IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 9. SEPTEMBER 1987

1063

Line (Block) Size Choice for CPU Cache
Memories

ALAN JAY SMITH, SENIOR MEMBER, IEEE

Abstract—The line (block) size of a cache memory is one of the
parameters that most strongly affects cache performance. In this
paper, we study the factors that relate to the selection of a cache
line size. Our primary focus is on the cache miss ratio, but we aiso
consider influences such as logic complexity, address tags, line
crossers, 1/0 overruns, etc. The behavior of the cache miss ratio
as a function of line size is examined carefully through the use of
trace driven simulation, using 27 traces from five different
machine architectures. The change in cache miss ratio as the line
size varies is found to be relatively stable across workloads, and
tables of this function are presented for instruction caches, data
caches, and unified caches. An empirical mathematical fit is
obtained. This function is used to extend previously published
design target miss ratios to cover line sizes from 4 to 128 bytes
and cache sizes from 32 bytes to 32K bytes; design target miss
ratios are to be used to guide new machine designs. Mean delays
per memory reference and memory (bus) traffic rates are
computed as a function of line and cache size, and memory access
time parameters. We find that for high performance micropro-
cessor designs, line sizes in the range 16-64 bytes seem best;
shorter line sizes yield high delays due to memory latency,
although they reduce memory traffic somewhat. Longer line sizes
are suitable for mainframes because of the higher bandwidth to
main memory.

Index Terms—Block size, buffer, cache memory, CPU per-
formance, line size, miss ratios.

1. INTRODUCTION

HE cache line (block) size is the parameter, along with the

overall cache size itself, that most strongly affects the
cache performance. Excessively large or small line sizes can
raise the miss ratio and greatly increase the storage delay
component of average instruction time [18]; also, large line
sizes have long transfer times and can create difficulties in
multiprocessor systems by creating high levels of memory
traffic.

In this paper, we consider the factors that determine the
choice of line size, with particular attention to cache miss
ratio. We begin, in this section, with a general discussion of
the various ways in which the line size affects the cache design
and performance, and the ways in which the machine design
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affects the line size choice. The rest of the paper is then
concerned with a detailed examination of how the miss ratio
varies with the line size; that study is based on extensive trace
driven simulation.

A. Previous Research

There have been a number of surveys of cache memories
and/or memory hierarchy performance which have, among
other parameters, considered line size choice. The most recent
and comprehensive of those surveys are [25} and {26]; earlier
ones include [11], [15], [20], [23], and [28].

Some recent papers have looked more carefully at line size
but still as one of several issues. Katz er al. [16] report that a
line size in the range of 16-32 bytes seems best for the SPUR
design. In [13] there is a study of line size as one of several
parameters in a split (instructions/data/stack) cache; results in
that paper are generally similar to those here although less
detailed and less clearly specified: insufficient information is
provided there to allow us to compare directly. Goodman [12]
looks at line size as one of several parameters to vary to
minimize bus traffic; we comment later on his results, since
they differ from ours.

None of the papers mentioned above systematically focused
on the line size issue, and none looked at the topic in enough
depth that the results can be relied upon to guide the
implementation of a variety of new machines. (In [16] studies
are presented to guide SPUR, but are not intended for other
machines.) That is one of our goals here.

There does exist one paper which considers primarily the
line size issue: [17]. Kumar starts by assuming that the
working set size of a program as a function of the block size b
is w(b) = k/b° from that function, the properties of the
working set model, and the task switch interval, it is possible
to compute the miss ratio as a function of the line size. Kumnar
found that for a given working set parameter T and a given
program, his model held; unfortunately, the value of a was
rather sensitive to the program and T; furthermore, only three
programs were studied. Those results, therefore, do not
adequately address the issue of the effect of the line size on the
miss ratio for a variety of line sizes and cache sizes.

Two papers ([14], [27]) look at the use of secror or
subblock caches, in which a line or block (called a sector or
address sector here) is broken up into subsectors, (or
transfer subsectors), only some of which may be cache
resident. Those papers conclude that the savings in address tag
area make sector caches worthwhile when the subsector size is
small; neither, however, looks seriously at the line size choice
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problem. (The terms sector/subsector or address sector/
transfer subsector reflect the terminology adopted by the
P896.2 working group. Other terms used are block/subblock
and address block/transfer block.)

Finally, some authors have considered related topics. In [9]
and [10], it is suggested that a variable number of lines be
loaded into the cache on a miss, when a table indicates that it is
desirable. Tan [29] suggests that different line sizes be used
for instructions and data, since they have different locality
characteristics.

B. Architectural Factors Influencing Line Size Choice

There are a number of factors relating to the design
architecture (high level implementation) of machines that
influence or determine line size. In this section, we discuss
them.

In some machines, principally mainframes, line size has
been determined by the width of the memory modules and
the degree of interleaving. For example, the Amdahl 470V/6
and the IBM 370/168 both used 32 byte lines, since each had
four memory banks, each of which was 8 bytes wide. There
are two reasons for this: first, there is a slight savings in logic
complexity in not having to cycle each memory bank more
than once; more generally, short lines often minimize logic
complexity. Second, memory latency is substantial and a
significant additional delay would be experienced in waiting
for the second double word from each memory bank.

Bus protocol tends to strongly influence the line size for
microprocessor systems. For example, with a very primitive
bus such that for every data item an address must be
transmitted, there seems to be very little time saved by asking
for more than one data item (e.g., word) on a miss, rather than
asking for them as they are needed. Conversely, if one address
can elicit several words of data, then a longer line size
becomes advantageous. The ability to send or receive several
data words in one bus transaction is central to the IEEE
Futurebus design [3], [5]. which is intended to be a high
performance, state-of-the-art bus for use over more than the
next decade in bus based systems.

In multiprocessor systems, memory interference [4] and
memory busy time can be an issue. Larger line sizes will
increase memory traffic and interference, as is discussed in
more detail below; furthermore, a long line will keep the
memory and bus busy for a relatively long period, which may
affect (interfere with) the operation of other processors or I/O
units. With regard to I/O, the phenomenon called 1/0
overruns may occur; this is when the memory system is
unable to accept from or supply data as needed to an /O
stream, and thus the 1/0O operation must be aborted and
restarted. I/O overruns can be minimized with sufficient
buffering in the 1/0 data paths, but the transmission of long
lines may cause the buffering to be overrun occasionally.

In a cache, lines are found by associative search, and each
must be tagged with a (real or virtual) memory address. When
the line size is small, the number of bits of storage required
to hold the address tags can be a major part of the total
storage available in the cache; e.g., with a 4 byte line and a 32
bit address space, almost half of the storage is needed for tags.
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This issue is addressed in [2] and [14]; both papers suggest the
use of sector or subblock caches, in which part of a block
(sector) may be cache resident and other parts may be absent:
each subsector (subblock) is marked with a bit to indicate
whether it is cache resident. Only one address tag is required
per sector. Very small blocks seem to be a poor idea because
of the storage (VLSI silicon area) required for an address tag
for each block.

In many machines, line crossers can induce a performance
penalty. A line crosser is a fetch or write which crosses the
boundary between two cache lines. A line crosser in most
machines will require two cache accesses, one to each target
line; in the Amdahl 470V/6, the penalty is 65 ns for a read and
97.5 ns for a write [22]. If the memory addresses of line
crossers are randomly distributed, then doubling the line size
halves the frequency of line crossers. (Some machines require
that instructions be aligned on 2 or 4 byte boundaries. which
either reduces the frequency of or eliminates line crossers. It is
easier to implement a machine which does not permit line
Crossers.)

With a copy-back cache in which an entire dirty line is
copied back, a larger line size will increase memory traffic per
copy back. (Also, a longer line is more likely to be dirty.)
Increased copy-back memory traffic can be avoided if the
larger line size has caused the miss ratio to drop enough to
compensate; if dirty bits are maintained for partial lines and
only the dirty portions are recopied, then further savings in
memory traffic are possible, although at the cost of additional
logic complexity. (Writing back only dirty subblocks may not
help if each subblock requires an address cycle.)

C. Miss Ratio Factors

The major effect of line size choice on performance comes
from its impact on the miss ratio: we concentrate on that in the
remainder of this paper.

As will be shown later, increasing the line size generally
decreases the miss ratio; getting more data on each fetch
means that fewer fetches are required. When the line size
becomes large enough, however, and starts to approach the
cache size, increasing line size can lead to an increased miss
ratio. This is because a program is concurrently referencing
some number of contiguous areas of its address space; these
areas collectively are known as the program focality. When all
of those areas cannot be resident in the cache at the same time.
as when the line size becomes large with respect to the cache
size, the miss ratio increases. More generally, the larger the
line size, the greater the degree of memory pollution:
memory pollution occurs when either through prefetch or
through the use of a large block size. material is loaded which
is not referenced {24]. Memory pollution can have the effect of
increasing the miss ratio by displacing from memory informa-
tion which will be referenced again (prior to a reference to the
information which displaced it).

In many machines, it is possible to describe the time to fetch
aline as ¢ + ¢(L/d), where a and ¢ are constants, L is the
line size, and d is the data path width to memory. Here. a is
the constant delay for any memory transaction, consisting
primarily of memory latency and address transmission time. ¢
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is the additional time per ‘‘buswidth’" of data transmitted; if
the data path is 4 bytes wide, then c is the cycle time of the
bus, when one word is transmitted per bus cycle. If we let
m (L) by the miss ratio (for a given cache size) as a function of
the line size, then the value of L that minimizes (@ + c(L/
d))m(L) is a function of a/c only, and not the value of either
individually. If a/c is low, then transfer time dominates
latency, and short lines are favored; when a/c » 1, latency
dominates transfer, and long lines tend to be favored. Since the
primary performance penalty from a cache miss is in the delay
to perform a fetch, the fetch time is the statistic of interest.
Note that high performance machines may use fetch bypass,
by which the target of a fetch is obtained first and the rest of
the line is loaded into the cache later; in that case the transfer
time costs not in the delay for that fetch but in other ways: the
cache may be busy and other accesses are delayed, and the
memory and bus may be busy and delay this or other
processors.

Another penalty of a high miss ratio is the memory
interference created in a multiprocessor system in which the
path (e.g., the bus) to main memory is the limiting resource in
the system. In existing or proposed multimicroprocessor
systems, that is the case, and minimizing bus traffic is a very
important goal; bus traffic per miss clearly increases with line
size. It is worth noting, however, that the penalty is measured
not in the number of bytes transferred but in the period of time
that the bus is unavailable, which is a function of the bus
protocol and is generally of the same form a + c¢(L/d).

D. Overview

As noted earlier, the remainder of this paper will be
concerned with an experimental investigation of the effect of
the line size on the cache miss ratio. Our experimental
methodology is that of trace driven simulation. In Section II,
we describe our simulations and the traces used. The simula-
tion results appear in Section III. Those results are used to
establish design target miss ratios in Section IV. A discussion
of appropriate line size choices is given in Section V, in which
we comment on the performance to be expected from some
new microprocessor designs.

II. METHODOLOGY

Our analysis of how miss ratio changes with varying line
size is based on extensive trace driven simulation, as we
explain here.

A. Trace Driven Simulation

A program address trace is a trace of the sequence of
(virtual) addresses accessed by a computer program or
programs. Trace driven simulation involves driving a simu-
lation model of a system with an external trace of events rather
than with a random number generator. Trace driven simula-
tion is a very good way to study many aspects of cache design
and performance, for a number of reasons. First, it is superior
to either pure mathematical models or random number driven
simulation because there does not currently exist any generally
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accepted or believable models for those characteristics of

program behavior that determine cache performance; thus it is

not possible to specify a realistic model nor to drive a

simulator with a good representation of a program. A trace

properly represents at least one real program, and in certain ,
respects can be expected to drive the simulator correctly.

A simulator is also much better in many ways than the
construction of prototype designs. It is far faster to build a
simulator, and the design being simulated can be varied easily,
sometimes by just changing an input parameter. Conversely, a
hardware prototype can require man-years to build and can be
varied little if at all. In the case of the study presented here, a
hardware prototype with the requisite flexibility is infeasible.

There are a number of ways in which trace driven
simulation is less than perfect; among them are 1) traces are
only small workload samples and may not be representative;
2) operating system behavior is seldom sufficiently repre-
sented, nor is task switching; 3) input/output activity is not
usually included; and 4) computer time limitations prevent the
use of traces long enough to make use of (fill up) large caches.
These issues and others are considered in more detail in [27].
We believe that for the purposes of this paper, there are two
problems with trace driven simulation. First, measured miss
ratios on real machines running production workloads are
almost always higher than trace measurements would predict.
Second, the limited length of our simulations and our use of
cache flushing to simulate task switching mean that we never
fill large caches, and thus our results do not extend beyond
32K byte caches. As explained below in more detail, we have
emphasized in our experiments the relative changes in
performance with line size, rather than considering the
absolute level of the miss ratio. Evidence is presented later
which supports that choice.

B. The Traces

A number of program address traces are available to the
author for memory hierarchy simulations. 27 traces were
selected as a representative sample, five from the Zilog
Z8000, seven from the DEC VAX 11/780, four from the
Motorola 68000, three from the CDC 6400, and eight from the
IBM 370. The traces used are a subset (about half) of those
used in [27]; we were not able to use more because of the large
number of experiments for each trace. Various characteristics
of the traces are given in [27], where we discuss them in more
detail; see also [25].

Seven of the JBM 370 traces were for user programs: the
traces were FCOMP1 [Fortran compile of program that solves
Reynolds partial differential equations (2330 lines)],
CCOMPI1 (Cobol compile, 240 lines, accounting report),
FGO1 (Fortran Go [execution] step, factor analysis, 1249
lines, single precision), FGO2 (Fortran Go step. double
precision analysis of satellite information, 2057 lines. FortG
compiler), CGO1 (Cobol Go step, fixed assets program doing
tax transaction selection), CGO2 (Cobol Go step, fixed assets,
year end tax select), and CGO3 (Cobol Go step. projects
depreciation of fixed assets). The eighth IBM 370 trace was of
the MVS operating system; that is the MVS1 trace, and was
part of a standard Amdahl Corporation workload. Each IBM



1066

370 trace presupposes a memory with a 4 byte interface.
Somewhat less than half of the memory references were
instructions.

Five traces for the Zilog Z8000 microprocessor were also
analyzed. Each trace is for a program which is part of the
UNIX system software. These Z8000 traces are ZOD (octal
dump), ZSORT (sort program), ZVI (screen editor), ZGREP
(search a file for a pattern), and ZPR (produces a printed
listing of one or more files). A 2 byte memory interface is
assumed. Over 75 percent of the memory references were
instruction fetches.

The third set of traces was for the DEC VAX 11/780.
These traces were VCCOM (the C compiler compiling a C
. program of 125 lines, written in C), VTROFF (the phototype-
setter text formatting system, written in C), VPUZZLE (the
well known ‘‘puzzle’’ program; used by Baskett to test raw
CPU power, written in C), VOTMDL (parser/constructor,
written in Pascal, uses set operations), VSPICE (the Spice
circuit simulator, written in Fortran), LISPC (the Lisp
compiler, written in Lisp) and VAXIMA (a symbolic manipu-
lation system, derived from Macsyma, written in Lisp). The
LISPC and VAXIMA traces are quite long, and sections 8 and
13 of those traces were used, respectively (LISP8, VAX-
IMA13). (Sections 8 and 13 were chosen since their character-

istics seem to be representative of the traces as a whole; there
is otherwise nothing special about those sections. See [27] for
more information about the trace sections.) A four-byte
memory interface is assumed. Approximately half of the
memory addresses were instruction fetches.

The fourth set of traces is for the CDC 6400: TWODI1
(Fortran Go of a program that solves the two-dimensional
scattering problem of an infinite circular cylinder), PPAL
(Fortran Go of a phase plane analysis program solving a set of
two simultaneous differential equations, excluding startup
portion of program), and DPOLE (Fortran Go of a program
that solves a three-dimensional scattering problem for a cube
using the dipole approximation technique). These traces
assume a one-word (60 bit) memory interface for data and a
one-instruction (15 or 30 bits) interface for instructions; i.e.,
there is no memory in the instruction interface. Because all
data references were for 60 bits (treated as 8 bytes), no results
were obtained for less than 8 byte lines when using the CDC
6400 traces.

The last set of traces was for the Motorola 68000. These
traces are M6BMATCH (a pattern matching program, written
in Pascal, taken from the Kernighan and Plauger book,
Software Tools in Pascal), M68PLO (the PLO compiler from
Wirth’s book Algorithms + Data Structures = Programs),
M68QSORT (recursive quicksort), and M68STAT (a trace
statistics program). Each trace is only 30 000 memory
addresses long, and distinguishes only reads and writes, but
does not distinguish instruction fetches from data reads. The
trace was gathered from a development system using hardware
monitoring techniques and, of course, represents a 16 bit bus.
Because instruction fetches and data references are not
identified, no results were obtained for instruction caches or
data caches for the 68000 traces; only a unified cache was
considered.
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C. The Simulator, the Simulations, and the Simulation
Workloads

A large trace-driven simulation program was used to
generate the results presented here. LRU stack techniques
were used to generate miss ratios for all cache sizes simultane-
ously. A demand fetch, fetch on write, copy-back cache
with LRU replacement is assumed. All caches are fully
associative, except for those with 4 and 8 byte line sizes,
which use 4 sets and are associative within each set. (The
simulation time became too large when using fully associative
mapping and such small line sizes; i.e., the stack became too
deep.) The degree of associativity was kept as high as possible
in order to remove associativity factors from the results.

Eight different simulation workloads were constructed.
The first consisted of four of the IBM 370 traces: FGOI,
FGO2, FCOMPI1, and CCOMPI; that workload should be
reasonably representative of an IBM 370 scientific environ-
ment, and consists of two compiles (albeit one of those is for a
Cobol compiler) and two Fortran executions. The second is for
an IBM 370 commercial system and consists of three Cobol
executions: CGO1, CGO2, and CGO3. A 370 operating
system load is the third workload: the MVS]1 trace. A VAX
running Unix Fortran, Pascal, and C programs is the fourth
workload: VCCOM, VSPICE, VOTMDL, VPUZZLE, and
VTROFFE. LISP in a VAX environment is the fifth work-
load: LISP8 and VAXIMAI13. Five Z8000 traces, all Unix
utilities, are the sixth workload. Three CDC 6400 programs
(TWOD1, PPAL, DPOLE) are the seventh workload and the
Sfour M68000 programs are the eight workload. The total
number of memory references processed for each workload,
and the number of bytes in the lines referenced are shown for
each case in Table I. (Note that because of the large number of
simulation runs, computer time limitations meant that each run
was kept relatively short; most were between 240 000 and
500 000 memory references. Thus, for each trace, only the

+ initial part was used. This may distort the results somewhat, in
some unknown way.)

Each simulation run used the various traces in a round-robin
fashion, purging the cache each time the trace was switched, in
order to simulate multiprogramming. (For the 370 OS
workload, the same trace was restarted after each purge.) It
would have also been possible to not purge when task
switching, but that makes the results very sensitive to the
number of programs used; such effects are visible in the plots
in [25]. The result of our task switching is thus to average the
behavior of the traces within each workload. The switch
interval was 20 000 memory references in each case except for
the M68000 traces, where the switch interval was 15 000. We
note that our results are somewhat sensitive to the task switch
(purge) interval in any case, since the more frequent the
purges, the greater the advantages to large lines: they load the
cache more quickly after a purge, and the effect of memory
pollution is reduced since the cache is less frequently full.

Two sets of simulations were conducted in each case, except
for the M68000 traces. In the first set, the cache design was a
unified cache, i.e., it contained both instructions and data;
miss ratios were computed over all memory references. In the
second set of simulations, the cache was partitioned into
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TABLE I
Number of
Line | Address Space Size - Bytes Memory
Traces Size | Total lostructions Data Addresses
FGO! 4 68828 28192 40636 240,000
FGO2 8 76152 31632 44520
FCOMP1 16 84832 35504 49325
CCOMP1 32 95840 40640 55200
64 110912 46848 64064
128 | 132864 55552 77312
CGO1 4 86524 16464 70060 240,000
CGO2 8 92960 19496 73464
CGOo3 16 100160 21840 78320
32 107360 24832 82528
64 114816 28160 86656
128 | 124800 32384 92416
MVS1 4 52396 17728 34668 240,000
8 57392 19568 37824
16 65376 22006 43280
32 76896 25312 51584
64 92608 28928 63680
128 115328 33280 82048
VCCOM 4 51420 18508 32912 500,000
VSPICE 8 56968 19424 37544
VOTMD! 16 62672 20752 41920
VPUZILE 32 70080 22368 47712
VTROFF 64 79552 23616 55936
128 93440 23680 69760
LISP8 4 52584 37404 15180 240,000
VAXIMAIL3 8 59768 40080 19688
16 72688 44672 28016
32 91200 50112 41088
64 120000 56320 63680
128 166016 63104 102912
FAY! 4 22212 14960 7252 500.000
ZSORT 8 23936 16176 7760
IZGREP 16 26704 18128 8576
ZPR 32 30816 21120 9696
0D 64 36416 25280 11136
128 43648 29568 14080
CDCTWOD 4 25432 500,000
CDCPPAL 8 51567 26328 25248
CDCDPOLE 16 56416 26784 20632
32 61632 27328 34304
64 66880 28544 38336
128 83584 30848 52736
M68MATCH 4 10472 120,000
M68PLO 8 10880
M68QSORT 16 11472
M68STAT 32 12352
64 13312
128 15488

instruction and data halves; the miss ratio for the instructipn
half was the miss ratio for instructions only, and likewise for
the data half. Since the M68000 traces were not tagged by
instructions or data, only a unified cache was simulated for
those traces.

III. SimuLATION RESULTS
A. Miss Ratios

The miss ratios for each cache size, line size, and workload
were determined, and an average miss ratio was computed,
for given cache and line sizes, over the various workloads.
The averages were obtained by averaging the individual
simulation results, and they are shown in Figs. 1, 2, and 3,
respectively, for a unified cache (instructions and data), and
separately for an instruction cache and a data cache. As can be
seen in those figures, the miss ratio is generally declining,
except when the line size is close to the cache size. Also, as
one might expect, the drop in the miss ratio with increasing
line size is most pronounced for instructions and least evident
for data. This is because instructions are much more likely to
be used sequentially, although there is sequentiality in data
reference patterns as well, due to the clustering of related

variables in storage and sequential use of array elements.
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It has been observed elsewhere [27] that there is enormous
variability among traces in their measured miss ratios; miss
ratios are quite workload dependent. To demonstrate that here,
we computed the coefficient of variation for each data point
plotted in Figs. 1-3. Each entry in Figs. 1-3 is the average of
6-8 simulation points (for the M68000 traces, there were no
instruction or data cache runs, so there are only six data points
for instruction and data caches), and the coefficient of
variation is the ratio of the standard deviation to the mean; a
zero coefficient of variation implies a constant value, and a
large coefficient of variation means that there is a high degree
of variability. The average coefficient of variation, over all
189 entries was 0.58, which is rather large. The variation in
the miss ratio in our simulations, for example, is from 2.5 to
20.5 percent for a 32K byte cache with a 4 byte line.

B. Ratio of Miss Ratios

Because of the high variability in the miss ratios, and
because it is well known that observed miss ratios are usually
higher than those obtained from trace driven simulation [27],
we decided to compute the relative change in the miss ratio as
a function of line size; as will be shown, this statistic is
considerably more stable than the miss ratio.

For each simulation, cache size and line size, the ratio of the
miss ratio at that cache size and line size to that for the same
cache size but half the line size was computed (i.e., for a 1K
cache and a 16 byte line, the value obtained is the ratio of the
miss ratio for a 1K cache and 16 byte line to that for a 1K
cache and an 8 byte line.) Those values are called ratio of
miss ratios or ratio of ratios, and their averages over the
various simulations are given in Table II. (The average here is
the average of the ratios. It is also possible to take the ratio of
the averages, which yields similar but not identical numbers.)

The average coefficient of variation was also computed for
the entries in Table II; the value obtained was 0.13, which is
less than 22 percent of the value (0.58) obtained for the miss
ratio averages. Our expectation that this ratio of ratios would
be considerably more stable than the miss ratio has been
shown to be correct.

The ratio of miss ratios (from Table II) for a unified cache
has been plotted in Fig. 4. As can be seen, the values ‘‘bounce
around’’ a fair amount; this irregularity in the data is due to the
fact that these values are averages over only a small number of
samples (6-8 simulations per data point, 27 traces used).
Abrupt changes in the miss ratio can be observed from the data
for each individual simulation, when a frequently executed
loop does or does not fit in the cache, as the line size changes.
We do not feel that the values presented in Table II are sacred
or exact, and believe that the utility of these data would be
enhanced by smoothing out the irregularities. We have
‘“‘smoothed’’ the data by eye; the smoothed ratio of ratios data
appears in Table III. (This is similar to casting out outliers,
and is not an attempt to introduce a *‘fudge factor.”’) These
smoothed data will be used later to derive our design target
miss ratios.

It is worth looking at the values in Tables I and III. We note
that most of the values are between 0.5 and 1.0; this means
that each doubling of the line size decreases the miss ratio, but
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TABLE 11
AVERAGE OVER ALL SIMULATIONS
RATIO OF MISS RATIO TO THAT FOR LINE HALF AS LARGE

Cache Type:
Unified Line Size
Size 8 16 32 64 128
32 0.775 1 0.761 | 1.444
64 0.711 | 0.762 | 1.024 | 1.740
128 0664 {0783 | 0.942 | 1.184 | 2.046
256 0.653 | 0.714 § 0822 | 1.162 | 1.453
512 0.654 | 0.693 10767 | 0914 | 1.451
1024 0.653 | 0.601 | 0.831 | 0.880 | 1.023
2048 0636 | 0678 [ 0.731 | 0.787 | 1.132
4096 0.586 | 0622 [ 0.719 | 0.746 | 0.809
8192 0.581 | 0.583 | 0.645 | 0.661 | 0.753
16384 0.569 { 0.581 | 0.616 | 0.633 | 0.685
32768 0.564 | 0.575 | 0.601 | 0.601 | 0.660
Cache Type:
Instructions
32 0647 0688 | 0.749
64 0.655 | 0691 [ 0.75) | 0.838
128 0.645 | 0659 | 0.687 | 0.955 | 0.929
256 0694 | 0676 [ 0723 | 0754 | 093]
512 0664 | 0.684 | 0736 | 0.705 | 0.910
1024 0656 | 0682 | 0693 | 0.700 | 0.801
2048 0619 | 0.697 { 0.737 | 0.701 | 0.832
4096 0586 | 0633 | 0.651 { 0.660 | 0.831
8192 0.581 | 0.593 | 0.508 | 0.667 | 0690
16384 0.573 | 0.578 | 0.581 | 0.624 | 0.657
32768 0.573 | 0.578 | 0.581 | 0.624 | 0.634
Cache Type:
Data
32 0836 | 0.884 | 1.151
64 0.781 | 0.873 | 1.143 | 1.284
128 0734 | 0835 | 1.004 | 1.328 | 1439
256 0.718 | 0.853 | 0.944 | 1.124 | 1.577
512 0712 | 0814 | 0.956 | 1.122 | 1.314
1024 0.744 | 0.746 | 0.836 | 1.015 | 1499
2048 0660 { 0.711 | 0.787 | 0.853 | 1.071
4006 0619 | 0654 | 0.727 | 0.770 | 0.835
8192 0603 | 0620 | 0667 | 0.723 | 0.817
16384 0602 (0618 | 0646 | 0.672 | 0.747
32768 0602 [ 0618 | 0.646 | 0.662 | 0697

CHANGE IN ‘MISS RATIO WITH LINE SIZE

T
20 ['Uni!ied Cache ! ] //? T
Average of Ratios ° ,
Cache Size = 32Bytes...32Kbytes ) / 256

Ratio of Miss Ratios

Line Size (Bytes)

Fig. 4. Change in miss ratio with line size. Each point gives the ratio of the
miss ratio for that line size and cache size to the miss ratio for the same
cache size and a line size half as large. Figures are averages of all
simulation runs, for a unified cache.

never by as much as 50 percent. Since a line twice as long
means that twice as much data are fetched per miss, it is also
clear that each increase in the line size also increases the
memory fetch traffic.

The values that appear in Table II and Fig. 4 are sufficiently
regular that we judged it worthwhile to fir those data with a
continuous curve; such a mathematical fit can be used for
optimization studies.
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TABLE 1l
SMOOTHED AVERAGE OF RATIOS
RATIO OF MISS RATIO TO THAT FOR LINE HALF AS LARGE

Cache Type:
Unified Line Size N
Size 8 16 32 64 128__
32 0.775 | 0.900 | 1.500
64 0.711 | 0.820 | 1.200 | 1.500
128 0.692 | 0750 | 0.942 | 1.300 | 1.600
256 0.653 | 0.714 | 0.860 | 1.070 | 1.400
512 0.654 | 0.693 | 0.800 | 0.914 | 1.300
1024 0.653 | 0.680 | 0.770 | 0.850 | 1.100
2048 0636 | 0.660 | 0.731 { 0.787 | 0.950
4096 0.586 | 0.622 | 0.680 | 0.720 | 0.850
8192 0581 | 0593 | 0630 | 0.661 | 0.753
16384 0.569 | 0.581 | 0.600 | 0.633 | 0.685
32768 0564 | 0575 | 0590 | 0601 | 0.660
Cache Type:
Instructions
32 0660 | 0.690 | 0.749
64 0.650 | 0.685 | 0.740 | 0.860
128 0645 | 0.680 | 0.730 { 0.830 | 0.960
256 0630 | 0.670 [ 0.710 | 0.780 | 0.931
512 0620 | 6660 | 0.69G | 6.750 | 0.510
1024 0.610 | 0.650 | 0.670 | 0.730 | 0.860
2048 0600 | 0640 | 0.650 | 0.701 | 0.832
4096 0595 | 0.620 | 0.630 | 0.680 | 0750
8192 0581 | 0600 | 0610 | 0640 } 0690
16384 0577 | 0585 | 0.589 | 0.620 | 0.657
32768 0.573 | 0.578 | 0.581 | 0.590 | 0.634 |
Cache Type:
Data
32 0.836 | 0.900 | 1.300
64 0.781 | 0.873 | 1.100 | 1.400
128 0.734 | 0.850 | 1.004 | 1.328 | 1.450
256 0.718 | 0830 | 0.970 | 1.200 | 1400
512 0.712 | 0.814 | 0.956 | 1.122 | 1.314
1024 0.744 | 0.760 | 0.860 | 1.015 | 1.150
2048 0660 | 0711 | 0.787 | 0.880 | 1.071
4096 0.619 | 0654 | 0.700 | 0.770 | 0.900
8192 0603 | 0.620 | 0.667 | 0.723 | 0.817
16384 0602 | 0.618 | 0.646 | 0.672 | 0.747
32768 0602 | 0.618 | 0.630 | 0.662 | 0.697

The fitting process was purely empirical. A variety of
functional forms was postulated, since there is no statistical
method to pick the correct functional form, and in each case
the parameters were varied to minimize the mean square error
(i.e., the square of the differences between the fitted and
fitting data were summed. The parameters a - - - f were varied”
until that sum was minimized.) We kept trying new functional
forms until we could not reduce the mean square error without
adding an unreasonable number of additional parameters;
there was no particular *‘theory’’ underlying the choice of
functional forms. The functional form which was found to
yield the best fit is

e*(1 +a/(b+f* log Csize-loglinesize*
- (1 + c*(loglinesize-2)?)

where logCsize is the log, of the cache size in bytes and
loglinesize is the log, of the line size in bytes. The parameter
values found to minimize the mean square error in each case
are

cache type error a b c d (4 S
unified cache 0.295 2.656 4.197 2.357 0247 0.113 0.667
inst. cache 0.097 2.639 7.502 2.818 0.093 0.113 0.443
data cache 0.471 3.772 6.210 3.318 0.088 0.096 0.476
where ‘‘error’’ is the sum of the squares of the errors, as

explained above. Note that the fit was done only over the range
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TABLE IV
FITTED RATIO OF RATIOS
Cache Type:
Unified Lige Size
Size 8 18 32 64 128
32 075 | 095 | 1.34
64 070 | 0.85 | 1.08 | 1.64
128 086 | 078 1094 |1.24 | 205
256 064 {073 | 086 | 1.04 | 144
512 061 {070 [ 080 ;0983 |117
1024 060 {067 [0.76 {086 |1.02
2048 0.58 | 065 {072 | 081 | 0.92
8192 0.56 | 0.62 | 068 | 0.74 | 0.82
16384 055 {061 [ 0688 072 {078
32768 054 | 060 | 085 | 070 | 0.7
Cache Type:
Instructions
32 0.68 | 0.72 | 0.80
64 064 {070 {077 {087
128 0.63 | 068 | 0.74 | 0.83 | 0.97
256 062 | 067 {052 | 079 | 090
512 081 | 085 | 070 | 0.76 | D.B5
1024 0.6 064 | 068 | 0.74 | 081
2048 059 | 0683 [ 0687 | 072 [078
4096 059 {062 1066 {070 {075
8192 0.58 | 0.61 {0685 {068 [073
16384 057 1061 | 064 | 067 | 071
32768 057 {060 {063 (066 {070
Cache Type:
Data
32 0.82 | 095 {116
64 078 | 0.89 | 1.05 {135
128 0.76 | 0.85 | 0.97 1.19 | 1.67
256 073 | 081 | 091 | 1.08 | 139
S12 071 [ 078 |0.87 | 1.00 |1.22
1024 060 J 075 | 0.83 ;093 |1.10
2048 068 {073 | 080 |089 |1.02
4006 068 | 071 | 077 {085 | 095
8192 065 | 070 } 075 | 0.81 { 0.90
16384 064 | 068 | 073 | 0.79 | 0.86
32768 063 [ 087 | 071 | 076 | 083

of line sizes 4-128 bytes and cache sizes 32 bytes-32K bytes;
we do not expect that the fitted curves will have the proper
behavior outside of that range.

The fitted values appear in Table IV.

IV. DEsiGN TARGETS

One of the goals of this paper is to provide for the computer
system designer a set of numbers that he or she can use to
estimate the performance impact of certain design choices.
Specifically, we would like to present realistic values for the
miss ratio as a function of cache size and line size. This same
task was undertaken in [27], but only for the single line size of
16 bytes, and a set of design target miss ratios (DTMR) was
proposed there for unified caches, and instruction and data
caches, over the range of cache sizes of 32 bytes to 64K bytes.
In that paper, the DTMR’s were derived by examining trace
driven simulations from 57 traces (including those used here),
and combining those data with other, real, measurements
reported in the literature. We note that the miss ratios observed
in practice will be very workload dependent and highly
variable, and will be unlikely to match our DTMR’s exactly.
the DTMR’s are provided for two reasons: a) to make
available miss ratios around which to design, in the absence of
better data; b) to provide the customer of a product with
numbers independent of the vendor and his marketing depart-
ment. Our earlier DTMR’s were validated against published
measurements taken from hardware monitors to the extent
possible; one of our data points calculated here is validated
against published measurements in Section V.
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TABLE V
DESIGN TARGET MISS RATIOS
Cache Type: Miss Ratio
Unified Line Size:
Size 4 8 16 32 64 128
32 0.717 | 0.556 | 0.500 | 0.750
64 0.686 | 0.488 | 0.400 | 0.480 | 0.720
128 0.674 | 0.467 | 0.350 | 0.330 | 0.428 | 0.686
256 0.643 | 0.420 | 0.300 | 0.258 | 0.276 | 0.386
512 0.596 | 0.3%0 | 0.270 | 0.216 | 0.197 | 0.257
1024 0473 | 0.309 | 0.210 | 0.162 | 0.137 | 0.151
2048 0405 | 0258 | 0.170 | 0.124 | 0.098 | 0.093
4096 0329 | 0193 | 0.120 | 0.082 ; 0.059 | 0.050
8192 0.232 | 0.135 | 0.080 | 0.050 | 0.033 | 0.025
16384 0.182 | 0.103 | 0.060 | 0.036 | 0.023 | 0.016
32768 0.124 | 0.070 | 0.040 ; 0024 | 0.014 | 0.009
Cache Type:
Instructions
32 0.725 | 0.478 | 0.330 | 0.247
64 0.674 | 0.438 | 0.300 | 0.222 | 0.191
128 0.615 | 0397 | 0.270 | 0.197 | 0.164 | 0.157
256 0.592 ! 0.373 | 0.250 ! 0.177 | 0.138 | 0.129
512 0.562 | 0.348 | 0.230 | 0.159 | 0.119 | 0.108
1024 0.504 | 0308 | 0.200 | 0.134 | 0.098 | 0.084
2048 0.391 | 0.234 | 0.150 | 0.098 | 0.068 | 0.057
4096 0271 | 0.161 | 0.100 | 0.063 | 0.043 | 0.032
8192 0.172 | 0.100 | 0.060 | 0.037 | 0.023 | 0.016
16384 0.148 | 0.085 | 0.050 | 0.029 | 0.018 | 0012
32768 0.091 | 0.052 | 0.030 | 0.017 | 0.010 | 0.007
Cache Type:
Data
32 0.731 | 0.611 | 0.550 | 0.715
64 0.660 | 0.515 | 0.450 | 0.495 | 0.693
128 0.561 §{ 0412 | 0.350 | 0.351 | 0.467 | 0.677
256 0.470 | 0337 | 0.280 | 0.272 | 0.326 | 0.456
512 0.345 | 0.246 | 0.200 { 0.191 | 0.215 | 0.282
1024 0.283 | 0.211 | 0.160 | 0.138 | 0.140 | 0.161
2048 0.256 | 0.169 | 0.120 | 0.094 | 0.083 | 0.089
4096 0.247 { 0.153 | 0.100 | 0.070 | 0.054 | 0.048
8192 0.214 | 0.129 | 0.080 | 0.053 | 0.039 | 0.032
16384 0.161 | 0.097 | 0.060 | 0.039 | 0.026 | 0.019
32768 | 0.108 | 0.065 | 0.040 | 0.025 | 0.017 | 0.012

A. Design Target Miss Ratios

The ratio of ratios data presented in Tables II and III can be
used to compute the miss ratio for one line size from the miss
ratio (for that cache size) for another line size. In our case, we
compute the miss ratios for line sizes of 4, 8, 32, 64, and 128
bytes from our design target miss ratios for 16 byte lines. The
results of applying the ratios from Table III (the smoothed
ratios) to the 16-byte line DTMR’s from [27] are shown in
Table V and Figs. 5-7. (The values obtained by using the
unsmoothed ratios are very similar, but are somewhat less
regular.) In Section V, we discuss how our predictions
compare to parameter choices for real systems.

B. Design Target Bus (Memory) Traffic

As noted earlier, bus bandwidth can be the limiting resource
in a multimicroprocessor computer system, and thus memory
traffic is a very significant performance factor. Memory traffic
consists of two components: fetch traffic and write or copy-
back traffic. The former may be calculated by multiplying the
miss ratio by the line size to get traffic in bytes/memory
reference, and the fetch traffic is shown in Table VI (based on
Table V). Again, we note that in all cases, memory fetch
traffic increases with line size.

The traffic in the other direction, from cache to main
memory, will depend on whether the cache uses write through
or copy back. With write through, every word or double word
is written immediately back to main memory at the time of the
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TABLE VI
DESIGN TARGET BUS FETCH TRAFFIC (BYTES/CACHE REFERENCE)

Cache Type: Memory Traffic (bytes/cache reference)
Unified Line Size:
Size 4 8 16 32 64 128
32 29 | 44 | 80 | 240
64 27 (39641154 | 461
128 2713756 |105]274 | 877
256 26 | 34 |48 83 {117 49.5
512 24 {31 |43 69 | 12.6 329
1024 19 | 25 | 3.4 52 8.8 194
2048 16 {21 |27 4.0 6.3 119
4096 13 | 15118 2.6 38 64
8192 09 {11 |13 16 21 32
16384 0.7 108 (10 1.2 1.5 2.0
32768 05|06} 06 0.8 0.9 1.2
Cache Type:
Instructions
32 29 138|563 79
64 27 135148 71 12.2
128 25 (32|43 6.3 105 20.1
256 24 |30 ]| 40 57 89 165
512 22 (28137 51 76 | 139
1024 20125 |32 4.3 6.3 10.8
2048 16 (19 |24 31 44 73
4096 11|13 |16 2.0 2.7 4.1
8192 07 {08 [ 10 1.2 15 2.1
16384 06 |07 |08 09 1.2 15
32768 04 {04 |05 0.6 0.7 0.8
Cache Type:
Data
32 29 | 49 | 88 ;229
64 26 | 41 |72 | 158 | 444
128 22 {33 |56 112|299 86.6
256 19 | 27 | 45 8.7 1209 | 584
512 14 } 20 | 3.2 6.1 | 137 36.1
1024 11 | 1.7 | 26 44 89 | 206
2048 10114 |18 30 5.3 114
4096 10 | 12 {16 2.2 34 6.2
8192 09 |10 |13 1.7 2.5 4.0
16384 06 |08 |10 1.2 1.7 25
| 32768 04 |05]06 )| 08| 11| 15

write: in that case, the write traffic is invariant with cache size
and line size, and a constant may be added to each entry in
Table V1. Frequencies of writes for 57 traces appear in [27]
and those data may be used to make realistic estimates of write
traffic. For architectures such as the IBM 370 and the DEC
VAX, about half of the memory references are data
accesses, and for most architectures studied in [27], about
one third of the data references were writes.

In the case of copy back, it has been found [27] that about
half of the data lines pushed are dirty. Thus, the traffic rates
for the data cache can be increased by SO percent to reflect
copy back. The instruction cache traffic rate remains unaf-
fected, since modifications to the instruction stream should be
extremely rare. The traffic rate for the unified cache can be
estimated by breaking down the misses into the instruction
portion and data portion, and then multiplying the latter by 1.5
to represent data line pushes. (Note that in equilibrium, the
number of data line fetches will match the number of data lines
replaced.)

C. Instruction Delays Due to Cache Misses

As explained above, the primary importance of the miss
ratio lies in the delays in loading the cache from main
memory. For many or most machine designs, the time to
service a miss can be represented as a function of the forma +
c(L/d), where a and c are constants, d is the data path width,
and L is the line size. The mean delay per memory reference
can be computed by multiplying our DTMR s by the delay for
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Fig. 8. Average memory delay per memory reference, based on design
target miss ratios for a unified cache. Cache size from 32 bytes to 32K
bytes, and line size from 4 to 128 bytes. Memory access latency (70) is 360
ns; additional time for each byte of the line is 15 ns (T'1).
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Fig. 9. Average memory delay per memory reference. based on design
target miss ratios for a unified cache. Cache size from 32 bytes to 32K
bytes, and line size from 4 to 128 bytes. Memory access latency (70) is 160
ns; additional time for each byte of the line is 15 ns (T'1).

a miss. We will refer to the miss service time as 70 + b*T1
where T0 is the constant overhead for a miss (address cycle
and latency), b is the number of bytes in the line, and 7'l is the
additional transfer time per byte. The labels 70 and 71 are
used in Figs. 8-10. As noted earlier, in Section I-C, the line
size that minimizes the mean memory reference delay is a
function of a/c or T0/T1.

We have computed the mean delay per memory reference
for three different sets of parameters, representing a very wide
range of T0/T1 ratios. In the first case, we leta = 360 ns, d
= 4 bytes, and ¢ = 60 ns (i.e., 70 = 360 ns, T1 = 15 ns/
byte.) These parameters correspond to typical levels of
performance possible from the (P896) IEEE Futurebus {3], [5]
and also to the behavior of the Fairchild CLIPPER [7] when
using a zero wait state memory. The mean delays in
nanoseconds are shown in Table VII, and are plotted for a
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target miss ratios for a unified cache. Cache size from 32 bytes to 32K
bytes, and line size from 4-128 bytes. Memory access latency (70) is 600
ns; additional time for each byte of the line is 4 ns (T'1).

TABLE VII
DESIGN TARGET MEAN MEMORY DELAY PER MEMORY REFERENCE
DELAY = 360 NS + 15 NS/BYTE

Cache Type: Mean Memory Delay per Memory Reference
Unified Line Size:
Size 4 8 16 32 64 128
32 301 267 300. 630.
64 288. | 234. | 240 | 403. | 950
128 283 | 224, | 210. { 277. | 566. | 1563
256 270 202, 180. | 217. | 364 881
512 250 187. 162 181 261. 585
1024 199 148. 126. 136 181. 345.
2048 170. 124 102 104. 129. 212
4096 138. 93. 72. 69. 78. 114
8192 98 65. 48 42 44 57.
16384 76. 50. 36. 30 30. 36
32768 52 33 24 20 19. 21.
Cache Type:
Instructions
32 304 230 198, 208. .
64 283. | 210 180 186. | 252
128 258 191 162. 166 216 358.
256 249 179 150 149 183. 294.
512 236 167. 138 133. 157. 247,
1024 212 148 120 113 129. 192
2048 164 113 90. 82 90. 130.
4096 114 77 60. 53 57. 73.
8192 72 48 36. 31. 31 37
16384 62 41 30. 25 24 27.
32768 38. 25 18 15 14 15.
Cache Type:
Data
32 307 293 330 532
64 277. 247 270 416 915
128 236 198 210 295 616. 1543
256 197 162 168 228 430. 1040
512 145 118 120 161 283. 643
1024 119 101 | 96 116 184 366
2048 107 81 72 79. 110. 203
4096 104 73 60 59 71. 111
8192 90. 62 48. 45 51. 72.
16384 68. 47. 36. 33. 34. 44.
32768 45 31. 24, 21 22. 27.

unified cache in Fig. 8. This design is one with moderate to
high memory latency, and for comparison we have done the
same computation with all parameters the same except that a
= 160 ns; i.e., with a much lower ratio 70/71. (70 = 160

ns, T1 = 15 ns.) These results are shown in Table VIII and
Fig. 9.
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TABLE VIiI
DESIGN TARGET MEAN MEMORY DELAY PER MEMORY REFERENCE
DELAY = 160 NS + 15 NS/BYTE

Cache Type: &an Memory Delay per Memory Reference
Unified Line Size:
Size 4 8 16 32 64 128
32 158. | 156 200 480
64 151. | 137. | 160 307 806
128 148. | 131. | 140 | 211 480. | 1426
256 141. | 118. | 120. | 165 309 804
512 131. | 109 108. | 138 1 221 534
1024 104 86. 84 103 154. 314
2048 89. 72. 68. 80 109. 193
4096 72. 54 48. 52 66 104
8192 51. 38, 32. 32 37 52
16384 40. 29 24. 23 26 32
32768 27 19. 16. 15, 16 19
Cache Type:
Instructions
32 159 134. | 132. | 158
64 148 123. 120. 142 214
128 135 111 108 126 183 327
256 130 104. | 100. | 114 155 268
512 124 98 92. | 102 133 225
1024 111 86. 80 86 110 175.
2048 86 66 60. 62 77 118
4096 60 45 40. 40 48 7
8192 38 28. 24 23 26 34
16384 33. 24 20. 19 20 25
32768 20 15. 12. 11 12 14
Cache Type:
Data
32 161. | 171 220. | 458
64 145. 144. 180 317 776
128 123 115 140. 225 523. 1407,
256 103 94 112. | 174 365 949
512 76. 69 80. | 122 240 586
1024 62 59. 64. 88 156 334
2048 56. 47 48 60 93 185
4096 54 43. 40. 45 60. ' 101
8192 47 36 32 34 43 66
16384 36. 27. 24. 25. 29 40
32768 24 18 16 16 19 24

It is also possible to predict that bus transmission rates will
increase. The IEEE Futurebus obtains high performance by
using a two-edge handshake between the sender and receiver,
without requiring all units on the bus to acknowledge each data
word. It is possible to obtain still higher performance by using
a synchronous protocol in which the bus is treated as a
transmission line, and no acknowledgment is given after each
word. To study that case, we let @ = 600 ns, and ¢ = 16 ns
(i.e., TO = 600 ns, and T1 = 4 ns). This represents a very
high ratio of 70/T1, although higher ratios of 70/T1 would
be possible if cache misses were handled by software [6]. The
results appear in Table IX and Fig. 10.

It can be seen from Tables VII-IX that the minimum
memory delay is obtained for a line size that varies with the
cache size. For example, for a 256 byte instruction cache. such
as is used on the Motorola 68020 [19] the mean delay is
minimized in the first case by a 16-32 byte line. in the second
case by a 16 byte line, and in the third case by a 64 byte line.
(The timing characteristics for the 68020 memory are.
however, not likely to be exactly the same as proposed here.)
For a single chip instruction cache of 4K bytes. the delay is
minimized in the first case by a line size of 32 bytes (range of
16-64 bytes), in the second by a line size of 16-32 bytes
(range 8-64 bytes), and in the third case by a line size of 128
bytes or larger (range > =32 bytes). For a 4K byte data
cache, the figures are, respectively, 32 (8-64) bytes. 16 (8-
32) bytes, and 64 bytes (16-128).
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TABLE IX
DESIGN TARGET MEAN MEMORY DELAY PER MEMORY REFERENCE
DELAY = 600 NS + 4 NS/BYTE

Mean Memory Delay per Memory Reference

Line Size:

16 32 64 128
332 546
266 349 616
232 240 367 762
199 188 236 430
179 157 169 285
139 118 118 168
113 90 84 103

80 59 50 56
53 37. 29 28
40 26 20 17
27 17 12 10

219 180

199 162 163

179 143 140 175
166. 129 119 143
153 116 102 120

133 98 84 94
100 71 58 63
66 46 37 36

Cache Type:
Unified
Size 4 8
32 442. | 351
64 422. | 308
128 415. ] 295
256 396. | 265
512 367. | 246
1024 292 195
2048 249 163
4096 203 122
8192 143 85.
16384 112. 65
32768 76 | 44
Cache Type:
Instructions
32 446. | 302
64 415. | 277.
128 379. 251
256 365 | 236.
512 346. 220
1024 313 194
2048 241 148
4096 167 102
8192 106. 63
16384 91 54
32768 56 33
Cache Type:
Data
32 451. 386
64 406. | 326
128 346. | 260.
256 289 | 213
512 213. 155
1024 174 133
2048 157. 1 107.
4096 152. 97
8192 132. 82
16384 99. 61.
32768 66, 41

40 7 20 18.
33 21 16 13
20 13 9. 7
365 521
299 360 593
232 256 399 752
186 198 278 507
133 139 184 313
106. 100 120 179

80 69 71. 99
66 51 46. 54
53 39 33 35
40 28. 22 22
27 18 14 13

It is worth noting that within reasonable ranges of line sizes,
for a given cache size, performance is comparable; the
selection of a line size in the range of 16~64 bytes is likely to
be satisfactory, if not optimal, for a wide variety of systems.

D. Bus Busy Time *

In the case of a multiprocessor system with a shared
common bus to memory, the extent to which each processor
keeps the bus busy (in use) is almost as important as (or more
important than) the memory reference delays suffered by each
processor. In such a system, the limiting resource is usually
bus bandwidth, and the aggregate system performance is
bounded by the amount of traffic the bus can support. A
tradeoff which permits more processors on the bus may permit
greater overall system throughput, even though each processor
may function more slowly. Thus, for example, a cache that is
slow but with a high hit ratio may be better for overall
multiprocessor system performance than a faster cache with a
lower hit ratio, even though the latter might yield, in a
uniprocessor system, a lower mean memory reference time
and greater throughput.

In most existing and proposed bus systems, however, the
bus is held from the beginning of the address cycle to the last
data cycle, so the bus busy time is equal to the delay
experienced at the processor for a cache miss. (Actually, the
processor may experience a few cycles delay beyond that for
bus busy, due to additional cycles to detect the miss, reinitiate

the fetch, etc.) Our point here is that the bus busy is not
necessarily proportional to the number of bytes transmitted
(bus traffic); a simple-minded minimization of the bus traffic
is not the correct optimization procedure.

E. Comparisons

It is worth comparing our results to those in [17]. There, the
optimal line size for the Amdahl 470V/6 is determined to be
128 bytes. That machine's cache is 16K bytes, @ = 520 ns. d
= 8 bytes, and ¢ = 32.5 ns (4.0625 ns/byte). We compute a
mean delay per memory reference, for lines of 8, 16, 32, 64.
and 128 bytes, of respectively, 56.9, 35.1, 23.4. 17.9. and
16.6 ns. Our results, therefore, agree with Kumar's in this
case. (Although our data do not go above 128 byte lines, the
curve is clearly becoming flat.)

For the IBM 370/168, the parameters are ¢ = 160 ns. d =
8 bytes, and ¢ = 80 ns [22]. Our computed delays are 24.7.
19.2,17.3, 18.4, and 23.0 ns. The optimal line size is thus 32
bytes, which happens to match the actual line size.

We noted earlier that Goodman [12] had some results on
line size. In that paper, enough data are given that the ratio of
ratios values for cache sizes of 4K and 16K may be calculated.
For a 4K byte cache, the ratio of ratios are (warm start
simulation) 0.663, 0.701, 0.824, 1.048. 1.091, and (cold

start) 0.704, 0.762, 0.928, 1.089, and 1.254. For the 16K byte
cache, the numbers are 0.648, 0.620. 0.607, 0.703. and
0.864. and 0.604. 0.677, 0.585, 0.664. and 0.754. These



1074

figures are considerably less favorable to large line sizes than
ours. The differences could be due to a genuinely different
workload or a small workload sample (6 VAX 11/780 traces).
The figures in [13] seem similar to ours, but exact numbers
(from tables) are not available.

V. EVALUATION, PREDICTION, AND VALIDATION

It is interesting to apply our design target miss ratios from
Table V to the cache designs for some high performance
microprocessors. As noted earlier, the Motorola 68020 [19]
has a 256 byte instruction cache, which is organized as 4 byte
lines. We predict that that design will have a 59 percent
instruction fetch miss ratio. Performance would likely have
been better with a larger line size.

The Zilog 280,000 [1], [21] has a 256 byte on-chip cache
which can be used for instructions, for data, or as a unified
cache. It has a sector organization with 16 byte sectors (large
blocks); those large blocks can be loaded in their entirety or
subsectors only may be loaded. Considering only the use of
full sectors, we predict miss ratios of 30, 25, and 28 percent if
the cache is used as a unified cache, instruction cache or data
cache, respectively. This compares to a projected miss ratio of
12 percent from [1]. The reasons for the difference between
our predictions and Alpert’s are given in [27].

For the Fairchild CLIPPER [7], which has a 4K byte
instruction cache, a 4K byte data cache, 2-way set associative
mapping, and a 16 byte line size, we predict miss ratios as
follows. The caches are 2-way set associative, and other
experiments (see [7]) suggest that the miss ratio for 2-way set
associativity is about 20 percent higher than that for a fully
associative design. The data cache should, therefore, have a
miss ratio of about 12 percent. The instruction cache uses
prefetch, and combining results from [27] on the effect of
prefetch, with the effect of 2-way set associative mapping, we
predict a miss ratio of about 3.6 percent.

For validation, we note the results in [8]. In that paper,
hardware monitor measurements of the VAX 11/780 are
presented; the 11/780 has an 8K byte unified cache with 8 byte
lines. For one workload (normal daytime use), a miss ratio of
10.3 percent is observed; for the other workload (remote
terminal emulator, heavy timesharing load), the miss ratio is
15.8 percent. These two figures bracket our estimate of 13.5
percent (Table V), which lends some credibility to our
DTMR’s.

V1. CoNCLUSIONS

There have been four main purposes to this paper: to
quantify the variation in the miss ratio with changes in the line
size; to provide to the system designer a set of design target
miss ratios around which she or he can design a new
implementation of a possibly new architecture; to provide
customers a basis for evaluating vendor claims; and to provide
standardization groups (such as that for the IEEE P896
Futurebus) a basis by which to select necessarily fixed
parameters. The first goal has been realized in Table III,
where the change in the miss ratio with line size is shown: a
continuous curve mathematical fit to those data is also provided.
The ratio of ratios data have been applied to previously
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published design target miss ratios for caches with 16 byte
lines to get design target miss ratios over a range of line sizes:
those appear in Table V. We have used that information to
predict bus traffic and average memory delays per memory
reference. The range of possible bus timing parameters has
provided a basis for standardization efforts. Also discussed are
the other tradeoffs in selecting a line size.

There are three important ways in which this work could be
usefully extended. First, a wider variety of workloads and
traces should be examined to verify that the results are
consistent with those given here, and the sensitivity of our
results to task switch frequency should be determined. Second,
the results presented here are purely experimental; it would be
valuable to have some model of program behavior from which
these results could be derived. Third, there needs to be an
additional effort to validate our results against real machines
running real workloads, as measured by hardware monitors.
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