility are not
included.

24. ZBM Systeml360 and System1370 ZIO Interface: Channel to
Control Unit, Original Equipment Manufacturer’s Znforma-
tion, Order No. GA22-6974, available through IBM branch
offices.

25. P. Fagg, J. L. Brown, J. A. Hipp, D. T. Doody, J. W.
Fairclough, and J. Greene, “IBM Systeml360 Engineering,”
AFZPS Conference Proceedings 26 (1964 Fall Joint Comput-
er Conference, San Francisco), 205-231 (1964).

26. W. Y. Stevens, “The Structure of Systeml360; Part II-
System Implementations,” ZBM Syst. J . 3, 136-143 (1964).

27. M. V. Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester University Computer
Inaugural Conference, Manchester, England, 1951, p. 16.

Syst. J . 7, 22-29 (1968).

ZBM Syst. J . 4, 31-42 (1965).

Table 2 Announcement and shipment dates.

Model Announced First shipped

System1360
22
25
30
40
44
50
60
62
65
67
70
75
85
91
92
95
195 69-8-20

System1370
115 73-3-13

125 72-10-4

135 71-3-8

138 76-6-30
145 70-9-23

148 76-6-30
155 70-6-30
158 72-8-2

165 70-6-30
168 72-8-2

195

Systeml370-compatible
303 1
3032
3033

71-4-7
68- 1-3
64-4-7
64-4-7
65-8-16
64-4-7
64-4-7
64-4-7
65-4-22
65-8-16
64-4-7
65-4-22
68-1-30
64-11-17
64-8- 17 *

115-2 75-11-10

125-2 75-11-10

135-3 76-6-30

145-3 76-6-30

158-3 75-3-25

168-3 75-3-25
7 1-6-24

77- 10-6
77- 10-6
77-3-25
79-11-1
80-11-12
80-11-12
79-1-30
80-5-7
79-1-30
80-9- 15

3033-N
3033-S
308 1
4331-1
4331-2
4341-1
434 1-2

7 1-6
68-10
65-6
65-4
66-9
65-8

not shipped’
not shipped’

65-1 1
66-5

not shipped’
66- 1
69-12
67-10

not shipped3
68-2
7 1-3

74-3
76-4
73-4
76-2
72-4
77-2
76- 1 I
7 1-6
77-5
77- I

73-4
71-1

76-9
71-4
73-5
76-6
73-8

78-3
78-3
78-3
80- 1

79-3
80-8
79- I 1

‘Replaced by Model 75
‘Replaced by Model 65

%designated as Model 91
*Mered on special government contract

28. S. G. Tucker, “Microprogram Control for Systeml360,”

29. S. S. Husson, Microprogramming Principles and Practice,

30. P. M. Davies, “Readings in Microprogramming,”ZBM Syst.

31. S. G. Tucker, “Emulation of Large Systems,” Commun.

ZBM Syst. J . 6, 222-241 (1967).

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970.

J . 11, 16-40 (1972).

ACM 8,753-761 (1965). 387

A. PADEGS IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

R
8

Table 1 Model characteristics.

Model CPU Control storage Number Processor storage Cache
of TLB

Data- Cycle Size Word Type Cycle entries Size Bus width Cycle Size Line Cycle Type Associa-
flow time (ns) (K size time (K bytes) (bytes) time (K width time tiviry
width words) (bits) (ns) (ns) bytes) (bytes) (ns)
(bytes)

System1360
22 1
25 1
30 1
40 2=
44 4
50 4

65 8

67 8
75 8

85 8

91 8
95 8

195 8

System1370
115 1
115-2 2
125 2
125-2 2
135 2

135-3 2

138 2
145 4'O

145-3 4'O

148 4'O

155 4

158 4
155-11 4

158-3 4
165 8

165-11 8

750 4
900 8
750 4
625 4
250 none
500 2.75

200 2.75

200 2.75
195 none

80 2
0.5

60
60

none
none

54 none

480 20-28
480 12-20'
480
320-480' 16-24

12-20

275-14tV8 12-24

275-1485' 64

275- 1430' 64
203-315' 8-1611

180-270' 32

180-270' 32

1 I5 6
115 8
115 8

115 8
80 2

2
80 4

1

50+5
16+2
50+5
52+2

85+33

87+44

87+44

105+35
105+3'

20+ 3
19+2
19+2
19+2
16+2

16+2

16+2
32+4

32+4

32+4

69+3
69+ 3
69+ 3

69+3
105+3
105+35
105+35
105+35

RO
RW
RO
RO

RO

RO

RO

RO
RW

RW
RW
RW
RW
RW

RW

RW
RW

RW

RW

RO
RO
RW

RW
RO
RW
RO
RW

750
900
750
625

500

200

200

80
80

480
480
480
320
275

275

275
203

180

180

115
115
1 I5

115
80
80
80
80

none
none
none
none
none
none

none

8
none

none

none
none

none

8
16
16
16
8

8

8
8

8

8

none
128
128

128
none

128

24-32
16-48
16-64
32-256
32-256
128-512
1024-8192
256- 1024

256- 1024
256- 1024

512-4096

1024-8192

1024-8192

2048-6144
1024

1024-40%
1024-6144

64- 192
64-384
96-256
%-512
%-512

256-512

512-1024
160-2048

192-1984

1024-2048

256-2048
256-2048
512-6144

512-6144
5 12-3072

512-3072

1 1500'
2 900l

1 1500'
2 25OQ'
4 1OOo'
4 2000'
4x(1-2) 8000'
8x2 7.50'
8 x (1-2) 8000'
8x2 750'
8x(2-4) 750'
8X(1-2) 8000'
16X(2-4) 960'

8x 16 780'
8X 16 180
8x 16 780'
8X(8-16) 756'

2 480
2 480
2 480
2 480
2 9 9 0 9 R

9359 w
2 990' R

9359 w
2 9359
8 540 R

608 W
8 405 R

540 W
8 405 R

540 W
8 2070'
8 20701
8 1035 R

920 w
8 920
8x4 2000'

8x4 20001

none
none
none
none
none
none

none

none
none

16-32

none
none

32

none
none
none
none
none

none

none
none

none

none

8
8
8

16
8-16

8- 16

16x46

8x8

16
16
16

16x2
8x4

8x4

80- 160

54- I62

115-230

115-230

115-230
80- 160

115-230

80- 160

168 8 80

168-3 8 80

195 l3 8 54

Systeml370-compatible
303 1 4 115
3032 8 80
3033 8 57

3033-N 8 57

3033-S 8 57

308115 8 26
4331-1 4 300-16008

4331-2 4 200-16008

4341-1 8 150-300'
4341-2 8 120-240'

2-3.5
0.5-1
2-3.5
1-2
none

8
4
3-7
1
3-7
1
3-7

2 l6

1

16-3211

32"
3
14-16
16-20

105+35 RO
105+35 RW
105+3' RO
105+3' RW

69+3 RW
105+3 RW
105+3 RW
122+4 RW
105+3 RW
122+4 RW
105+3 RW
122+4 RW
104+4 RW
32+4 RW

32+4 RW
32+4 RO
32+4 RW
32+4 RW

80 128
80
80 128
80

none

115 128
80 128
57 128
57
57 128
57
57 128
57
5217 128
50OZ0 64

5 0 O ' O 64
100
150 64
120 64

1024-8192

1024-8192

1024-40%

2048-8192
2048-8192
4096-25576

40%-16384

40%-8192

16384-32768
512-1024

1024-40%

2048-40%
2048-8192

8x4

8 x 4

8X 16

8 x 4
8 x 4
8x8

8 x 4

8x4

8x2"
4

4

8
16

320 8-16

320 32

756 32

34514 32
320 32
28514 64

285 16

28 5 0.5

31219 32
900 R none
1300 W
260Oz1 R 8
3100'l W
2400" 8
144OZ1 16

8 x 4

8 x 4

8 x 8

8 x 4
8 x 4
8 x 8

8x8

8 x 4

8X 16

4X 16

8x8
16x4

80- 160

80- 160

54- 162

1 1 5-230
80- 160
57- 1 14

57- 114

57-1 14

26-52

200

225
120 R
180 w

T

T

T

T
T
T

T

T

C

C

C
C

4-812

8

4

8
8
16

8

8

4

4

4
8

Explanation
C Store-in-cache: On storing, the value is placed in the cache; the

new value is placed in main storage at the time the cache line is
reassigned or the data is requested by a channel or another
processor.

K The number 2" = 1024
ns Nanoseconds
R Access for reading
RO Read-only

T Store-through: On storing, the value is placed in main storage; the
R W Read-write (writable)

value is not placed in the cache unless a line has been assigned to

TLB Translation-lookaside buffer, which is a part of the dynamic-
the main-storage location.

address-translation mechanism
W Access for writing

Footnotes
'The model uses magnetic-core technology.

Certain registers and paths are 17 or 18 bits wide where a main-storage
address is processed in one cycle.

3Extended to 90 + 3 for the 1410 emulator, or 92 + 3 for the 7070
emulator.

'Extended to 94 + 4 when any emulator is installed.

installed.
'Extended to 122 + 4 for part of control storage when any emulator is

'Although the 64-byte lines are loaded into the cache only when
referred to, an entire cache sector of 1K bytes (16 lines) is assigned as a
unit to a 1K-byte storage sector.

that were executed on the CPU in a 115; hence the smaller CPU
'The 115-2 contains a separate YO processing unit for some functions

control-storage capacity.

'Four bytes can he accessed and transferred in this time.
'Variable, depending on the type of operation performed.

''An 8-byte-wide path is used for instruction fetch.
"Part of t h i s capacity is physically in processor storage and thus has to

"Depends on cache size used.
he subtracted from the available processor-storage capacity.

"The Systed370 Model 195 has certain facilities (e.g. , time-of-day
clock, control registers, MOVE LONG) not available on the System/
360 Model 195.

"The effective transfer rate to the CPU is Kited to eight bytes per CPU
cycle.

"Each of the two CPUs has the indicated control-storage, cache, and
TLB capacity.

storage assigned for this purpose.
"1K of the control storage is pageable, using an area in processor

"26 os when the word is available in the microinstruction buffer @.e., is
within the current set of 16 words).

'81nterleaving is on the basis of 2K bytes; no interleaving takes place
within the access for a cache line of 128 bytes.

"An amount equal to a cache line is read or written in one storage cycle.
The effective transfer rate tothe CPU is limited to eight bytes per CPU
cycle.

"An entire cache line can he accessed and transferred between the
aolOO ns when the word is available in the microinstmction buffer.

cache and the storage unit in this time.

32. L. Bloom, M. Cohen, and S. Porter, “Considerations in the
Design of a Computer with High Logic-to-Memory Speed
Rates,” Proceedings of Sessions on Gigacycle Computing
Systems (presented at AIEE Winter General Meeting, New
York, Jan. 29-Feb. 2, 1%2), AIEE Spec. Publ. S-136, pp.

33. D. H. Gibson, “Considerations in Block-Oriented System
Design,” AFIPS Conference Proceedings 30 (1967 Spring
Joint Computer Conference, Atlantic City), 75-80 (1967).

34. J. S. Liptay, “Structural Aspects of the Systed360 Model
85; Part 11-The Cache,” IBM Syst. J. 7, 15-21 (1968).

35. C. J. Conti, D. H. Gibson, and S. H. Pitkowsky, “Structural
Aspects of the Systed360 Model 85; Part I-General Orga-
nization,” IBM Syst. J . 7, 2-14 (1%8).

36. C. J. Conti, “Concepts for Buffer Storage,” IEEE Comput.
Group News 2, 9-13 (1969).

37. K. R. Kaplan and R. 0. Winder, “Cache-Based Computer
Systems,” Computer 6, No. 3, 30-36 (1973).

53-63.

38. A. J. Smith, “A Comparative Study of Set Associative
Memory Mapping Algorithms and Their Use of Cache and
Main Memory,” IEEE Trans. Software Eng. SE-4, 121-130
(1978).

39. G. S. Rao, “Performance Analysis of Cache Memories,” J.

40. R. A. MacKinnon, “The Changing Virtual Machine Envi-
ronment: Interfaces to Real Hardware, Virtual Hardware,
and Other Virtual Machines,” IBM Syst. J . 18,18-46 (1979).

ACM 25, 378-395 (1978).

Received August 26, 1980; revised December 30, 1980

The author is with the ZBM Datu Processing Products
Group located at the Poughkeepsie laboratory, Pough-
keepsie, New York 12602.

390

A. PADEGS IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

