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Pipelined computer architecture has re ceived considerable attention since the 1960s 
when the need for faster and more cost-effective systems became critical. The 
merit of pipelining is that  i t  can help to match the speeds of various subsystems 
without duplicating the cost of the entire system involved. As technology evolves, 
faster and cheaper LSI circuits become available, and the future of pipelining, 
either in a simple or complex form, becomes more promising. 

This paper reviews the many theoretical considerations and problems behind 
pipelining, surveying and comparing various representative pipeline machines that  
operate in either sequential or vector pipeline mode, the practical solutions 
adopted, and the tradeoffs involved. The performance of a simple pipe, the physical 
speed limitation, and the control structures for penalty-incurring events are 
analyzed separately. The problems faced by the system designers are tackled, 
including buffering, busing structur, branching, and interrupt handling. Aspects 
of sequential and vector processing ~re studied. Fundamental  advantages of vector 
processing are unveiled, and additional requirements (costs) are discussed to 
establish a criterion for the tradeoff between sequential and vector pipeline 
processing. Finally, two recent machines (the CRA'~-I and the Amdahl 470 V/6 
systems) are presented to demonstrate how complex pipeline techniques can be 
used and how simple but advantageous pipeline concepts can be exploited. 
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1. INTRODUCTION 

T h e  pr inc ip le  of p ipe l in ing  has  emerged  as  a 
m a j o r  a r ch i t ec tu r a l  a t t r i b u t e  of mos t  
p r e sen t  c o m p u t e r  sys tems .  I n  pa r t i cu l a r ,  
super  machines  such as t he  Texas  In s t ru -  
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men t s  T I  ASC,  Bur roughs  PEPE, I B M  
S y s t e m / 3 6 0  Mode l s  91 and  195, C r a y  Re-  
search  CRAY-1, C D C  STAR-100, A m d a h l  
470 V/6 ,  C D C  6600, and  C D C  7600 have  
d i s t i nc t  p ipe l ine  process ing capabi l i t ies ,  
e i ther  in  the  form of i n t e rna l l y  p ipe l ined  
in s t ruc t ion  and  a r i t h m e t i c  un i t s  or  in t he  
fo rm of p ipe l ined  special  pu rpose  func t iona l  
uni t s  [1-4]. 
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Pipelining is one form of imbedding 
parallelism or concurrency in a computer 
system. I t  refers to a segmentation of a 
computational process (say, an instruction) 
into several subprocesses which are executed 
by dedicated autonomous units (facilities, 
pipelining segments). Successive processes 
(instructions) can be carried out in an 
overlapped mode analogous to an industrial 
assembly line. So, very loosely, pipelining 
can be defined as the technique of decom- 
posing a repeated sequential process into 
subprocesses, each of which can be executed 
efficiently on a special dedicated auto- 
uomous module that operates concurrently 
with the others. 

As an illustration, consider the process of 
executing an instruction. Normally it in- 
volves fetching the instruction, decoding the 
operations involved, and fetching the 
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FIGURE la. Non-pipelined processor. 
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FIGUB~ lb. Pipelined processor. 
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FIGURE lC. Space-time diagram. 

operands before it is finally executed. If 
this process is decomposed into these four 
subprocesses and executed on the four 
modules shown in Figure l(b), four suc- 
cessive independent instructions may be 
executed in parallel. Specifically, while the 
EXEC module is executing the first in- 
Struction, the Operand Fetch (OF) module 
fetches the operand needed for the second 
instruction, the Instruction Decode (ID) 
module prepares the different operations 
for the third instruction, and the Instruction 
Fetch (IF) module fetches the fourth in- 
struction. The overlapped execution among 
the four modules is best depicted by a 
space-time diagram. As drawn in Figure 
1(c), the horizontal axis represents the time 
and the vertical axis the space (modules). 
From this diagram one can observe how 
independent instructions are executed in 
parallel in a pipelined processor. 

Some theoretical developments and im- 
plications of pipelining are reviewed in 
this section. A top-down, level-by-level 
characterization of pipeline applications in 
computers and the associated configuration 
control are explained in Section 1.2, Pipeline 
Characteristics. To reveal the fundamental 
advantages of pipelining, the space-time 
measure model is employed to illustrate the 
ideal throughput (performance) of a pipe- 
lined system with no external restrictions 
or dependencies. This pictorial measure 
applies to a pipeline of any level operating 
in an ideal environment. Besides the ideal 
performance, the limitation of this tech- 
nique to the lowest level in a computer, 
namely the logic gate level, is surveyed. 
Here a practical limitation to the ultimate 
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speed achievable arises because the tech- 
nique requires the insertion of latches of 
finite delay. It  is shown that this delay 
plays a significant role in determining the 
bound on the fastest speed achievable. 

On the other hand, when a pipeline 
operates on tasks with precedence con- 
straints, the space-time measure for the 
ideal situation is not directly applicable. 
Section 1.3, Performance Characteristics, 
analyzes the performance of such a pipe 
when the precedence relationships are in 
the form of a tree. Appropriate bounds are 
provided which reflect that the pipe some- 
times has a throughput rate close to its 
segment time and at other times has a 
rate close to its flush time. The dominating 
role played by task relationships in an 
actual pipeline is thus apparent. 

After the analytical evaluation of a pipe- 
line's performance, the various applicable 
control schemes are classified and com- 
pared with respect to the flow of instruc- 
tions and the resolution of conflicts. This 
classification covers most of the schemes 
existing in pipelined systems as well as 
some theoretically feasible combinations. 
In Section 1.4, Control Structure, Hazards, 
and Penalties, three kinds of hazards are 
formally classified. The detection and reso- 
lution techniques for these hazards under 
either "streamline" or "fully asynchro- 
nous" control are analyzed according to 
the incurred cost in hardware and incurred 
delay penalties in runtime. Section 1.5, 
Sequencing Control, presents a simple 
sequencing control using shift registers as 
an example of synchronous pipelines whose 
collisions are predeterminable. This scheme 
is useful for controlling lower level pipelines 
such as arithmetic pipes for which external 
conditions or precedence constraints are 
rare. Finally, in Section 1.6, Software 
Aspects, some software problems related 
to the efficient code generation of a vector 
pipeline are discussed. 

In Section 2, Structure of a Pipelined 
Processor, the problems and solutions as- 
sociated with a sequential pipelined system 
are examined more carefully. Three systems 
are used as examples to make cross-com- 
parisons in several practical problems. 
These problems include: 1) buffering for 
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smoothing congestions; 2) busing structure 
to reduce delay penalties; 3) branch hand- 
ling to reduce the disruption of flow; and 
4) interrupt handling to ensure a proper 
interrupt response and later recovery. In 
Section 2.6, Pipeline Processing of Arith- 
metic Operations, an example of pipelining 
fast multipliers is provided to illustrate how 
a lowest level pipeline can be effectively 
designed. Such pipelines can often use con- 
trol schemes like the one in Section 1.6. 

In Section 3, Vector Processing, many 
special characteristics associated with a 
vector pipelined system are analyzed sepa- 
rately. Vector pipelines have become eco- 
nomic ways to achieve high throughput 
for application with suitable parallelism. 
Specifically, jobs with identical transforma- 
tions on a set of data can be carried out 
with minimal control overhead (instruction) 
and high speed. Two prominent machines, 
the TI ASC and the CDC STAR-100, are 
examined. To provide a clear picture, a de- 
tailed example of a typical vector instruc- 
tion (format and execution) is provided. 
From it one can realize how to use vector 
instructions and how to achieve skewing 
on data elements. An analytical comparison 
between the performance of a vector pipe 
and that of a sequential pipe is also fur- 
nished. This comparison reveals where 
vector pipelines bring in speedup; however, 
the additional demands of vector pipelines 
for proper instruction sets, proper choices 
of algorithms, and intelligent compilers 
are also exposed. 

Finally, in Section 4, Overview of Two 
Recent Machines, the special characteristics 
of two recent pipelined computers are sur- 
veyed. The chaining in the CRAY-1 is an 
example of pipelining applied between 
vector instructions. With it a very high 
throughput can be obtained. It  is also in- 
teresting to observe that the simple pipeline 
design for the Amdahl 470 V/6 system 
has proved to be a success. 

1.1 Historical Perspective 

Computer designers have exploited the 
overlapped mode of operations since the 
late fifties. We recount only some signifi- 
cant milestones in its development. For a 
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FIGURE ld. Basic computer structure. 

clear understanding of this development, 
let us model the computer system by the 
following subsystems (Figure l(d)): 

1) The instruction processing unit (IPU) 
performs the instructions fetch and 
decode, and fetches the operands (if 
any) required for the instructions. 

2) The execution unit (EXEC) performs 
the desired operation on the operands. 

3) The input/output unit (I/O) controls 
the peripheral devices. 

4) M represents the primary memory of 
the computer system. 

The earliest use of overlapped operations 
between the CPU (IPU-t-EXEC), the 
memory unit (M), and the input/output 
unit (I/O) can be found in the UNIVAC I, 
developed during the early fifties. Here the 
central processor initiates an I /O process; 
then the CPU and the I /O proceed con- 
currently. When the I /O operation is com- 
pleted, an interrupt signal is issued by the 
I /O controller to alert the CPU of the com- 
pletion. This asynchronous I /O processing 
avoids having the CPU wait for the com- 
pletion of I /O tasks and improves the 
throughput. 

Another type of pipelining where overlap 
is achieved between the instruction process- 
ing unit and the execution unit, has been 
exploited by later machines. For example, 
the IBM 7094 used this type of overlap to 
its advantage. With a 72-bit-wide memory 
with a memory cycle time of approximately 
2 psec, it executed on the average an in- 
struction (32 bits) with 32-bit operands in 
two cycles or 4 ~sec [22]. With an inter- 
leaved and faster memory [1.4 #sec cycle 
time], the 7094 II achieved an average 
execution rate of one instruction per cycle 
of 2 psec. The Honeywell H-800 (1959) 
pioneered in multiprogramming, overlap- 
ping of I/O, and concurrent computing 
among a number of programs resident in 
the memory. Similarly, the Univac LARc 
(1961) uses interleaved memory and a four- 

fold overlap (instruction fetch, indexing, 
data fetch, and execution) and can run one 
floating-point add per cycle of 4 #sec [22]. 

Pipelining within the instruction process- 
ing unit was implemented in the IBM 360/91 
in the sixties. Some functions of the execu- 
tion unit were also pipelined--for example, 
the addition and the division processes. 

1.2 Pipeline Characterization 

Since pipelining can be applied at more 
than one level, a top-down, level-by-level 
characterization of pipelining can be con- 
veniently established for analyzing a pipe- 
lined system. A pipe can be further dis- 
tinguished by its design configurations and 
control strategies. These two points are 
elaborated below. 

1) Levels of pipelining: Pipelining at the 
system level is exemplified in the design of 
the instruction processing unit. The IPU 
can be decomposed into various functional 
segments--instruction fetch, instruction de- 
code, address generation, etc. (Figure l(b)). 
I t  takes one minor cycle for a task (instruc- 
tion) to pass through each segment. Thus, 
after a stream of tasks enters this pipeline, 
the pipeline starts outputting one task per 
minor cycle. Microprogram prefetch--that 
is, overlap of decoding the current micro- 
instruction with fetching the next micro- 
instruction--is another example at this level. 

The next level for the application of pipe- 
lining is the subsystem level, typical exam- 
ples of which are the pipelined arithmetic 
units. Pipelined add, multiply, divide, and 
square-root functions have been in exist- 
ence in a number of contemporary com- 
puter structures. Figure l(e) is the con- 
ceptual representation of the operation of 
the divide unit of the IBM 360/91, where, 
as D, iteratively approaches 1, N, ap- 
proaches N/D, the quotient. 

2) Pipeline configurations: In addition to 
the hierarchical levels of pipelining, differ- 

DIV 

DI+ l =DI"(2-D I) NI+ l =NI"(2-D l) 
Do=D No=N 

Flow of Control 
FIGURE le. IBM 360/91 divide. 

Computing Surveys, Vol. 9, No. 1, March 1977 



ent design and control strategies classify a 
pipelined module into one of two forms; it 
can be either a static or a dynamic pipe. 
Sometimes a pipelined module only serves a 
single dedicated function--for example, the 
pipelined adder or multiplier in the IBM 
360/91. Naturally, it can be termed a 
unifunctional pipe with a static configura- 
tion. On the other hand, a pipelined module 
can serve a set of functions, each with a 
distinguishable configuration. For example, 
in the TI ASC system the arithmetic unit 
in the processor is a pipe that has different 
configurations (interconnections of modules) 
for performing different types of arithmetic 
operations. Such a pipe is called a multi- 
functional pipe. A multifunctional pipe can 
be either static or dynamic. In the static 
case, at any time instant only one config- 
uration is active, therefore pipelining (over- 
lapped processing) is permissible only if 
the tasks (instructions) involve the same 
configuration. Most, if not all, multifunc- 
tionM pipes in arithmetic units of exist- 
ing machines fall into this classification 
because static pipes are easier to control, as 
will become clearer later on. Dynamic mul- 
tifunctional pipes permit overlapped process- 
ing among several active configurations 
simultaneously. Throughput may be further 
enhanced, but more elaborate control and 
sequencing are required. This classification 
of static and dynamic pipes will be very 
useful when we consider and evaluate pipe- 
lined processor architecture in subsequent 
sections. 

1.3 Performance Considerations 

In this section, the advantages, require- 
ments, and limitations of pipelining are 
reviewed. 

1) Throughput considerations: One of the 
most important performance measures of a 
system is its throughput rate, defined as the 
number of outputs (sometimes the number 
of instructions processed) per unit time. It  
directly reflects the processing power of a 
processor system--the higher its through- 
put rate, the more powerful the system is. 
Pipelining is one specific technique to im- 
prove throughput, as is the use of faster 
modules. 
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For this discussion, let us reconsider the 
example in Figure 1. For a nonpipelined 
processor, the execution time of an instruc- 
tion is T,~ = tl q- t2 -b t3 Jr t4. Therefore, 
for every T,p units of time an instruction is 
completed; this corresponds to a throughput 
rate of 1/T,,p. In the pipelined case, sup- 
pose tb -----  max {tl, t2, t3, t41 - speed of the 
slowest facility in the pipeline. Then its 
maximum throughput rate is 1/tb, because 
for every T~ = tb units of time, an instruc- 
tion can leave the pipeline after its execu- 
tion, if instructions are independent. A 
direct comparison shows that Tp < T,~; 
hence the throughput rate of the pipelined 
processor (1/T~) can be much larger than 
that  of the nonpipelined processor. If h = 
t2 = t3 -- t4, then the comparison can show a 
fourfold throughput improvement. From 
this result we can anticipate that a high 
degree of parallelism leads to a high through- 
put rate. 

The throughput of a pipeline is deter- 
mined by its slowest facility, or "bottle- 
neck." The throughput can be improved by 
subdivision of the bottleneck element 
(Figure l(g)) or by putting facilities in 
parallel (Figure l(h)). Both techniques are 
useful in removing bottlenecks. However, 
putting facilities in parallel creates more 
problems in distribution and synchroniza- 
tion of the tasks in the pipeline. 

2) E~ciency considerations: Another im- 
portant performance measure for a system 
is its efficiency, sometimes called its utili- 
zation factor. Efficiency also directly re- 

l 2 3 

t 3t t 

FIGURE ]f. Facility 2 is the bottleneck. 

2 ^ 

t t t t t 

FIGURE lg. Subdivision of facility 2. 
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FIGURE l h .  P a r a l l e l i n g  of f ac i l i t y  2. 
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fleets how effective a processing scheme is 
and can be used to indicate how future im- 
provements, such as removal of bottlenecks, 
should progress. Like most performance 
measures, it can be evaluated both analyti- 
cally and experimentally by measurements. 
Here an attempt is made to illustrate the 
analytical efficiency of pipeline processing 
via the space-time relationship introduced 
earlier. 

I t  is natural to view efficiency as the 
percentage of busy (productive) periods 
with respect to a certain time span. Here a 
slight complication arises because a pipe- 
lined processor consists of several modules, 
some of which may be busy while the others 
are idle. To evaluate the efficiency of the 
processor system as an entity, Chen [7] 
proposes a uniform space-time span index: 

efficiency of pipeline 

total space-time span of tasks 
total space-time span of facilities 

where the term "task" (process) is used to 
fit the loose definition of a pipeline. Some- 
times the modules in the pipeline are of 
different natures with different importance 
(or cost) factors. A refined index which also 
includes such considerations has been sug- 
gested in [8]: 

efficiency of pipeline 

total weighted space-time span of L tasks 
total weighted space-time span of 

n facilities 

For example, for a linear pipeline like the 
one in Figure 1 (where there is no looping 
inside the pipeline, so that a task will flow 
through each facility only once), an analyti- 
cal efficiency measure can be expressed as 
follows (assuming the execution time of 
each module is time invariant) : 

i sT --N~NS~aUCTmN ACCESS1 ~dOR~RANO aCCESS I 
,NSTaUCTIOS f'--ff~ ~ . / . / J :  ~ / y ~ . d  a[SULT I 

~GENERATE ;-ADDRESS ~ DECOOE,G~NERATE OPERANO I ~EXECUT[ fNST I 

2 ND ~ INSTRUCIION ACCESS2ADORES$ ~OpERAND ACCFSS 2 

~G[NERATE I ADDRESS ~HOECOOE,GENERArE OPERaNO z - ' t  EXECUT£ INS?: 2 
~R 0 ~IKSTRUCTION 6CCESS 3 AOD~ESS ~OpERANOACCESS3 

INSTRUCTION ~ - ~ / ~  ~ F / / / ~ R E S U L I  5 
~E~ECATE t ~oRess~ ~ a ~ c o o c  ~a~ r~  ae~t~s~ -~ t~cJ ' e  ms~ 3 

4 • H ~ INST~uC I Io~ ACCESS 4 AODR E Ss ~+ ORE RAND ACCE 554 
INSTRUCTION ~ ~ ~ / / ~  ~ / / / ~  R~SULT 4 

~'IGENF~ATE I aDORESS 4 ~IDECODE G ~ ' R A r E  O~ERAND 4 -~£XEC~'rE ~N~T '~ 
aDORESS 

FZGURE 2. IBM 360 Model 91 instruction se- 
quencing illustration. 

~/ = efficiency of linear pipe 

~ , ,  t~ W ( L -  1)ti 

where t~ is the speed of the slowest facility 
(bottleneck); t, is the speed of the ith 
facility in the pipeline; a~ is the weight 
associated with the space-time span of the 
ith facility as determined by its importance, 
such as cost-speed factor; L is the number 
of tasks (instructions) pumped into the 
pipeline in a certain period of time assum- 
ing, for highest efficiency, that tasks are 
pumped in continuously); and 71 is the total 
number of facilities in the pipeline. (See 
Figure 2.) 

In the ideal situation in which all modules 
have the same speed, the equation simpli- 
fies to 

= L/(n  + (L-- l)) ;  

so, when L approaches infinity (in the steady 
state of processing), the efficiency may ap- 
proach unity. In all others cases, as L ap- 
proaches infinity, the efficiency approaches 

*/ --) a,t= a, tj < i. 

Two observations should be noted at 
this point. First, this equation holds whether 
or not there are additional buffers inside the 
pipeline because of the linearity assumption. 
As is demonstrated later, buffering is an 
important tool for increasing throughput 
in many practical pipeline designs--for 
example, when two or more EXEC modules 
are available and one is a bottleneck. 
Second, in deriving the equation it has been 
assumed that a continuous supply of tasks 
(instructions) is available. In reality, execu- 
tion may be discontinued for such reasons 
as precedence constraints, branching, in- 
terrupts, etc. 

3) Clock rate and maximum speed limita- 
tions: As data and control flow from one 
pipe segment to another, the propagation 
delay through each segment and the pos- 
sible signal skews have to be carefully 
balanced to avoid any improper gating in a 
high speed situation. In the maximum speed 

Computing Surveys, V o l .  9 ,  N o .  1 ,  M a r c h  1 9 7 7  



pipeline design, all segments have to be 
synchronized by the same clock for propa- 
gating the data through the pipe. 

The study of a maximum clock rate 
serves to place a practical bound on the 
throughput achievable in a pipeline system 
limited by the propagation delays of the 
logic gates used. Several studies have been 
carried out to examine this problem under 
various assumptions of timing parameters. 
In all cases, three necessary conditions of 
signal balancing exist: 

1) The data must be gated by a clock 
wide enough to insure a properly 
stabilized output; 

2) The clock should not be too wide to 
allow data to pass through two or 
more segments within the same clock; 
and 

3) The data that passes through a seg- 
ment should arrive at the next seg- 
ment before the next clock begins. 

Initially Cotten [27] tested this data rate 
and latching problem by using a hypo- 
thetical circuit as in Figure 3. The clock for 
various segments may have a skew St ,  de- 
fined as the time difference between the 
arrival of the same pulse at different gates. 
The latch register is assumed to be com- 
posed of two gate levels with feedback con- 
nections. Then, under conditions 1) and 
2), Cotten's clock requirements are: 

Cr -- S~ >__ 3 t ~  -- t ~ ,  (1) 

C r W S ~  < 4t . . . .  (2) 

where CT = clock width, So -- clock skew, 
t ~  = maximum single gate delay, and 
t~,~ = minimum single gate delay. 

data 
l lne 

Reglster 1 Register 2 

skew 
enerator 

source 

c~o~k ~sJ- 
skew in  c lock sampling 

FIGURE 3. C lock  r a t e  c o n d i t i o n i n g .  
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These two requirements can be combined 
to form 

3tma~ -- tm,n + So < Cr _< 4tm,~ --  So. (3) 

Although here a segment of the pipe has 
been assumed to be composed of two gates, 
one can further the derivation by including 
condition 3). Then a third constraint exists 
a s  

Cr + Ce >_ 2tma~ + Tmax -~- S~, (4) 

where C~ = inverted clock width and 
T~= = maximum propagation delay 
through the segment (excluding the latch). 

Under Cotten's assumptions, the com- 
plete set of constraints for a general pipe 
segment is: 

3tma~ - -  train -~ Sc  _~ CT 

_~ Tmi. + 2t~i= - S¢ (5) 

and 

2tmax -~- Tm= + S~ < CT + Ce. (6) 

Consequently the minimum clock period 
can be derived to be (Cr + Cr), which 
satisfies the above constraint and also 
Cr + Ce _> 2 min Cr (that is, the period 
must be long enough to allow the data to 
propagate through a latch and then remain 
stable for min Cr). Under zero skew and 
tmax = train = t, 

C~ -t- C~ ~ 4t. 

This marks the highest frequency pos- 
sible in an ideally synchronized system. If 
Sc is nonzero, then C~ -{- C~ _> 4t + S~, and 
the frequency has to be decreased. 

Besides the positive clock skews, other 
skews may exist, such as skew between 
Cr and C~. In [28], Hallin and Flynn pro- 
pose another set of constraints that in- 
cludes the skew, called e, and any uncer- 
tainty thereof: 

TD >_ 2t,, + S ~ + ~ +  Ut (7) 

2tM + St ~__ CT S TD + d (8) 

where T~ = propagation delay of a seg- 
ment; tM = propagation delay of a gate; 

= skew between Cr and Ce; U~ = un- 
certainty in the clock width; and d = mini- 
mum length pulse to change a gate output. 
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While Equations (7) and (8) include the 
additional terms of e and U~, the distinc- 
tions of the minimum and maximum values 
of all propagation delay parameters have been 
ignored. Yet those distinctions are of prime 
importance in verifying the functioning of 
the circuit. One can further the derivation of 
the corresponding constraints, keeping con- 
ditions 1), 2), and 3) satisfied, under different 
sets of skews that may appear in the circuit. 
In any case, the (4t) period always places an 
absolute lower bound if a register latch is 
composed of two gates. If a gate delay is 
2.5 nsec, the maximum frequency will be 
100 megacycles, corresponding to a segment 
time of 10 nsec. 

4) Design optimization: Design optimi- 
zation for pipeline systems shares most of 
the fundamental difficulties of any system 
design. One such difficulty is to abstract a 
proper objective for optimization. No gen- 
eral objective is sufficient to describe in- 
dividual situations, so individual objectives 
have to be formulated and solved. 

One common approach is to look at the 
cost-effectiveness, or the cost-speed product. 
A given processor pipe can be segmented in 
various ways, resulting in different cost and 
speed parameters. In a synchronous pipe, 
such as a multiply or add pipe, a first order 
model of optimization may be used. The 
pipe is partitioned into k segments, and the 
resulting throughput and cost are: 

segment time = T /k  + 

cost = ak + ¢~ 

where T = time for the nonpipelined case; 
), = latch time; a --- cost of each segment 
(assumed to be the same); and B = initial 
cost. Thus 

cost-speed product = (T / k  -[- X)(ak "-b 8). 

Lemma. Under the first order model, the 
optimal segmentation for a pipe is k -- 
(l~T/a~) ~ (assuming a continuous space for 
optimization). 

This result can be derived directly from 
minimizing the cost-speed product. I t  is 
useful for homogeneous straight-line pipes 
such as a pipelined adder where each seg- 
ment cost and speed can fit into the char- 
acterization. For other cases, the first order 

model does not apply very well; then the 
segment speed f (T ,  k) ~- ~ and the cost 
g(a, k) ~- ~ for some discrete functions f 
and g specified by an alternative scheme are 
available. Consequently, minimizing the 
cost-speed product here corresponds to 
minimizing (~f "t- fg -t- ~g), for which an 
integer programming algorithm is necessary 
to efficiently enumerate partially all pos- 
sible schemes. An example of pipelining a 
processor can be found in [29]. 

As mentioned earlier, cost-effectiveness 
may not be a good objective. In some cases, 
the design objective is to minimize the cost 
while satisfying some speed constraint or 
vice versa. This is typically the case because 
the throughput of a pipe sometimes is not 
restricted simply by its segment speed, but 
also by other outside parameters such as 
memory speed. In other words, the local 
optimization has to be performed relative 
to the global system, leading to integer 
programming problems that involve semi- 
exhaustive algorithms for optimization. 
For example, for a linear pipe, a dynamic 
programming formulation of complexity 
O(M2N) is applicable where N is the num- 
ber of segment nodes and M is the cost 
constraint. However, for systems that are 
not linear more complex iterative algorithms 
are needed. 

5) Bounds on execution time and e gieiency: 
For the purpose of establishing some upper 
bounds of a pipe in executing certain typical 
but related set of operations, the following 
theoretical model can be used. Here a pipe 
is characterized by the number of segments 
it contains, ~vhere each segment has the 
same synchronized speed. 

Ideally, when the work to be accomplished 
has no internal precedence constraints, the 
maximum throughput can be attained with 
one output per segment clock. The exist- 
ence of precedence requirements inhibits the 
continuous initiation of the pipe, resulting in 
lower throughput. The most common type 
of precedence structure is that of a tree. 

One special problem of interest is: Given 
a pipe of m segments, what is the time 
bound needed to compute the sum (or 
product) of n numbers, assuming that each 
segment time is 1 unit? If n > 2m and is a 
power of 2, the pipe is kept busy until 
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(m - 1) computations are left, with the 
needed (intermediate) results residing in 
the m segments. They  will take an additional 
(m log2 m -[- m - 1) units to complete. So 
altogether, the (n - 1) computations take 
(n -k m log2m - 1) units. On the other 
hand, if 2 < n < 2m, (n/2 "4- ra log2 n -- 1) 
units are required. The corresponding effi- 
ciencies, defined by the ratio of the total 
busy segment times to the total segment 
t ime span, can then be derived easily as 
(n - 1)/((n - 1) - k m  log2 m) and (n - 1)/ 
(m/2 - k m  log2 m - 1), respectively. This 
implies tha t  for n >> m the pipe of m seg- 
ments functions almost like a nonpiped 
processor with speed of one segment time 
instead of m segment cycles (the total  time 
is O(n), not O(mn)). However, for smaller 
n the time is O(m log2 n). 

The previous special case assmues a set 
of uniform operations on a set of data, 
merging them into one result where the exact 
order of merging is unimportant.  In the 
case where a specific tree is to be followed 
(the precedence structure is fixed), other 
lower bounds can be derived in a similar 
fashion. I t  can be shown that,  for a general 
tree (not necessarily binary), if each node i 
is labeled by g(i) corresponding to its dis- 
tance from the root, then execution of the 
nodes according to priorities in descending 
order of g(~) in a pipeline environment with 
identical pipeline characteristics is optimal. 
Therefore the shortest execution time can 
be achieved if the nodes are executed ac- 
cording to priorities corresponding to their 
level labels. However, if the pipes have 
different structures and/or  capabilities, the 
problem becomes NP-complete. Without  
going into the latter case, the t ime bound 
for the former case can be derived, given a 
tree structure and a pipe structure (latency 
and flush time). 

First let Lj be the number of nodes of the 
tree with label 3 where l >_ j >_ 0. For  the 
simple case that  there exists a J0 such that  
forC > j > jo, L~ > m and for j _< jo ,  
L~ < m, the time bound is given by 

j o + I  

L: -4- moo -k 1) -- 1, 

and this time bound is exact (from the 
optimality of the level algorithm). This 
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asserts tha t  once the "critical level" jo 
is reached, the rest of the tree of jo levels 
needs precisely moo -1- 1) -- 1 to flush. So 
the time complexity is O(mjo) if the former 
term is less significant. 

Generalization of the simple case will 
lead to a more complex bound. One way to 
derive the bound is to chop L / s  into pairs 
of sections, each of which corresponds to a 
simple case as depicted in Figure 4. Then  if 
L /  is the number of nodes left at  level j 
when all nodes at level j first become either 
ready or initiated (since some may have 
already been computed or initiated), the 
bound is 

] L, -k m(j ,  - 3,+l) -k m - 1. 
$ 1 

In deriving these bounds, it  has been 
assumed that  each node takes the same 
processing structure and has the same flush 
time. On the other hand, if more, than one 
pipe exists, the bounds are much more 
complicated. First, the control of multiple 
pipelines, specifically the routing of inter- 
mediate results, is a practically unsolved 
problem. While the short-circuit (short- 
stop) pa th  exists fi'om the output  of a pipe 
to its own input, the disjoint and direct 
update paths between pipes either incur 
too much cost or cause too much inter- 
ference. Aside from this practical restric- 
tion, theoretically, with multiple pipes, 
similar time bounds are derivable. In the 
case of computing the stun or product  of n 
numbers in a system with p pipes, assume 
n = p~ for some t. If  g _> 2m (integer powers 
of 2), then the time bound is [g -{- m (log2 m 
q-- log2 g) -- 1]. If  I _< 2m, it is [g/2 A- 
m (log2 n -Jr- log2 g) -- 11. 

FIGURE 4. 

] •  . . . . . . . . . . . . . . . . .  Jn 

. . . . . . . . . . . . . . . . .  Jn-I 

Jn-2 

. . . . . . . . . . . . . . . . .  J i + l  

. . . . . . . . . . . . . .  31 

8 5 5  . . . . .  
Partitioning into simple o a s e s .  
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Speedup is achievable since t ~ n. For a 
general tree, the routing problem may be 
more severe and cause more interference. 
If one ignores these difficulties, bounds simi- 
lar to those derived for single pipe may be 
obtained. 

1.4 Control Structure, Hazards, and Penalties 

The control structure of an overlapped or 
pipeline system is often overlooked in the 
literature. Yet it plays such a significant 
role in characterizing the system under 
study that it determines the resulting opera- 
tional efficiency. 

In an overlapped pipeline system, two 
major control structures can be distin- 
guished, and these have been implemented 
on several systems. The first and simpler 
kind involves a streamline flow of instruc- 
tions through the system, with one instruc- 
tion (task) following another, such that the 
completion ordering of the instructions is 
the same as their initiation ordering. There- 
fore if the system is depicted by a sequence 
of functional modules, the instructions flow 
through them one after another, with simple 
interlocks between two adjacent segments 
to allow the transfer of data control from 
one segment to the next. Interlock is neces- 
sary because the pipe is asynchronous, and 
some segments may have speeds different 
from others or variable depending on the 
control information. When a bottleneck ap- 
pears dynamically at a segment, the input 
will be halted temporarily until the seg- 
ment is free again. 

The second type of control structure is 
more flexible and powerful, but also more 
expensive. Here the system can be viewed as 
fully asynchronous, so that completion 
ordering of the instructions need not be the 
same as their initiation ordering. In fact, 
when an instruction is held up because of 
some hazard condition, the next instruction 
may be allowed to go ahead. Such a scheme 
is desirable whenever the system has mul- 
tiple (either physical or virtual) execution 
units or facilities running in parallel (be- 
sides the pipelining employed). Then the 
system resources can be better utilized, 
despite the occurrence of some undesirable 
events. Besides, in some cases the execution 

time of one instruction may be very differ- 
ent from that of another, and it is only 
natural to allow a subsequent short instruc- 
tion to finish ahead of a preceding (but in- 
dependent) long instruction. 

The first type of control structure is used 
by such systems as the IBM 7094 and 
360/75, and even the apparently more power- 
ful TI ASC. Representative of the second 
type of control structure are the CDC 
6600, the IBM 360/91, and the STAR-100 
systems. 

We now look at the fundamental problems 
to be solved by either type of control as 
well as the means and complexities involved. 
For any asynchronous system, three sources 
of control problems exist: 1) Read after 
write, 2) write after write, and 3) write 
after read. Their significance is worth more 
elaborate explanation. 

Read After Write 

Because of the simultaneous execution 
(though in different phases) of several ac- 
tive instructions, the data needed by these 
instructions has to be guaranteed to be 
correct. For two "active" instructions, say 
i and j (j being an immediate successor of 
z), if i writes into a region and j needs to 
fetch some control or data from the same 
location in that region, a "read after write" 
phenomenon occurs. (The term "region" 
is a flexible term that refers to any storage 
element, e.g., a register or main memory, 
as depicted in Figure 5(a).) To synchronize 
i and j properly, j has to defer fetching that 
value until i has completed; otherwise, the 
wrong information (data or control) is 
used and the control scheme fails. 

Write After Write 

Quite analogously, if the instructions i and j 
write into the same region, even if i com- 
pletes after j (this may occur when i is a 
long instruction or when something delays 
i), the resulting value stored in the region 
should reflect the result of instruction j, not 
i. So, to guarantee correct execution, the 
control structure has to resolve any such 
occurrence. 
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FIGURE 5a. If i writes into the location to be 
referenced by j, a read-after-write erises arises. 

FmURE 5b. Read after write detect ion and 
resolution. 

Write After Read 

This problem is less severe and rarely occurs 
except in some special cases. I t  involves the 
completion of a read before the next write 
to the same region takes place. Usually, if a 
read is initiated (to the memory), even if 
memory interference delays the actual read, 
a subsequent write to the same location will 
still follow the read. For register reference, 
the interference problem is less severe (re- 
solved faster). A potential situation where 
such a problem may need further control is 
when the read and write requests have 
separate request queues; requests on both 
queues then have to be synchronized for the 
write after read to guarantee that the write 
follows the read. 

These three basic problems need specific 
controls. We explore these problems realiz- 
ing that the type of control structure of the 
machine does play a deciding role in de- 
terming how they are resolved. 

1) Read After Write 

The read after write problem can be further 
decomposed into three subproblems, de- 
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pending on the location of the region and 
the value type (control or data). 

a) Instruction hazard: An instruction 
hazard occurs when the instruction to be 
initiated (decoded, etc.) is fetched from a 
location that is yet to be updated by some 
uncompleted instruction downstream. The 
instruction initiation must be halted until 
the read after write problem is resolved. 

b) Register hazard: In this case the region 
of conflict is in the register, the contents of 
which are needed either to compute an ef- 
fective address or to form one of the operands 
needed. Again, the instruction (j) involved 
has to be deferred until the previous write 
(into the register) is completed. 

c) Operand hazard: Similarly, if the con- 
flict is at a memory location, an operand 
hazard occurs. The resolution is to wait 
until the previous write is completed. Some- 
times this process can be speeded up by 
providing a short-circuit path from the 
write buffer to the segment needing the 
operand so that the read from memory, is 
avoided completely. These solutions are 
explained later. 

These three hazards need separate de- 
tectors and resolvers. The location of a 
detector and the complexity of a resolver 
decide the penalty (time delay in initiation) 
that is incurred by the hazard. A formalism 
of such control complexity and penalties is 
developed in [32]. As an example, suppose 
that (under a streamline control structure) 
an instruction hazard is to be detected at 
segment i of an N-segment pipe such that 
each segment can hold at most one instruc- 
tion. To detect the hazard, N - i store ad- 
dress registers have to be installed, one at 
every segment after i (assuming that a 
store address has been developed after seg- 
ment i + 1). The instruction to be initiated 
at segment i has to be checked first by com- 
paring the program counter (the address of 
that instruction) with the contents of the 
N - i store address registers. A simple 
detection and resolution scheme is depicted 
in Figure 5(b). Upon the detection of that 
hazard, the instruction (at segment i) is 
halted while the instructions downstream 
continue to flow. Finally the detection 
yields a null signal when the conflicting 
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(predecessor) instruction exits from the 
pipe. Then the updated instruction can be 
fetched from the memory (after store) or 
directly from the store buffer. In the former 
case, it incurs an additional penalty, al- 
though it is cheaper to control (since the 
read request is not generated until the write 
is initiated, as the detection signal switches). 
In the latter case, a tagging and direct route 
has to be established from the write buffer 
to segment i. 

The penalty for an instruction hazard, 
which is the additional delay to the initi- 
ation of the instruction at segment i which 
otherwise would not occur, is 

N 

t, + t~1, 
$~*-I-1 

where t~ is the execution time of segment j 
and t,~ is the update time for an instruc- 
tion hazard with one minor cycle for routing 
using time less than or equal to t,~ _< 2t~, 
the memory cycle time. 

Similarly, a register hazard must be de- 
tected before a register value is used (other- 
wise, a roll-back scheme of instruction 
processing is needed). If the hazard is de- 
tected at segment k, the detection and reso- 
lution scheme is similar except that it now 
takes (N - k) register-address registers for 
comparison. The penalty for a register haz- 
ard is 

N 

$--k 

where t,r is the update time for a register 
hazard, usually around one or two minor 
cycles. 

Finally, the operand hazards, similar to 
instruction hazards, can be detected by 
comparison with the already existing storage 
address registers downstream. Usually the 
location of this detector is further down- 
stream than the one for instruction hazards 
because operand fetch can be carried out 
later than instruction control setup. Sup- 
pose it is detected at segment g, the penalty 
is 

N 

E t , + t , o  
j = t  

where t.0 is the update time for operand 
hazard, which usually is equal to t . t .  

To sum up, the total control cost of the 
detector and resolver for all three types of 
hazards is: max (N - i, N - g) storage 
address registers; (N - i) -F (N - g) -F 
(N - k) comparators (parallel comparison); 
and N - k register address registers for a 
streamline processing system. The penalties 
are as previously specified. 

In some cases more than one instruction 
may be allowed to reside in a segment (addi- 
tional buffering) whose speed is highly vari- 
able (in which case buffering will help to 
smooth out the flow). The extension of the 
previous lemma will be omitted here. How- 
ever, similar control and resolution schemes 
may be used. 

For fully asynchronous systems, the de- 
tection and resolution control is more com- 
plex, since initiation is not halted when a 
read after write occurs. Rather, the in- 
struction is paused, but subsequent inde- 
pendent instruction(s) may proceed, thus 
bypassing the instruction that has to wait 
for the previous write. The ways to ac- 
complish this bypassing can be divided into 
two strategies: centralized and decentralized. 
A typical representative of the centralized 
policy is the scoreboard used in the CDC 
6600, which contains information about each 
execution unit, the operand availability of 
the registers, and the status of each facility. 
The decentralized policy is represented by 
the common data bus (CDB) used by the 
IBM 360/91, in which tags are used, in 
addition to the detection necessary for in- 
struction hazard detection at the IPU. 

First the instruction hazard can be de- 
tected in a similar way by comparing its 
address with all store addresses yet to be 
completed. Usually register or operand 
hazards do not halt the instruction stream; 
for example, an instruction needing a yet- 
to-be-written operand can be continually 
forwarded to an execution unit to wait 
until the write is completed while subse- 
quent instructions proceed. So, besides the 
ordinary detection, the resolution needs 
additional control hardware and time. The 
CDB of the 360/91 represents such a flex- 
ible tagging scheme. A tag is associated with 
any instruction needing such an operand, 
and it reflects the. source of that operand. 
By updating the tags and routing operands 
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according to tag values, the read-after- 
write can be monitored properly. A CDB 
can be depicted by S sources (that generate 
or forward operands) and T sinks (that need 
the operands). Thus the added control 
involves O(T) tag registers, each of length 
log2 S, in addition to the comparison circuit 
to route operands (T comparators plus 
gating control). 

A centralized scheme involves similar 
complexity. The disadvantage of the cen- 
tralized scheme is that it can reinitiate (up- 
date) only one sink at a time so that the 
delay t~ can be longer than that in the de- 
centralized case with parallel updating 
(same tag). 

The penalty of hazards in fully asyn- 
chronous systems is less severe and less well 
defined. One possible way to view this 
penalty is to represent it by the waiting 
time of the instruction causing the hazard, 
which is a random variable depending on 
the completion time of its predecessor in- 
struction. Such a stochastic characterization 
is omitted here. 

2) Write After Write 

The write after write problem does not 
exist in steamline systems, provided the 
write buffer is served sequentially. However, 
in fully asynchronous systems, write after 
write hurts the processing continuity in 
some cases, such as in the 6600. It  can be 
detected in a manner similar to that used 
for the read after write, but resolution differs. 
In the 6600, after its detection, instruction 
initiation pauses until the previous write is 
completed. So no additional hardware is 
needed. In the 360/91, write after write 
does not cause a pause, because the de- 
centralized tags used in the CDB will auto- 
matically guarantee the precedence of the 
two writes. Thus, as a byproduct of the 
solution for read after write, this problem is 
also resolved. 

3) Write After Read 

As mentioned earlier, the write after read 
problem occurs only if the read and write 
queues are not synchronized. If they share 
the same queue, this problem does not arise. 
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1.5 Sequencing Control 

Pipelines for arithmetic processing such as 
those used for multiplication and division 
are characterized by the following attri- 
butes: the speed of each segment is fixed; 
there are no additional buffers between 
segments; and the execution process re- 
quires internal looping, i.e. results being 
fed back as inputs. The basic sequencing 
control problem is to determine expedient 
moments at which to introduce new inputs 
from an external source so that there will be 
no collision (two computations attempt to 
use the same segment) and the throughput 
rate will be high. Davidson [16, 17J has 
developed an algorithm to sequence operands 
properly. A reservation table is used to 
represent the traversal path of operands 
through the pipe. 

We illustrate this use of a reservation 
"table by means of an example. Figure 6(b) 
shows the reservation table of a pipeline 
whose schematic is given in Figure 6(a). 

Input 

t l  t 2 t 3 I4 t 5 t 6 t 7 

SI X X 
Oulput ~ S 2 X X 

S 3 X 

S 4 X 

( o )  ( b )  

CI 

5+ 0001 

54 

3 5+ 

FIGUR~ 6a. k pipeline. 
FIGURE 6b. Reservation table for Fig. 6a. 
F~GURE 6C. Shift register controller. 
FIGURE 6d. State diagram. 
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Each segment S, requires one unit of time 
for processing. The computational sequence 
requires the passage of the operands in the 
order $I ,  $2, S~, $4, $1, and $2. In the 
reservation table, an X is placed at the 
intersection of a segment's row with columns 
corresponding to each time unit relative to 
initiation during which that segment is 
used by the computation. Consider the 
case in which a computation has just begun. 
To determine at which future times a new 
computation may be initiated without 
causing a collision, one has to analyze the 
reservation table• One way to determine 
whether two computations may be initi- 
ated K units of time apart is to superim- 
pose the reservation on itself offset by K 
units of time• If an X falls on top of another, 
then a collision will occur in that segment, 
and K is a forbidden latency. Otherwise no 
collision occurs, and K is an allowable 
latency. Thus, if any pair of Xs in any row 
is K units of time apart, then K is a for- 
bidden latency. Therefore it is simple to 
construct a forbidden list, which is a list of 
all forbidden latencies for the particular 
reservation table. From this forbidden list, 
in which n is the largest element, it is pos- 
sible to construct the collision vector, which 
is a binary vector of n bits from 1 (rightmost 
bit) to n (the leftmost bit). Bit i is 1 if and 
only if it is an element of the forbidden 
list. Thus, if the collision vector is C = 
c~c~-i • • • c2c~, then c, = 1 if i is an element 
of the forbidden list; otherwise c, = 0. For 
the degenerate case of a linear (straight 
through) pipeline, there can be no collisions 
and the collision vector is empty, i.e., n = 0. 
The forbidden list for the pipeline in Figure • 
6(a) is (4, 4) and n = 4. The collision vector 
is 1000. 

By the use of the collision vector, a simple 
control mechanism can be used to avoid 
collisions. Before initiating a new computa- 
tion the collision vector can be checked to 
see if there are zeros in every location cor- 
responding to the number of time units 
that have elapsed since each previous com- 
putation was initiated. Davidson devised 
an ingenious shift register controller ((Fig. 
6(c)) for checking this requirement• The 
shift register controller is a sequential 
machine and therefore may be conveniently 

described by its state diagram in Fig. 6(d). 
I t  is assumed that computations are initi- 
ated only at collision-free opportunities, and 
only states that are important are repre- 
sented in the state diagram. Each arc in the 
state diagram corresponds to the initiation 
of a computation and is labeled with the 
number of time units since the previous 
initiation• The initial node is coded by the 
collision vector itself and is the state of the 
shift register after the initiation of the first 
computation. Every node has an outbound 
arc for each 0 in the coding of the state and 
is labeled with the position subscript of its 
corresponding 0. An arc with label i leaving 
state S leads to state S p, which is S shifted 
right i positions and OR'd with the colli- 
sion vector. In addition there is an arc 
labeled (n + 1) + (where n is the dimension 
of the collision vector) leaving every node 

• $ 
and leading to. the initial node, indicating 
that, if more than n units of time elapse 
between the initiations, then the shift 
register will return to the state represented 
by the collision vector itself. 

Cycles in the state diagram correspond to 
possible cycles of collision-free initiations 
in the pipeline. A cycle may be specified 
completely by the nodes passed through and 
the latencies of (or the time taken by) the 
arcs traversed from node to node in se- 
quence. From the state diagram in Figure 
6(d), it can be observed that there is a 
cycle consisting of states (1010), (1101), 
(1011), and (1001) with latencies of 1, 2, 3, 
and 2 time units, respectively. This cycle 
can be entered through the state (1000). 
At each of these states a new computation 
with a new set of operands can be initiated. 
Since four new computations can be initi- 
ated during each traversal of the cycle, 
there is an average latency of two, i.e., one 
result per two time units. One can find 
cycles that produce maximum throughput 
rates (minimum average latency cycles). 
In this example, the two cycles that produce 
minimum average latencies are (1000), 
(1100), (1110), (1111) and (1010), (1101), 
(1011), (1001), each having a latency of 2 
time units. 

In general, the problem of efficient se- 
quencing control of a pipeline reduces to 
the discovery of minimum latency cycles in 
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the state diagram. In the case or more com- 
plex or multifunctional (assuming a certain 
instruction mix) pipelines, the discovery of 
the minimum latency cycles becomes quite 
difficult. Nevertheless, such a shift register 
control is applicable to properly avoiding 
any resource (facility) conflicts due to the 
existence of multiple paths or loops, in a 
completely synchronous sense. 

1.6 Software Aspects 

Language extensions: FORTRAN has been 
extended to support vector operations by 
the inclusion of special primitives such as 
vector addition and vector multiplication. 
Examples of such extensions are Lawrence 
Livermore Laboratory LRL-TRAN for the 
STAR-100 computer [33] and Texas Instru- 
ments ASC-FORTRAN [34] for their ASC 
computer. Compilers for these FORTRAN 
extensions perform some parallelism de- 
tection and cluster (group) like arithmetic 
operations and machine dependent code 
optimization in the object code. The NX 
compiler for ASC-FORTRAN possesses several 
of these facilities. 

New languages are also being developed 
to support pipeline processing. SL/1 de- 
veloped for STAR-100 at the NASA Langley 
Center is an example [35]. APL has also 
been tried to support vector operations on 
some pipeline computers. 

Software costs. Software costs consist of 
three components, viz., 1) the cost of 
program generation and testing; 2) the cost 
of compiling; and 3) the cost of program 
execution. The cost of compiling consists of 
not only the cost of translation from a high 
level language to machine code, but also the 
cost of code optimization of the program 
for the particular machine. Obviously, 
efficient code optimization reduces the execu- 
tion costs. 

Machine dependent code optimization is a 
difficult problem. After the source program 
has been optimized, the resulting code is 
often hard to follow. Also because of several 
nonstandard I /O statement types, it is 
difficult to optimize I /O oriented codes. To 
illustrate the peculiarity and machine de- 
pendency of the code optimization problem, 
we provide a few examples. 
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a) Reducing the number of multifunction 
pipe reconfigurations by clustering like 
operations (ASC). 

Unoptimized C o d e  Optimized Code 

K = A*B requires F = B/C requires 
F=B/C four recon- K=A*B two reeon- 
L=D+E figurations P=F*C figurations 
P=F*C L=D+E 
H = P + A  I t  = P+A 

Note that, in a multifunctional pipe, a re- 
configuration is required to change its func- 
tion, which, in turn, involves a time delay. 

b) Special machine instructions. A 
FORTRAN program for polynomial evaluation 
is shown below: 

L I M I T - - N + I  
DO l0 J = 1,M 
VALUE(J) =X(J)*A(1) 
DO 10 1 = 2,LIMIT 

10 VALUE(J)=VALUE(J)  + A(I)*X(J) 

This is equivalent to one machine instruc- 
tion in the STAR-100. Therefore the com- 
piler has to "recognize" the high level 
language statement sequence and replace it 
with the appropriate machine instruction. 

c) Vectorization. Another type of opti- 
mization is to recognize sequential program 
statements that represent vector operations 
and translate them into powerful vector 
arithmetic instructions. 
FORTRAN program: DO 10 1 = 4,100 

C(I) =A(I)+B(I-3) 

10 CONTINUE 
generated text for Equivalent compiler 

pipeline machines: 
VECT__BEGIN 

A,C: VECTOR(4.. 100); 
B: VECTOR(1.. 97); 

C = A + B  
VECT__END. 

2. STRUCTURE OF A PIPELINED PROCESSOR 

In this section, the basic structures of a 
pipelined processor are examined, with the 
IBM 360/91 central processor used as the 
example. The throughput objective of a 
sequential pipe are uncovered. From the 
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analysis of its structure, the problems and 
requirements specific to pipelined processors, 
outlined in Section 1, become more notice- 
able. They are discussed, and some solutions 
in existing processors are also illustrated and 
compared. Attention to vector processing 
capabilities is reserved for the next section. 

2.1 An Example Sequential Pipelined Processor 

To demonstrate the pipeline action in a 
sequential processor, the IBM 360/91 [9] 
is used as an illustration. The central proces- 
sor was designed to upgrade computational 
performance (throughput) by one or two 
orders of magnitude compared to the 7090 
system by means of pipelining and circuit 
design. 

In order to observe the important prob- 
lems and characteristics associated with a 
pipelined processor, the different segments 
in the pipe for a floating point instruction 
in the 360/91 are drawn in Figure 7. Basi- 
cally most segments of the pipe have a 
cycle time of 60 nsec, with the exception of 
the storage referencing and execution unit. 
After decoding, two parallel sequences of 
operations are initiated. The first sequence 
includes the effective address calculation 
and fetch for the operand from memory 
storage. In calculating this address, the 
delay time in the segment(s) involved is 
variable, depending on whether it is in- 
dexed or not. The operand access segment 
again has a random delay, depending on the 
availability of the memory module to be 

referenced. The memory system in the 
360/91 is interleaved to increase the band- 
width or memory supply rate. However, 
because of reference conflicts due to re- 
quests from other parts of the processor or 
system (such as instruction fetch or I/O), 
an operand fetch may have to be delayed 
for a complete memory cycle or more be- 
fore it is acknowledged. This variable 
access time imposes a constraint on the effi- 
ciency of the pipelined processor. A com- 
pletely synchronous operation on the seg- 
ments may be impossible because of these 
variable waiting times. The need to be 
able to reduce the memory access time so 
as to match the speeds of the other segments 
in the pipes remains one of the most critical 
issues in pipelined processor designs. With 
slow effective memory access time, the 
memory access segment may be a bottleneck 
of such a large magnitude that the through- 
put of the processor is not much improved 
by pipelining. 

The second sequence of operations in- 
volves the setting up of operands to be 
submitted to an assigned execution station 
in the execution unit. If it is a floating point 
instruction, it is mapped into a pseudo 
register-to-register (within the execution 
unit) instruction and transmitted to the 
execution unit. The execution unit then 
waits for the return of the operand from 
memory. When it returns, the two parallel 
sequences can merge (join) to initiate the 
next stage of processing, the actual execu- 
tion. 

I_ I P U  F U N C T I O N  _t_  

F T 
E X E C  U N I T  C O N T R O L  ~,- 

E X E C U T I O N  4- ~ 
M E M O R Y  O P E R A T I O N S  

4 V A R I A B L E  . _ ~  L V A R I A B L E  
D U R A T I O N  F D U R A T I O N  

gASH~ TIME 
INT[RVAL 

j ~ VARIABLE..J 
7 DURATION-I 

[ I I I I [ I I I I I I I 

I= ] k'CST OECO~ STORAGE II~TRUCTION G~NERAT[ INSTRUCTK)N TO 
IN~T A ~  fitt~T ~ EXECLr~ AOOI~ESS ~COOE 

ARF.A TRANSM~ MOV~ INST EXECUTK~ AR)THI~ETIC h~,ROWARE 
FLC~TIN~ O~(~ ~rJ[CUTION .~$U( 0 WAIT FOR 

CUT HARDW I~TK~ R 

FIGURE 7. Functional segments involved in a floating storage-to-register instruction in Model 91. 

Comput ing Surveys, Vol. 9, No. 1, March 1977 

i 



The importance of reducing memory ac- 
cess time has been demonstrated. Even 
after the memory accessing problem has 
been solved, another bottleneck in the 
pipeline may emerge. This bottleneck is 
the execution unit. Usually many arith- 
metic operations, especially floating point 
operations, require considerable delay be- 
cause of their implicit internal circuit delay 
requirement or iterative characteristics. If 
there' is only one execution station to serve 
the entire instruction stream coming in, the 
speed of the execution unit may not be 
compatible with the input rate, thereby 
unnecessarily slowing down the computa- 
tion. One alterative is to provide multiple 
physical execution stations to perform 
different types of operations. In the 360/91, 
there is a fixed point execution area and a 
floating point execution area. With this 
arrangement, floating and fixed point opera- 
tions can be performed asynchronously but 
in parallel. But within each execution area, 
the multiplicity of execution stations can 
be increased. This is equivalent to increasing 
the throughput of the execution unit as an 
entity. For example, the floating point area 
in the 360/91 has two function units: a 
pipelined adder and a multiply/divide pipe. 

We have shown the essential structures of 
a pipelined processor. Next attention will 
be paid to studying some design and opera- 
tional problems associated with a typical 
pipeline. Included are the following topics: 

1) Buffering: the concept and urgency of 
buffering in a pipeline and the ways 
it can be accomplished. 

2) Busing structure: for communication 
between segments and operand supply 
to allow processing to proceed or re- 
sume as quickly as possible. 

3) Branching: effect of branching in 
throughput and the ways to alleviate 
the inefficiency in existing systems. 

4) Interrupt handling: how interrupts 
are handled in sequential and vector 
pipes. 

5) Pipeline processing of arithmetic func- 
tions. 

Taken together these five topic areas 
represent the major design constituents to 
be added to the basic structure already 
discussed. Their importance and effects 
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actually can decide the efficiency and per- 
formance of the resulting design. 

2.2 Buffering 

Buffering is the process of storing results 
(outputs) of a segment temporarily before 
forwarding them to the next segment. I t  is 
essential in smoothing out the flow of a 
computation process when the timing for 
each processing module (segment) involved 
is not fixed. The impact of buffering can be 
visualized in a common assembly line, say 
in the car industry. Occasionally a station 
(segment) of the pipe (assembly line) may 
be slowed down for one of many reasons, 
which could prevent the continuous input 
of cars to the next station. If there is suffi- 
cient storage space between this segment 
and its predecessor, the latter can continue 
its operation on other cars and transfer 
them to the storage space until it is full. 
When the station resumes normal service 
it can try to clear up the cars in the input 
storage place, perhaps at a faster speed. 

Therefore buffering may be needed be- 
fore or after any segment whose processing 
speed is not fixed. In a pipelined processor 
this means 1) memory storage access re- 
lated stations, including instruction fetch 
and operand fetch, and 2) execution unit 
stations. In a typical pipe like the 360/91, 
the instruction buffer can hold eight words 
of instructions to be followed in the se- 
quence. In the execution unit, for the fixed 
point execution area, a buffer of six words 
of instructions (pseudo) and six words of 
operands is available, whereas in the float- 
ing point area a buffer of six instructions 
and six operands (from storage) is also 
provided. These buffers serve the purpose 
of continuing the supply of instructions or 
operands to the appropriate units whenever 
a variable speed occurs. Similar buffers in 
other pipelined processors can be found. 
In the STAR-100 system, whose configura- 
tion is shown in Figure 8, a 64 quarterword 
(superwo.rd) buffer exists in the stream unit 
to buffer the data and to align the two 
operand vectors (in vector processing mode) 
for streaming in the operations involved. 
In addition, there is of course the instruc- 
tion buffer holding four swords of instruc- 
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tions (each sword is four 128-bit words). 
One sword in the instruction buffer will be 
filled by one memory fetch so that the buffer 
can supply a continuous stream of instruc- 
tions to be executed even though memory 
conflicts may occur from time to time. Simi- 
larly, in the TI ASC system, whose sche- 
matic diagram is shown in Figure 9, suffi- 
cient buffers are installed in the IPU and 
Memory Buffer Unit (MBU). The MBU 

C E N T R A L  

DIRECT 
hCCES$ I /O  CHANNEL 
CHANNEL 

FIGURE 8. B a s i c  C D C  STAR-100 configuration. 
CENI"RAL PROCESSON WITH ONE OR TWO 
I~J  S ANO ONE TO F O U R  A , q t I ~ E T I C  
UNITS 

specifically holds eight-word X, Y, Z (two 
operands, one result) buffers to serve the 
arithmetic unit, and its instruction buffer 
consists of two eight-word fast register 
files. These examples are typical of the need 
and magnitude of buffering in a pipelined 
processor. 

2.3  Busing Structure 

Pipelining requires the concurrent process- 
ing of independent instructions though they 
can be in consecutive stages of execution. 
With dependent instructions, as discussed in 
Section 1.4, their input and traversal 
through the pipe have to be paused until 
the dependency is resolved. Thus an effi- 
cient internal busing structure is needed to 
route the results to the requesting stations 
efficiently. 

In the 360/91, the common data bus 
(CDB) was invented (Figure 10). The CDB 
can transfer data not only to the registers 
but also to the sink and source registers of 
all reservation stations (the virtual execu- 
tion stations). I t  is fed by all units that 
can alter a register. To make this process 
possible, tags (addresses) are assigned to 
the registers. Then the processing sequence 
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' I . . . . . . .  I 
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I IN~OCESs ING UHITS 

I (mu) 
I ONE TO FO~tR ARITHRdlETI C u N i T S  

...... ' l  .0,'=%*.iT I] ReJFPER UNIT  I 

I 
I 

ME"iR* I gUrFEm UNIT I 

I 
I 

AR ITHM£T IC UNIT I | | 

J 

PI~OCESSOR ~.DER 

DISC CONTROLLERS AND DISC 
STORAGE: (H /T  AND PAD) 

TAPE CON"TROLLERS TAPE 
SWITCHES AHD ~ | V ~ ;  

PAPER COtdTROLLERS AND PRINTERS,  
CARD READERS .CARD PIUNCH£$ .£TC 

DATA CONCENTRATORS "1~ O R jE  mATCH 
AND K I ~ I O A R D  T E R M I ~ L S )  

CUSTOM •EVICES 

MEMORY £XTENS ION 

FIGURE 9. A S C  system configuration. 
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STORAGE BUS 

l . .  

F LOAFING POINT 
BUFFERS (FLB) 

INSIRUCTION UNIT 

6 ̧  

i CON "ROL 

i r 
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[ 
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I 
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~G ] SINK , TAG I SOURCE jCTRL // 

FIGURE 10. Float ing point unit  of IBM Model 91 with CDB and reservat ion s t a t i o n s .  

can be described as follows. In decoding 
each instruction, the busy bit of each source 
register is checked. If it is zero, the inde- 
pendent instruction can be transmitted to 
a certain execution station, say A1 (virtual 
adder 1). At the same time, the busy bit of 
its sink register is set, and the corresponding 
tag is set to the destination of A1 (so that 
the sink register will receive the result 
from A1). If the busy bit is on, instead of 
waiting for the source operand to be gen- 
erated and stored in the register, the de- 
pendent instruction is issued to an avail- 
able execution station, say M1 (virtual 
multiplier 1). However, the tag of the 
register, rather than its content, is trans- 
mitted to the reservation station M1 so that 
M1 accepts data whose tag matches with 
its own from the CDB. As an illustration: 

ADD F1,FLB1 [(F1) -t- (FLB1) --+ (F1)] 
MD F1,FLB2 [(F1) X (FLB2)-~ (F1)] 

In executing the ADD, A1 is used, and the 
tag of F1 is set to 1000 (that of A1) and its 
busy bit set to 1. In decoding the MD, the 
busy bit of F1 is 1. So rather than sending 
(F1) to M1, its tag (1000) is transmitted 

to M1. In addition, the tag of F1 is changed 
to 1010 (tag of M1). When the CDB is 
broadcasting the data tagged with 1000, M1 
will succeed in matching the tag and so 
ingate it to the buffer and resume execution 
(if FLB2 is available). Notice that the 
result of ADD is not stored in F1 in reality 
because that operation is redundant (the 
tag of F1 is 1010 and not 1000). 

A similar busing structure can be found 
in other pipelined processors such as the TI 
ASC and CDC STAR-100. In the TI ASC 
processor [13], an instruction dependency 
is recognized by hardware which scans the 
instruction stream and distributes the in- 
dependent instructions across MBU-AU 
pairs to ensure proper, yet efficient execu- 
tion sequences. Update capability is in- 
corporated by allowing the contents of the 
Z-buffer to be transmitted to the X- or 
Y-buffer in the MBU when the latter two 
buffers are being used as scratch pads in 
local computation. In the STAR-100 system 
[14], a more explicit busing structure is 
maintained because of its different units. 
In the floating point pipes (whose configura- 
tions are drawn in Figure 11), a direct route 
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SHORTSTOP 
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I -I 
and 2 of CDC STAR-100 system. 

called shortstop is established between the 
output (transmit segment) of each pipe 
and either of its inputs. This eliminates the 
time necessary to store the generated re- 
sult in the register file and then to read it 
out again. These schemes fall into the 
control characterization in Section 1.4 very 
appropriately. 

Although an efficient busing structure 
can reduce the adverse effect of instruction 
dependency, there is still a great burden on 
the programmers or the compilers to produce 
codes that expose sufficient parallelism to 
allow overlapped processing to become bene- 
ficial. If more independent itlstructions are 
intermixed appropriately with those de- 
pendent ones, more concurrent processing 
can take place while the dependency is 
resolved with little incurred time (that is 
the resolving of dependency is hidden be- 
hind other useful processing). This is a 
very important factor in deciding how 
efficiently a program or an implemented 

algorithm can be executed on a pipelined 
processor. Algorithm efficiency is also de- 
pendent on the architectural features of 
the processor on which it is executed. 

2.4 Branching 

Branching is more damaging to the pipe- 
line performance than instruction de- 
pendency. When a conditional branch is 
encountered, one cannot tell which sequence 
of instructions will follow until the deciding 
result is available at the output. Therefore 
a conditional branch not only delays further 
execution but also affects the entire pipe 
starting from the instruction fetch segment. 
An incorrect branch of instructions and 
operands fetched may create a discon- 
tinuity of instruction supply. 

To remedy the effect of branching, differ- 
ent techniques can be employed to provide 
mechanisms whereby processing can re- 
sume even if an unexpected branch occurs. 
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In the IBM 360/91 [9], a loop mode and 
back-eight test are designed with the help 
of an additional branch target buffer. In 
the ASC, a load lookahead [15] mechanism 
(instruction) is explicitly provided, with 
appropriate hardware and buffer support. 
Likewise, in the STAR-100 [14], the instruc- 
tion stack has special branch back cap- 
ability. We try to explain these schemes in 
this section. 

The branch-on-condition handling is best 
illustrated by the 360/91. In this processor, 
upon the decoding of a conditional branch 
instruction, if the condition code is not yet 
valid it is assumed that no branch will be 
taken. However, to guard against an in- 
correct guess, two instruction.doublewords 
will be fetched from the branch and stored 
at the branch target buffer. The conditional 
mode is entered where instructions are 
forwarded conditionally to later segments 
for processing. Operands are conditionally 
set up while actual execution is prohibited. 
Finally, when the branch should be taken, 
the conditional instructions are deactivated 
and processing is resumed using the branch 
target instructions; otherwise execution 
continues almost instantaneously. This pro- 
cedure therefore reduces the waiting time 
in the average case. To further reduce in- 
struction fetching time, short loops in pro- 
grams can be fruitfully exploited. 

If the instructions are already in the in- 
struction buffer, it is wise not to erase any 
of them and to assume the branch (repeat 
loop) will be successful. Then no other 
memory access for instructions is needed 
and less memory interference with other 
parts of the processor will be created. The 
way to detect these short loops and reserve 
the instruction loop is by implementing a 
loop mode and back-eight test. 

A sequence of eight instruction double- 
words or less is termed a short loop and can 
be completely stored in the instruction 
buffer. When a branch (backward) is ob- 
tained, the back-eight test is used. If it is 
satisfied, the loop mode is established. 
From that point on, the complete loop is 
fetched into the instruction buffer so that no 
further fetching is needed until the loop 
mode is removed by branching out. In con- 
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ditional branches, the loop mode can be 
established to replace condition mode once 
a successful branch results and the back- 
eight test is satisfied. This method of back- 
eight test and loop mode is very useful in 
systems where available memory cycles are 
precious to the entire system. However, if 
the memory (cache) access time is not long, 
the conditional handling may be less useful 
due to its overhead. 

The load lookahead mechanism in the 
ASC system follows a similar philosophy. 
The instruction processing unit of the ma- 
chine contains two instruction address 
registers (Present Address, PA and Look- 
ahead Address, LA) and two instruction 
files of eight words each (KA and KB). 
Each memory reference can fetch an octet 
(P) of instructions to one of the instruction 
files. Usually PA contains the starting ad- 
dress of the next octet to be fetched and 
LA supplies the address of the next octet 
to be fetched. To accommodate branching 
for a loop, a branch with lookahead can 
be set up by placing the branch instruction 
at the target location of a Load Look- 
Ahead (LLA) instruction. An LLA enters 
a count into a Lookahead Count register 
(LC) and enters the address of the LLA 
into a branch address register. The count 
corresponds to the difference of the instruc- 
tion locations of the LLA and its target 
branch instruction. The count is decre- 
mented by one every time an instruction 
is executed following the initiation of the 
LLA. When it has reached a value desig- 
nating that the branch has already been 
requested from memory, the control trans- 
mits the contents of the PA to the LA. This 
causes the fetching of the octet containing 
the LLA and the loop control is reinitialized. 
In this way, a lookahead loading of instruc- 
tions in a loop up to 256 instructions is 
allowed, and instructions will be con- 
tinuously available for execution before the 
branch instruction is completed. 

The STAR-100 processor has an instruction 
stack of sixteen 128-bit words. Each quart- 
ersword (i.e. four words) is loaded in one 
minor cycle. Branching is allowed within 
the instruction stack. The loading and 
management can be as depicted in Figure 
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(4-sword Instruction Stack) 

*Branch back on any prevlous part of the stack 

FIGURE 12a. STAR-100 instruction stack loading 
and issuing with branch tolerance. 

12(a). After the stack is loaded any branch 
within the stack can be honored easily; 
however, the stack is cleared whenever a 
branch out of the stack occurs. The reason 
for this is that the stack can be completely 
filled by a request to memory (i.e. in one 
memory cycle). 

These methods are useful to help to 
supply instructions continually to the pipe 
segments even though branch instructions 
are inevitable. For fixed (targeted) branches, 
lookahead strategies can provide the means 
to continue the instruction sequence. But 
for conditional branches more elaborate 
schemes to recover from unexpected 
branches have to be established (such as 
the conditional mode). 

2.5 Interrupt Handling 

Interrupts disrupt the continuity of the 
instruction stream in a pipeline much as 
the conditional branches. When an interrupt 
occurs while instruction i is being executed, 
the interrupt should be serviced before any 
action is applied to instruction i -t- 1. This 
implies that either these two instructions 
are to be executed sequentially or sufficient 
information is set aside for the eventual 
recovery of instruction i ~- 1. The first 
course defeats the purpose of pipelining. 
The second approach is taken by some 
architectural designs when the cost of re- 
covery is not overly substantial. 

During vector processing, execution of a 
vector instruction may take a long time. 
Therefore, as in the STAR-100 processor, 
special interrupt counters are available to 
hold addresses, delimiters, field lengths, 
etc., which are necessary to restart the 
vector-type instructions after an interrupt. 
This represents a recovery mechanism for 
processing to proceed afterwards when an 
unpredictable interrupt occurs. 

In a more general purpose pipeline, how- 

ever, many independent instructions can be 
at various stages of completion in the pipe 
at the same time. To recover these instruc- 
tions after the interrupt imposes a complex 
and costly problem. In the IBM 360/91 
two types of interrupts, namely "precise 
interrupts" and "imprecise interrupts," 
are used: 

1) Precise interrupts are associated with 
an instruction (like an illegal operation 
code) and can be uncovered during the de- 
coding stage. This type of interrupt can be 
treated in the normal fashion. Since de- 
coding is the first stage of the pipe, when 
an interrupt on instruction i is uncovered, 
instruction i -t- 1 will be prohibited from 
entering the pipe; however, instructions 
which precede instruction i and are un- 
completed in the pipe continue to be exe- 
cuted. After all execution activities are 
completed in the pipe, the processing unit is 
switched to execute the interrupt routine. 

2) Other interrupts which result from 
storage, address, and execution functions 
are termed "imprecise." These interrupts 
usually occur when the instruction is half- 
way through the pipe and subsequent in- 
structions are already admitted into the 
pipe. Strict adherence to the normal in- 
terrupt processing is therefore difficult. 
When an interrupt of this kind is encount- 
ered, further decoding is prohibited (i.e., 
no more new instructions are allowed to 
enter the pipe). But instructions uncom- 
pleted inside the pipe, whether they pre- 
cede or follow the instruction, are completed 
before the processing unit is switched to 
service the interrupt. 

In both cases the new status word for the 
interrupt branch is fetched to the branch 
target buffer while the pipe is being "emp- 
tied." Further optimization is possible by 
starting the fetching of interrupt instruc- 
tions if it takes a long time to clear the pipe. 
This imprecise condition due to error in- 
terrupts is a disadvantage of overlapped 
processing when program debugging is 
considered. 

2.6 Pipeline Processing of Arithmetic Operations 

One of the most fruitful applications of 
overlapped processing to improve through- 
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put has been in the execution of arithmetic 
operations. In vector arithmetic, for ex- 
ample, the same sequence of operations 
are executed repetitively, a circumstance 
most congenial to pipeline implementation. 

In the IBM 360/91 and its successors 
the execution of multiplication and division 
is pipelined [21]. Algorithms suitable for 
pipeline execution of binary addition, 
multiplication, division, and square root 
have been discussed [22]. 

A close study of a typical low level pipe- 
line for performing binary multiplication is 
now presented. 

The most common method of multipli- 
cation is the pencil and paper algorithm in 
which the multiplicand is shifted and, if the 
corresponding bit in the multiplier is 1, 
added to the partial sum until the multi- 
plier is exhausted. Clearly this is not an 
effective pipeline algorithm because too 
many shifting and adding operations (com- 
plete additions) are needed. Even if the 0s 
in the multiplier are skipped, the speed of 
the multiplier is too slow to match the 
speed of the other parts of the system. One 
could try to build a very fast multiplier 
using Wallace Trees [20] of Carry-Save 
Adders (CSA). But such an implementation 
requires too much hardware. Obviously a 
speed/cost trade-off exists here. The method 
favored in the IBM 360/91 and other com- 
puters is a hybrid method, in which multiples 
of the multiplicand (summands) corre- 
sponding to a group of multiplier bits 
(generally two or three) are generated 
iteratively and accumulated by CSAs. 
During the last iteration, the summand 
of the last group of multiplier bits and the 
previously accumulated partial sum are 
added by using a Full Binary Adder (FBA). 
Our example system will generate the sum- 
mands corresponding to each 4-bit group of 
the multiplier in real time and will use 
CSAs to accumulate several partial sums 
beIore generating the final product. Figure 
12(b) shows the flow during the process of 
multiplication. 

Decode Phase 

The multiplier bits are examined four bits 
at a time starting with the least significant 
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Mult1~l . . . .  d Mult~pller 

[ Decode I 

I Summand generatlon I 

[ Iteratlve carry save 1 
addltlon 

i 
Addltlon wlth ] 

carry propagatlon 
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FIGURE 12b. Functions in a multiply pipe. 

TABLE 1. MULTIPLIER DECODING 
Mult~pller Bits Operatlon 

0 0 0 0 0 

0 0 0 1 D 

0 0 1 0 2D 

0 0 1 1 4D-D, 2D+D 

0 1 0 0 4D 

0 1 0 1 4D+D 

0 1 1 0 8D-2D, 4D+2D 

0 l l l 8D-D 

l 0 0 0 8D 

1 0 0 l 8D+D 

l 0 l 0 8D+2D 

1 0 1 l 16D-4D-D 

l 1 0 0 16D-4D 

l l 0 1 16D-4D+D 

1 1 1 0 16D-2D 

1 1 l l 16D-D 

4-bit group. The four multiplier bits are 
expressed into the sum of at most three 
numbers which are powers of two times the 
multiplicand. In other words, each 4-bit 
group of the multiplier is decoded into a 
maximum of three binary numbers which 
are powers of two times the multiplicand. 
For example, if the multiplier bits are 1101, 
then the decoder generates three numbers, 
16D, - d D ,  and -{-D, where D is the multi- 
plicand which when summed generate the 
multiple 13 times the multiplicand. Table I 
provides the decoding table for four bit 
multiplier summand generation. Note that 
the decoding process generates at most 
three numbers using combinatorial logic 
(in real time) and provides the three inputs 
needed for a carry save adder. 

Generation of Summands 

The decoder generates the appropriate 
multiples of the multiplicand corresponding 
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~D 

-*20 ~ - - I  ~ - ]  -*4D 
8D 

169 

FIGURE 12C. Generation of tummands. 

CSh:Corry Save Adder 

$ 
Product 

FIGURE 12d. Pipeline multiplication. 

to a 4-bit group of the multiplier. The inputs 
to the first Carry Save Adder (CSA-1) are 
shown in Figure 12(c). 

Operations of the Multiplication Unit 

Assume now that we wish to multiply two 
16-bit positive numbers. The Carry Save 
Adders and the Full Binary (carry propa- 
gate) Adder are assumed to be 2-word, or 
32 bits wide. Initially the adder arrays are 
cleared. 

During each iteration, a 4-bit group of 
the multiplier in the R register is decoded 
and the three inputs to CSA-1 are generated. 
CSA-1 uses the inputs to generate the two 
outputs (Partial Sum (PS) and Carries 
Saved (CS)). These are passed on to the 
next Carry Save Adder, CSA-2. The carry 
save output of CSA-2 is fed back as an 
input to itself during the next CSA-2 opera- 
tion. The PS output of CSA-2 is introduced 
as an input to CSA-3. Both outputs of 
CSA-3 are fed back as inputs to itself. 

The multiplier bits are decoded four bits 
at a time starting with the least significant 
ones. After the CSA-1 receives its inputs, 
the R register is shifted right four bits, and 
the decoding of the next group of four bits is 
initiated. This sequence is continued until 

the final group of four bits is decoded. As 
we supply operands to CSA-1, these operands 
are accumulated. 

After supplying the final set of operands 
(corresponding to the four most significant 
bits of the multiplier), we have four sets of 
accumulated operands in the system. Now 
in the next three cycles (each cycle cor- 
responds to one operation of a CSA), these 
operanffs will be accumulated into two 
operands at the output of CSA-3. Finally 
these operands are channeled to the FBA 
to obtain the final product. A timing dia- 
gram (reservation table) is provided in 
Figure 12(e) to elucidate the overlapped 
operations in the system. 

Performance Analysis 

Let N be the number of bits in the multi- 
plier, and let tc be the delay through a 
CSA. Since the latter can be realized by 
two levels of combinational logic, t~ will be 
equivalent to two logic gate delays. The 
delay through the full binary adder, tF~A, 
will vary with the size of the operands and 
its design. Then the total time for multipli- 
cation of N bits (from the time the inputs 
are introduced at the first carry save adder) 
is 

t(multiply) = [N/4]tc -[- 4t, q-- tFBA. 

If t~ is equal to two gate delays of 20 nsee 
each and t~nA for 32-bit operands using 
carry look ahead logic is around 70 nsec, 
then the total multiply time with 16-bit 
operands to generate a 32-bit product is 
270 nsec. 

Extensions 

The previous procedure using 4-bit multi- 
plier groups can be extended to 8-bit multi- 
plier groups, thereby almost doubling the 

CSA l 

CSA 2 

CSA 3 

FBA 

F I G U R E  1 2 e .  

X x X X 

X X X X X 

, X X X X X X 

X 
t I t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 

Timing diagram and reservation 
table for pipeline multiplication. 

Computing Surveys, Vol. 9, No  11 March 1977 



MULTIPLIER 
9 8 b l l s  • 

DELAY= CSA OELAy 

PRODUCT 

FIGURE 12f. Pipeline multiplication using 8-bit 
multiplier groups. 

throughput rate of the system. Figure 12(f) 
illustrates the organization. The scheme 
utilizes two 4-bit decoders, which generate 
appropriate summands corresponding to 
two consecutive 4-bit multiplier groups at 
CSA-1 and CSA-2. The two sets of sum- 
mands are combined at CSA-3 and CSA-4. 
CSA-5 and CSA-6 accumulate the summands 
received from each 8-bit group until all the 
groups in the multiplier have been processed. 
In a similar fashion as in the 4-bit group 
scheme, the full binary addition is per- 
formed at the last step. 

Several interesting and challenging prob- 
lems still remain open for investigation. 
Pipelining of decimal arithmetic functions, 
radix conversions, and polynomial function 
evaluation are some of the many useful 
applications. Also the study of multifunc- 
tional pipes with respect to arithmetic ex- 
pressions deserves attention. 

3. VECTOR PROCESSING 

One of the main requirements in justifying 
the pipelining of a process is that the same 
sequence of operations will be invoked 
very frequently. Ideally, if a continuous 
excitation of the pipeline is attained, then 
the maximum throughput will be reached. 
For a pipelined processor, this is equivalent 
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to the need for abundant parallelism in the 
instruction streams to permit almost con- 
tinuous initiation of independent instruc- 
tions. 

This ideal situation sometimes becomes 
true when the machine is processing inde- 
pendent vectors, e.g. adding two vectors, 
element by element, to form a result vector. 
If each element of a vector has to go through 
a transformation independent of the trans- 
formation of other elements of the vector, 
then they can be performed in an over- 
lapped mode employing the pipelining 
characteristics. For machines with multi- 
functional pipelined execution units, the exe- 
cution units can establish and retain a static 
configuration throughout until the entire 
vector is processed. Hence minimal control, 
decoding, and reconfiguration overheads 
may be achieved while the memory operands 
are supplied to the execution unit in a most 
efficient way. This will become more ap- 
parent as our discussion proceeds. 

In this section vector processing in pipe- 
lined processors is studied carefully. In 
Section 3.1, the components of a vector 
instruction and the ultimate processing 
procedures are demonstrated and a com- 
parison of two prominent vector machines 
in this aspect is included. This comparison 
leads to the revelation and evaluation of the 
requirements, properties, and tradeoffs in 
terms of time and space (control hardware) 
overhead in vector processing as contrasted 
with sequential pipeline processing. The 
analysis in Section 3.2 serves to expose the 
real crux of vector processing. 

3.1 Vector Instruction 

A vector pipe can be characterized by the 
existence of one or more multifunctional 
pipes in the execution unit (arithmetic and 
logic unit) and the needed control and 
parameter specifiers in the processor. As 
mentioned in Section 1, a multifunctional 
pipe can be either static or dynamic, de- 
pending on its reconfiguration control. In 
the static case, simpler control is required 
to establish and maintain a desired con- 
figuration for processing. There is a fixed 
route for each operand set to traverse 
throughout the computation, unless a new 
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configuration is formed. While in the dy- 
namic case more complicated control and 
routing overhead is involved, the through- 
put may be higher because of the simul- 
taneous existence of several configurations. 
In reality, static vector pipes are more 
common, as is illustrated in the TI ASC and 
CDC S~AR-100 examples to follow. 

For a vector that consists of the two levels 
of pipeline action, appropriate vector in- 
structions have to be designed and imple- 
mented to denote the operations on some 
ordered data in vector or array form. 
Generally, in the first level, a vector in- 
struction is fetched, decoded, and the 
necessary control paths connected before 
the needed elements of the vector are 
fetched from consecutive storage locations 
over a specified address range. The second 
level execution unit pipe carries out the 
specified operations on these elements, 
normally being supervised by a control 
ROM. Sometimes the results generated are 
stored back to certain consecutive addresses 
of a result field, and sometimes other 
needed indicators are generated and stored 
in the register file in the processor for future 
usage. The exact procedures and mecha- 
nisms to accomplish all these functions vary 
from machine to machine. For later com- 
parison and analysis, an example of vector 
instruction execution is provided here. 

Before the execution of a vector instruc- 
tion starts, certain additional information 
pertinent to the mode of processing has to 
be furnished to the system. Such informa- 
tion can be quite varied and detailed, such 
as the starting (base) address of each source 
vector and result vector involved (usually 
two source vectors and one result vector) 
and the control over what elements of the 
vectors should be operated upon. The 
method by which the STAR-100 handles 
this is demonstrated first. The similarity 
with the control of an array processing 
system can be observed. Then similar and 
different features in the ASC system are 
noted. Finally the vector processing powers 
of the two systems are compared. 

The schematic diagram of the central 
processing unit for the STAR-100 system is 
shown in Figure 8. Basically it consists of 

four parts: 1) Storage Access Control 
(SAC), 2) stream, 3) string, and 4) floating 
point units operating in an overlapped, 
asynchronous mode. The SAC is responsible 
for sharing the magnetic core storage 
among the three read and three write buses 
shared by the stream and I /O units. The 
stream unit provides the basic control for 
the entire processor. Internally it may be 
regarded as a multisegment pipeline (second 
level) as it carries out functions which in- 
clude: 1) memory references; 2) buffering 
and skewing of operand data; 3)buffering 
and decoding instructions; 4)setting up 
control signals for processing the instruc- 
tion; and 5)performing simple logical and 
arithmetic operations. 

The string unit, as the name implies, is 
used to process strings of decimal or binary 
digits. I t  contains fast half adders and full 
adders to carry out algorithms for binary 
arithmetic (add, subtract, divide, and mul- 
tiply). Finally, the floating point unit con- 
sists of two pipes whose configurations are 
shown in Figure 11. Each pipe is (static) 
multifunctional as it has different con- 
figurations for performing different floating 
point operations. Pipe 1 performs arith- 
metic operations on operands in floating 
point format and address operations on 
nonfloating point numbers. Pipe 2 per- 
forms only two vector address type opera- 
tions, in addition to other arithmetic opera- 
tions. Pipe 1 and pipe 2 are quite similar in 
structure except that the latter has a high 
speed register divide unit and a multi- 
purpose unit for some special arithmetic 
such as square root, vector divide, etc. 
The pipes can take on a certain configura- 
tion at any time. For example, to perform 
floating point addition, pipe 1 configures 
itself (under microcode control, to be ex- 
plained later) to activate the path: Expo- 

0 78 1516 2324  3 !32 3940 4748 5 5 5 6  63 
F G X A Y B Z 

(8X,9×) (subfune- (offset (ffeld (offset {held I{CV base (f,eCd 
tlon) forA) length& for B) length& address) length& 

bose base base 
address address address 

I C÷I =1 
I (offset I 

FmuRz 13. Vector instruction format in CDC 
STAR-tO0. 
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Memcry Words (32 b~t or 64 blt operands) 

Field Length { 

FIGURE 14. 

i~ ~ Base Address ~ Offset 

Addressing offset for vectors. 

nent Compare--Coefficient Align--Coeffi- 
cient Add--Normalize Count--Normalize 
Shift--Transmit. With this static con- 
figuration, operand pairs can be routed 
through the pipe at a steady and maximum 
rate. When the operand pairs can be sup- 
plied fast enough and the result stored 
suitably, an ideal throughput rate will be 
reached. 

Let us now pause to examine a vector 
instruction before exploring the procedure 
of its execution. An ordinary vector instruc- 
tion format in the STAR-100 computer is 
representable by eight fields as indicated in 
Figure 13: 1)F:  function code; 2)G: sub- 
function code; 3) X, Y specify the registers 
that hold address offsets Jfor the two cor- 
responding source vectors (the offset ope- 
rates as depicted in Figure 13 and is useful 
for skewed vectors); 4)A, B specify the 
registers that hold the base addresses and 
field lengths of the two source vectors; 5) 
Z specifies the register holding the base ad- 
dress of the control vector; 6) C specifies the 
register holding the base address and field 
length of the result vector; and 7) C H- 1 
then automatically specifies the register 
holding the offset for the control and result 
vectors. This automatic assignment is im- 
plied to maximize the utilization of each 
instruction word which has a limited length. 

From these registers, the effective starting 
address and field length of each vector can 
be calculated. Then the rest of the vector 
can be referenced sequentially until a termi- 
nation condition is reached. The control 
vector is a unique feature introducing the 
flexibility desired in vector processing. I t  
performs prohibition responsibility, analo- 
gous to the control unit in an array processor 
such as the ILLIAC IV [2]. The control 
vector in the STAR-100 performs the 
analogous function, but in a time stretched 
fashion (compared to the simultaneous 

inhibition of array elements). Each bit in 
the control vector is used to specify whether 
or not the corresponding result element 
should be stored (for most vector instruc- 
tions; in some modified cases like macros, 
it has other duties, as will be explained 
later). When a bit is set in the control 
vector, the corresponding element of the 
result vector will not be modified and 
stored. Thus the nth bit read from the 
control vector will be used to control the 
storing of the nth element generated in 
processing the vector instruction. 

As an illustration consider a vector add 
instruction: 

VADD A , B , C  (A -t- B --+ C) 

Suppose the instruction format provides the 
following information: 

(A) = content of A register: 
field length of A vector = 12 

halfwords (32 bits each) 
(B) = field length of B vector = 4 

half words 
base address -- 20000,8 

(X) = offset for A vector = 4 half- 
words 

(Y) = offset for B vector ffi --4 half- 
words 

(Z) = base address of control vector = 
4000418 

(C) = base address of result vector = 
30000,e 

field length = 12 halfwords 
(C-~- i) -- control vector and result vector 

offset -- 4 hMfwords. 

Then the starting address and effective 
field length of A vector can be cMculated 
as shown in Figure 15. 

Note that the addressing used is bit ad- 
dress and a 'I '  in the control vector per- 
mits the storing of the corresponding ele- 
ment in the resulting vector. For example, 
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10000 
10020 
10040 
10060 
1008O 

100A0 
10000 
IOOEO 
10100 
10120 
10140 
10160 

IFF80 

IFFA0 
IFFC0 

IFFEO 
20000 

20020 
20040 

20060 

30000 
30020 

30040 

30060 

30080 

300A0 

300C0 
300E0 

30100 
30120 

30140 
30160 

A source vector 

A 0 

A I 

A 2 
A 3 

A 4 

A 5 

A 6 

A 7 
A 8 

A 9 

AI0 
All 

B source vector 

8"4 

8-3 I 

' B'2 1 g.  1 
B 0 
B 1 
B 2 
B 3 

C source vector 

1 CO ~ CO 

C 1 ~ C 1 
)' C2 ~ 02 

C 3 ~ C 3 

C 4 ~ C 4 

,,!5 ~ A5+B_3 
C 6 ~C 6 

C 7 - C 7 
"~8 " A8 + B6 

C 9 ~ 09 

Cl0 - AIO + B 2 
Cll ~ All + B 3 

~ b a s e  address 

offset 
start address 

~ ( b a s e  address -offset) 

actual field length 
= field length - offset 
= 12 - 4 = 8 hal f-words 

-~-startlng address - 

I -offset 

-,-base address 
actual field length 
= 4-( -4)  
= 8 half-words 

~base  address 

l offset 

~s ta r t lng  address 

effectl ve 
field 
length control vector 

I I I01111 lOll (O101' lOI' I') 

4ooo~ , ,~o0o4 
offset 

FIGURE 15. Example vector ADD. 

40005 stores a '1'; so C8 is transformed 
into A5 -t- B - 8  . The skewing effect is quite 
apparent in this example. 

The mechanism to generate the desired 
output has to be explained further. After 
the instruction has been decoded at the 
stream unit, the appropriate microcode 
sequence in the Microeode Unit (MIC) is 
initiated. This microcode unit resides in 
the stream unit and is responsible for vector 
type operations. 

When the CPU initiates an instruction 
requiring microcode control, it sends the 
F (function) code and a microcode pulse 
to the MIC. The MIC then takes over 
control of the start up and termination of 
the instruction. In the case of interrupts, 
it also has to branch to save all the operands 
and parameters necessary to resume execu- 
tion afterwards. Therefore it is the heart of 

the vector processing control. In fact, it is 
the central control once a vector-type in- 
struction has been noticed via decoding. 
Typically it controls operations including: 

1) the reading of addresses from the 
register file (in the stream unit) for 
the vector parameters according to 
the designations specified in the in- 
struction; 

2) the calculation of the effective ad- 
dresses, field lengths, etc. for moni- 
toring the starting of the operations 
involved in the vector instruction; 

3) the setting up of the usage of read/ 
write buses as specified by the G 
(subfunction) field for the operands 
and results; and 

4) the transfer of addresses and other 
information to appropriate interrupt 
count registers whenever needed. 

Once the effective addresses are com- 
puted, the operand elements are fetched 
and paired for the operations involved, for 
example, going through the second level 
floating point pipe. The static configuration 
of the execution pipe will remain active 
until the vector instruction is terminated. 
A termination is marked by either of the 
following events: 

1) A vector is exhausted (e.g., when the 
effective field length is zero, or the 
difference between the effective field 
length and the number of operand 
pairs encountered thus far is zero); and 

2) Some other data fields or strings have 
been exhausted. 

From the above description, one can see 
what a vector pipe really includes and how 
vectors can be processed in an overlapped 
manner. It is interesting to find some other 
ways to achieve a vector pipe. So let us 
examine a similar vector machine, the ASC 
system. The ASC handles a vector instruc- 
tion in a similar way, though some addi- 
tional distinguishing features should be 
mentioned. To facilitate understanding, the 
central processor unit composition in the 
ASC has to be briefly explained. Its sche- 
matic diagram is provided in Figure 9. It 
consists of three main components: 1) In- 
struction Processing Unit (IPU); 2) Mem- 
ory Buffer Unit (MBU); and 3) Arithmetic 
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Unit (AU). The IPU is analogous to the 
stream unit in the STAR-100, the MBU is 
analogous to the load/store; and the AU 
actually processes the data. In vector mode 
the IPU fetches and decodes the instruc- 
tion and calculates the effective addresses 
for the vector fields. After receiving the 
needed information from the IPU, the 
MBU starts fetching source operands and 
pairing those to be sent into an AU pipe 
(the AU can have one to four identical 
pipes). Each AU pipe has different con- 
figurations for performing different arith- 
metic operations (including integers) as in 
a typical static multifunctional pipeline. 
The two levels of pipeline action are quite 
apparent in this case. 

A vector instruction in the ASC has some 
outstanding characteristics; the instruc- 
tion format is depicted in Figure 16. Par- 
ticular registers for fetching operand ad- 
dress and control information do not have 
to be specified, however. Some registers in 
the IPU, forming the Vector Parameter File 
(VPF), are dedicated to vector processing. 
The VPF consists of eight 32-bit registers 
whose individual functions or interpre- 
tations have been permanently assigned, 
as shown in Figure 17. This fixed organiza- 
tion has the advantage that registers can 
be hardwired to the input of the control 
ROM or other logic units for fast operation, 
without having to worry about access con- 
flicts among them. The first register con- 
tains the operation code and the type and 
length of the vector considered (single or 
two-dimensional). Then the base address 
and the register containing the index (off- 
set) are specified for each operand vector in 
the subsequent register in the VPF. The 
fifth and sixth registers are used to specify 
the increment for each vector and the 
number of iterations (field length) in this 
inner loop. For the outer-loop (two-dimen- 
sional vectors), similar information about 
the increments and number of iterations is 
included in registers seven and eight. The 
vector instruction, after having been de- 

I oP I R I T I M I  I 
] 8 12 16 20 32 

FIGURE 16. Vector instruction format in TI ASC. 
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FIGURE 17. Vector parameter file format in 
TI ASC. 

coded, will provide the information regard- 
ing whether the parameter file has to be 
loaded from main memory or retain some 
previous setting for immediate usage. If a 
load is needed, since the memory is inter- 
leaved, one memory cycle is needed for 
VPF loading. The significance of this and 
the subsequent additional activities is ex- 
amined more carefully in the next subsection. 
Afterwards, the sequence control in the 
MBU takes over (as does the MIC in 
STAR-100) the fetching of operands and 
the routing of operand pairs through the 
AU pipe. 

So the ASC has at least two distinguish- 
ing features in vector processing: 1) its 
dedicated use of the vector parameter file; 
2) the interpretation and usage of the VPF, 
allowing variable increments within the 
different vectors concerned (contrary to the 
sequential mode in STAR-100), and two- 
dimensional vectors to be explicitly handled 
(inner and outer loops). 

These features help to execute some 
vectors more efficiently and reduce the 
overhead that may have been incurred. 
Observe that once a vector instruction is 
initiated, the operand pairs are submitted 
to the AU continuously--in most cases, 
once per minor cycle (provided no severe 
memory interference results from other 
pipes or parts of the system or processor). 
Then the maximum throughput rate may 
be achieved (1 result per minor cycle is 
equal to 60 nsec.). Also the sequence con- 
trol for the AU is handled exclusively by 
the microcode stored in the ROM in the 
MBU. Therefore the MBU serves as the 
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unique interface between the IPU and the 
AU. 

From the previous discussions, one can 
visualize the concept of vector processing 
and the two ways to achieve high through- 
put in two similar machines. To bring out 
more interesting special features in these 
machines, the vector-type instruction set in 
the STAR-100 is examined once again. 
From it a final brief comparison of the two 
systems, the STAR-100 and the ASC in 
this respect, is derived. 

Generally speaking the STAR-100 has a 
richer and more powerful vector instruc- 
tion set. Two outstanding features are: 1) 
vector macros instructions and 2) sparse 
vector instructions. 

In vector macro instructions, operations 
are performed on the source vectors except 
that, in some cases, no result vector is 
created. Instead, the result is represented 
and stored in one or two registers as specified 
by the instruction. 

For example, SELECT GE A >__ B, 
ITEM COUNT TO (C) involves comparing 
each element of vector field A with the 
corresponding one in B. The comparison 
terminates if the condition A, >_ B, is met 
for the current i, or one of the vector fields 
is exhausted. Then the number of operand 
pairs encountered thus far is stored in the 
register specified by C. 

In this macro operation, control vectors 
can be used not only to prohibit the storage 
of result elements but also to disable the 
operation on some elements. In the example, 
even if A, ~ B, is true for some i, if that 
comparison is disabled by the corresponding 
element in the control vector, execution 
will not be terminated. Thus, by using this 
kind of instruction, comparison of ordered 
vectors (e.g. lexicographic comparison) can 
be easily handled. The item count will be 
useful in some cases to indicate at which 
element the condition is satisfied. On the 
other hand, ordinary vector compare in- 
structions also exist in the STAR-100 ma- 
chine. For example, COMPARE GE A >__ B, 
ORDER VECTOR --, Z involves 1)com- 
paring the two vectors element by element 
and 2) storing 1 or 0 at the result vector 
elements depending on the satisfaction of 
the comparison condition. 

The result of each pairwise comparison 
is recorded and is available for later use, 
such as in sorting. Thus ordinary vector 
and vector macro instructions may form a 
powerful vector instruction set to be tailored 
to suit some application as closely as pos- 
sible. With them, many quite complex 
sequential algorithms may turn out to be 
very effective, as is studied later. 

The sparse vector instructions in the 
STAR-100 system further facilitate processing 
of large vectors with a lot of zero elements 
because then the vector can be packed 
easily into a sparse vector to be operated 
upon later. This packing can save both 
memory storage space and later effective 
processing time. A sparse vector can be 
formed by using the following procedure, as 
illustrated in Figure 18. 

Step1: Generate an order vector by 
using a COMPARE instruction 
to indicate zero elements. 

Step 2: Compress the vector into a sparse 
vector by storing the chosen ele- 
ments from the former to mem- 
ory, according to the order vector 
generated at Step 1. The order 
vector has to be retained through- 
out the lifetime of the sparse 
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address In ) t ,a l  

n V 1 

n+l V 2 

n+2 V 3 

n+3 V 4 
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O1 7 8  
Illjo)oll)llOlOll)O) 
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Step 2 Sparse Vector Generated. 

Hal f-word 
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{R) 
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FIGURE 18. Example compression of a v e c t o r  
into a sparse vector field. 
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vector to specify the positional 
significance of its elements. 

Now the sparse vector can be efficiently 
operated upon to generate desirable, in- 
terpretable results as in other vector in- 
structions, with the help of the order vector. 
The advantages of sparse vectors should be 
emphasized: 

1) The cxplicit hardware support for 
compaction of large vectors reduces mem- 
ory space needed. 

2) If the sparse vector has to go through 
several operations or computation steps, 
effective processing time can be saved as 
well in that the operation on zero elements 
is no longer necessary. 

3) If a variable increment for each vector 
(as in the ASC) is desired, one way to im- 
plement it is to use sparse vector instruc- 
tions (though a more obvious way is to 
include the appropriate control vector) for 
the purpose of saving space and time. 

While the ASC does not include sparse 
vector instructions, its explicit two-dimen- 
sional vectors and variable vector incre- 
ments are good features which promise 
high vector processing capability. Included 
in the vector instruction set of both ma- 
chines are some very interesting and high 

level instructions, such as vector search, 
dot product, merge, shift, and order, that 
allow programmers more power in develop- 
ing their programs and the system to exe- 
cute the algorithms implemented with the 
help of these advanced instructions more 
efficiently. The ASC has also demonstrated 
how a 32-bit machine can cope with vector 
processing by efficiently making use of 8-bit 
opcode and the other relative fields, to- 
gether with a dedicated vector parameter 
file. While the STAR-100 shows a stronger 
vector instruction set (a vector instruction 
is composed of 64 bits) because the F (func- 
tion) and G (subfunction) codes can be 
used to specify more things, the vector 
parameters to be used can be assigned to 
any one of the registers (therefore not 
dedicated). I t  is hard to say which scheme 
is absolutely superior. To summarize, the 
comparison of the vector processing powers 
of the ASC and STAR-100 is tabulated in 
Table 2. 

3.2 Implications, Requirements, and Tradeo~s 

How vectors are processed has been demon- 
strated in the previous section. Now a 
closer look at some hidden or less con- 

TABLE 2. COMPARE AND CONTRAST 

STAR-]O0 TI ASC 

Vector parameter  registers to be specified. Vector parameter  file fixed, therefore easy to ref- 
erence and store. 

Very strong vector  instruction set. Strong vector  instruction set. 

Sparse vector instruction included. Sparse vector  not included. 

Vector increment is fixed. Variable vector  increment allowed. 

Control vector  introduces flexibility similar to the No control vector used. 
control unit  in array processors. Can be used to 
implement variable vector increment.  

Explicit ly,  vectors are only one-dimensional. Two-dimensionM vector explicitly accommo- 
dated. Computes 2 level loops effectively. 

Use microcode control once a vector instruction is Use microcode control to sequence each AU. 
decoded. 

String unit and Floating Point unit  (2 noniden- Four identical AU-MBU pairs can be installed to 
tical pipes) will be responsible for most of the carry out all kinds of, ar i thmetic operations 
actual proecessing of data. Therefore concur- (fixed or floating point).  Concurrency of execu- 
rency is among different execution units, tion is among four identical pipes. 

Floading point facility more powerful (e.g. Pipe 2 AU has to be responsible for floating point opera- 
has fast divide, special multipurpose segments), tions (consists of eight segments). 

Requires set up time for vector  processing Also requires set up t ime (though could be less 
because the fixed VPF  is easier to manage).  
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spieuous aspects in a vector machine is 
appropriate. From the previous description, 
one notices at least four aspects: 

1) There is some setup time involved 
before executing a vector. 

2) Additional control in configuring the 
execution pipe and monitoring ope- 
rand admission and traversal is needed. 

3) Richer instruction sets and intelligent 
compilers are prerequisites for pro- 
ducing optimized code for vector ma- 
chines. 

4) An intrinsic tradeoff between se- 
quential and vector processing can be 
derived from the above considerations. 

These four observations are discussed in 
this section. 

1) Setup Time and Flush Time 

As demonstrated in the ASC and STAR-100 
systems, each vector instruction involves a 
set of vector parameter registers or control 
vectors to hold the information needed be- 
fore the instruction can be initiated. The 
contents of these parameter registers are 
used to control the addressing operation 
and storage of result operands, as well as 
the final termination. In the STAR-100 
system, they are used by the MIC and later 
by other buffers in the stream unit for the 
continuous initiation of operand fetches and 
execution until a termination condition is 
detected by the MIC. In the case of the 
ASC processor, they are used by the IPU 
for address calculation, by the MBU for 
memory references, and by the MIC (in 
the MBU) for monitoring subsequent execu- 
tion activities. These parameter registers 
can be loaded from memory. In doing so, 
many additional memory fetches (register 
loading) have to be performed before the 
vector instruction can be started. These 
fetches represent an overhead in t ime--the 
setup time. If the vector invoIved has a 
relatively short field length (the number of 
iterations to be executed is small), the setup 
time may be comparable to the actual 
processing time of the vectors. 

Besides the setup time, there is another 
time measure of interest: the flushing time. 
The flushing time is the period of time 
between the initial operation (decode) of 

the instruction and the exit of the result 
(for vectors, the first result element) through 
the entire pipe. Therefore it directly mea- 
sures the sum of the execution time of all 
the facilities that the instruction and an 
operand pair have to go through. Sometimes 
it is interesting to compare the flush times 
of a vector pipe to those of a sequential 
pipe. A vector pipe often has to perform 
more activities, such as checking the termi- 
nation condition, checking the control 
vector, etc. (though some of them can be 
overlapped with other operations). There- 
fore it is not surprising to discover that a 
vector pipe may have a longer flush time 
than its sequential counterpart. 

Here an at tempt-is  made to compare 
analytically sequential and vector pipeline 
processing in terms of time efficiency. For a 
vector pipe, the memory operand supply 
rate is usually fast enough to meet the 
speed of the execution pipe(s). For ex- 
ample, in the ASC system, the eight inter- 
leaved memory modules can maintain a total 
data transfer rate of 400M words per sec- 
ond- twice  that  required to support a cen- 
tral processor with four arithmetic unit 
pipes when processing vector instructions 
[13]. Therefore, for an effective vector field 
length of l, the execution time of the vector 
instruction can be expressed analyticaIIy as 
(assuming the bottleneck is in execution 
units) : 

where t~ is the vector instruction processing 
time; t, is the setup time; t~ is the vector 
pipe flush time including decode, address 
calculation, operand fetch and paired, termi- 
nation check and execution; and t~ is the 
speed of the bottleneck segment of the exe- 
cution unit pipe (in the case of the ASC, all 
eight segments have the same speed, namely 
1 minor cycle -- 60 nsec). 

The same situation in a sequential pipe 
can be analogously analyzed. Suppose the 
same instruction has to be executed on a 
vector in this case. Without vector process- 
ing power, this instruction has to be in- 
voked l times; that is, it must go through 
the entire pipe 1 times. Even if the execution 
unit is fast enough here, it is probable that 
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the fetching of operands is less efficiently 
performed. (In vector machines, consecu- 
tive storage locations for operands are 
fetched.) The processing time of the l in- 
structions may be expressed as: 

t,p = t,s + (1 - 1)tb 

where t,p is the sequential (pipeline) process- 
ing time; t,1 is the sequential pipe flush 
time; and tb is the speed of bottleneck in the 
pipe, most likely in fetching operands if the 
execution unit is fast enough because more 
interference from unstructured memory 
references for instructions and operands 
results. 
Comparing t~p and t~p yields: 

t, -t- t~i q- (l - 1)t~ < t~s + (1 - 1)tb 

if and only if 

t, -[- t,i -- t~i _< (l -- 1)(tb -- t~). 

This equation reveals that, if the vector 
length is reasonably large, vector processing 
is beneficial, considering the time advantage. 
If the setup and differential flush times are 
large compared to the difference of the 
speeds of the bottlenecks of the two pipes, 
then a large vector field length is needed to 
justify processing it in the vector form. 
Usually (tb -- t~) has been about a tenth of 
t, q- tvl -t- Lf; so vector processing provides 
time efficiency in pipelined processors. 

2) Additional Control and Hardware 

Vector pipes are designed to be cost-effec- 
tive. They are implemented with sufficient 
flexibility and power to match the speed of 
an array processor (which usually is more 
expensive). For those vector machines with 
multifunctional pipes, additional control to 
establish the desirable configurations and 
routing of the operands between pipe seg- 
ments are needed. These needs are usually 
fulfilled by using microcoded control to 
allow flexibility and simpler circuitry. The 
hardware and firmware cost so introduced 
represents a portion of the cost of vector 
processing. These control functions some- 
times are not very conspicuous, but they 
do require a considerable amount of hard- 
ware support. 

In addition, some other costs arise in- 
directly. The vector parameter file or 
registers represent part of the indirect hard- 
ware needed. Larger instruction sets to 
cope with vector processing also demand 
longer word lengths--a result that affects 
the cost throughout the entire system. For 
smaller word length machines, one can try 
to get around the problem by using tech- 
niques such as dedicated VPF in ASC. Be- 
cause of its cost-effectiveness and speed 
advantages, vector processing power may 
prove adaptable to medium scale systems. 

To keep up the execution speed, addi- 
tional memory buffers (like the MBU) may 
be necessary to maintain an effective mem- 
ory supply rate. Memory management 
problems, though out of the scope of this 
paper, present a rich area to be explored for 
vector machines. All this direct and indirect 
control cost marks the space overhead in- 
curred in vector processing and should be 
evaluated appropriately in tradeoff con- 
sidera£ions. 

3) Richer Instruction Set and Intelligent 
Compders 

Once the skeleton processor is assigned, the 
instruction set has to be designed carefully. 
As in the case of the STAR-100, suitable 
higher level vector macro and sparse vector 
instructions can be implemented (with 
proper hardware support) ~o that some ap- 
plication algorithms can be easily handled 
(fewer instruction and operand fetches and 
other conflicts). Without such well designed 
instruction sets, the power of the processor 
may depreciate many times because in- 
efficient operations, redundant or excessive 
memory references, and poorly utilized 
facilities may result. 

Since many of the rich instructions are 
by no means conventional, how to use them 
effectively in programs becomes a prime 
concern. For assembly language program 
writing, the user has to familiarize himself 
not only with the algorithm he is going to 
implement, but first with the details of these 
unconventional instructions [19]. Because of 
the various architectural aspects involved, 
he has to choose a suitable algorithm care- 
fully. Often a theoretically fast algorithm 
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will turn out to be inferior to some normally 
less effective serial algorithm because of 
the machine vector characteristic. As a 
simple example, consider sorting methods. 
In vector machines, a bubble sort is quite 
inefficient because of the static multifunc- 
tional pipe involved. The bubbling (com- 
pare and interchange) of an item incurs too 
much reconfiguration cost, memory fetch 
overhead, and setup cost for the pipe. 
Merge sort algorithms are better because 
the machine can merge two ordered vectors 
in one pass without reconfiguration and 
additional setup. As in the ASC, the in- 
struction vector ORDER A, B, C will try 
to compare element by element and store 
the smaller element in C until the entire 
ordering is accomplished. For example, if 
A = 1, 3, 4, 5, 7, 8, 9 and B = 2, 3, 5, 8,10, 
then C = 1, 2, 3, 3, 4, 5, 5, 7, 8, 9, 10. There- 
fore only a simple vector instruction is 
needed to merge sort two ordered vectors. 
Another good alternative is to find the peak 
value of an unsorted vector at every itera- 
tion, remove and store it at the appropriate 
place, and repeat until the vector is com- 
pletely sorted. It  is easy to find the peak 
value of an unsorted vector by using in- 
structions such as SEARCH, and therefore 
selection sort represents a better strategy 
(though quite similar) than the conven- 
tional bubble sort. This simple example 
hints how important it is to find the right 
algorithms to be implemented on vector 
processors. 

Each system requires the installation of 
intelligent language processors to fully uti- 
lize its power. Additional optimization 
procedures should be incorporated to ex- 
ploit its vector capability. For example, the 
optimized FORTRAS compiler for the ASC 
system was designed to produce highly 
optimized object code with complete diag- 
nostic and error messages. In general, the 
additional optimization included is ac- 
complished by analyzing the source pro- 
gram logic and performing optimization on 
the object code instructions involved. Vector 
instructions are used wherever feasible, 
and scalar operations are reordered wherever 
possible to reduce pipeline reconfiguration 
and memory reference delays (8-way inter- 
leaved memory system). Therefore the corn- 

piler can not only recognize array (vector) 
oriented operations in DO loops but can 
also reorder some scalar operations gen- 
erated to meet the architectural character- 
istics of the machine. Of course the other 
more conventional optimization procedures 
are also included, such as elimination of 
redundant subexpressions, removal of con- 
stant assignment statements in a loop, 
proper register assignment, etc. This burden 
on compiler designers is quite heavy. Thus 
the software cost for vector processing 
is an important item not to be ignored. 

4) Quantitative Comparison of Vector and 
Scalar Processing 

As mentioned in the other section, the exe- 
cution time of a vector instruction can be 
represented by 

T~ = tsotup -[- (L -- 1)t~ ~- tflush. 

The characteristic is that, without memory 
interference, operand pairs are accepted at 
a rate of 1Its to generate a result, t~ varies 
from one instruction to another because a 
loop may exist inside the AU pipe and 
static control is used. The significance of 
vector processing is that operand fetch is 
completely concealed behind actual execu- 
tion. To achieve this concealment, the 
memory bandwidth available to the memory 
buffer unit for fetching operands must be 
sufficient to sustain that rate. In the ASC, 
for example, eight operand words (one 
octet) can be fetched every memory cycle 
(160 nsec), which is sufficient to yield a 
bandwidth of 3 words/60 nsec (the basic 
segment time). 

Another advantage is that while a vector 
instruction is being processed, no additional 
instruction fetch is needed; memory inter- 
ference is thus reduced. In fact, because of 
this, vector instructions can be simulated 
in [some] systems having an instruction file 
large enough to eliminate such instruction 
fetches. 

The overhead of a vector instruction 
includes its setup time. In the ASC, it in- 
cludes transferring vector parameters to the 
control (in the MBU) and starting the AU 
pipe--altogether 27 segment cycles. This 
setup time may vary in other systems; for 
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example, the setup time in the STAR-100 
can go up to over 100 minor cycles. Without 
memory interference, the total execution 
time of a vector instruction may be plotted 
against the vector length L as in Figure 19. 
If that vector instruction is replaced by a 
scalar loop, the resulting execution time is 
usually much larger, depending on L. A 
vector instruction can be decomposed into 
three or more scalar instructions: 

p [Update Pointer] 
Scalar | [ B a s i c  Instruction] *-- (could 

Loop | involve more than one scalar 
| instruction depending on 
| instruction format) 
L--[Test Pointer and Branch] 

Execution of this loop L times requires 
considerable time. One significant factor is 
the operand fetch, which is not done (look- 
ahead) fast enough as in the vector counter- 
part. So, by the time the operand comes 
back from memory, several precious process- 
ing cycles have been lost (Figure 19). 

5) Tradeoff Summary 

In this section, we have discussed the time 
and the space overhead needed in vector 
processing as compared to a sequential 
pipelined processor (such as the IBM 360/ 
91). The advantages of vector processing 
are its speed improvement for reasonably 
long vectors and its more orderly manage- 
ment and thus better utilization of the 
memory system and other resources when 
dealing with vectors. The costs it incurs 
are the needed firmward control and addi- 
tional software facilities to utilize its power. 
When the latter problems have been solved 
successfully at less cost, vector processing 
may be generalized and extended to smaller 
scale processing systems. 

4. OVERVIEW OF TWO RECENT MACHINES 

4.1 The Asynchronous CRAY-1 Computer 

We describe the vector processing abilities 
of a new fourth generation pipeline corn- 
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purer CRAY-1 of Cray Research Corpora- 
tion [26] Several unique features of this 
machine are explored to supplement the 
ideas in Section 3 and to illustrate the 
current trend of progress. 

The CRAY-1 design philosophy follows 
closely the tradition of the CDC 6600 and 
7600. The twelve functional units in- 
corporate vector processing capabilities and 
are "connectable" to form efficient chains, 
thereby maximizing overlapped vector proc- 
essing. These units represent a deviation 
from the universal (mnltifunctional) pipe 
approach as adopted by the ASC and 
STAR-100. However, the tradeoff is quite 
apparent. The control here is more complex. 
Some specific features of the CRAY-1 in- 
clude: 

Operating Registers 

Figure 20 illustrates the register organiza- 
tion of this computer. The primary operat- 
ing registers are the scalar and vector 
registers called S and V registers, respec- 
tively. Each of the eight V registers has 
64 bits. A scalar instruction may perform 
some function, such as addition, obtaining 
operands from two S registers and entering 
the result into another S register. A vector 
instruction performs the same function in 
an analogous fashion, obtaining a new pair 
of operands each clock cycle of 12.5 nsec 
from two V registers and storing the result 
into another V register. The contents of 
the vector length (VL) register determine 
the number of operations performed by the 
vector instruction. Eight 24-bit A registers 
are used as address registers for memory 
references and as index registers. The A and 
S registers are each supported by 64 rapid 
access temporary storage registers called 
B and T registers. Data can be transferred 
between A, B, S, T, or V registers and 
memory. 

Memory 

Up to one million 64-bit words are arranged 
in 16 banks with a bank cycle time of 4 
clock periods. The memory is constructed of 
bipolar 1024-bit LSI chips. 

Instruction Buffers 

Instructions, which are either 16 or 32 bits, 
are executed from four instruction buffers, 
each consisting of 64 16-hit registers. As- 
sociated with each instruction buffer is a 
base address register that is used to de- 
termine if the current instruction resides in 
a buffer. Forward and backward branching 
within the buffers is possible, and the pro- 
gram segments may be discontinuous in 
the program buffer. When the current in- 
struction does not reside in a buffer, one 
of the instruction buffers is filled from 
memory. Four memory words are read per 
clock period to the least recently filled in- 
struction buffer. To allow the current in- 
struction to be issued as soon as possible, 
the memory word containing the current 
instruction is among the first to be read. 

Functional Units 

The CRAY-I CPU has twelve functional 
units, each of which is independent of the 
others and therefore capable of parallel 
operation. A functional unit receives ope- 
rands from registers and delivers each 
result to a register when the operation is 
completed. The functional units retain no 
information regarding their past operation. 
The three functional units that provide 
24-bit results to A registers are Integer 
Add, Integer Multiply, and Population 
Count. The three functional units that 
provide 64-bit results to the S registers are 
Integer Add, Shift, and Logical. The three 
functional units providing 64-bit results 
to the V registers only are Integer Add, 
Shift, and Logical. The three functional 
units that provide 64-bit results to either 
the S or V registers are Floating Add, 
Floating Multiply, and Reciprocal Approxi- 
mation. All functional units are buffered, 
perform their algorithms in a fixed amount 
of time, and produce one result per clock 
period. 

Vector Operations 

Because of the instruction formats adopted, 
vector instructions are of four types. One 
type of vector instruction obtains operands 
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from one or two V registers and enters the 
results into another V register (Figure 21(a)). 
Successive operand pairs are transmitted 
from V~ and V~ to the segmented func- 

tional unit each clock period, and the cor- 
responding results emerge from the func- 
tional unit n periods later, where n is the 
execution time. The results are entered 
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Vk V k 

V~ V~ V~ 

FIGURE 21a. Type I vector instruction. 
FIGURE 2lb. Type II vector instruction. 
FIGURE 21e. Type III vector instruction. 
FIGURE 21d. Type IV vector instruction. 

into the result register V,.  The contents of 
the vector length (VL) register determines 
the number of operand pairs processed by 
the functional unit. 

When vectors contain more than 64 ele- 
ments, they can be processed by dividing 
them into vectors of 64 elements (or less). 

The second type of vector instruction 
obtains one operand from an S register and 
one from a V register (Figure 21(b)). The 
last two types of vector instructions transmit 
data between memory and the V registers 
(Figure 21(c) and Figure 21(d)). The path 
between memory and the V registers may 
be considered a functional unit for timing 
considerations. 

The pipelined execution of vector in- 
structions is discussed next. Let VIy be the 
j th  bit of the vector register VI. Since 
there are 64 bits in the register (VIo through 
VI63), Figure 22 shows the timing chart for 
the execution of a floating point addition 
operation using vector instruction of type 
I. When the instruction is issued at clock 
period to, the first pair of operands (Vlo 

and V2o) is transmitted to the add func- 
tional unit, where it arrives at time ti. 
The function is executed in six clock time 
periods and the first result exists from the 
functional unit at clock period h .  The 
second pair of operands (VII and V21) 
arrive at the functional unit at t2, and so on. 

Parallel Operations 

When a vector instruction is issued, the 
required functional unit and the operand 
registers are reserved for the number of 
clock periods determined by the vector 
length. A subsequent vector instruction re- 
quiring the same resources (functional units 
and registers) cannot be executed until the 
resources are released; however, parallel 
(simultaneous) execution of neighboring 
instructions that do not interfere in their 
resource requirements is permitted. 

Chaining 

The CRAV machine has the unique ability 
to combine several pipeline executions in a 
sequence by chaining. In the chaining process 
a result register which receives the result of 
a vector instruction can become the operand 
register of a succeeding instruction. The 
succeeding instruction is started as soon as 
the first result arrives for use as an operand. 
Figure 23(a) shows a chain of four instruc- 
tions reading a vector of integers from 
memory, adding that vector to another, 
shifting the sum, and finally forming the 

t o t 2 t 3 t 4 t 5 t 6 t? t 8 t 9 tlo t]1 t12 t13 t14 t15 t16 t17 

VIo,V20 • VO 0 

VII,V2 ] • VO l 

VI2,V22 -- .. VO 2 

V|3,V23 VO 3 

VI4,V24 . . . .  VO 4 

VI5,V25 . . . .  VO 5 

V16,V26 . . . .  VO 6 

VI7,V27 .. VO 7 

VIs,V28 - • V08 

V19,V29 • . VO 9 

FIGURE 22. Vector instruction timing example (V0 VI V2). 
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logical product of the shifted sum and a 
mask vector. The result of the four in- 
structions is placed in vector register V5. 
Figures 23(b) and 23(e) graphically depict 
the passage and timing of information 
through the functional units. 

1. V0 *-- Memory (Memory Read) 
2. V2 ~ V0 -+- V1 (Integer Add) 
3. V3 (-- V2 < A3 (Left Shift) 
4. V5 (--- V3 /k V4 (Logical Product) 

FIG~t~ 23a. Chaining example. 

Memory 
READ 

Shlft 

FIGURE 23b. Chaining. 

Performance 

A performance study of several subroutines 
for the CRAY-1 FORTRAN library and matrix 
multiplication illustrates extreme efficiency 
of the pipeline operations. Vector opera- 
tions employ algorithms similar to their 
scalar counterparts. The studies indicate 
that the vector subroutines outperform the 
scalar subroutines. Figure 24 illustrates the 
performance of several library subroutines. 
The cost (execution time) per result in 
clock cycles is plotted against the vector 
length. The cost is constant for scalar 
subroutines. For vector subroutines the 
cost drops dramatically and rapidly ap- 
proaches a lower limit as vector length 
increases. The performance of matrix mul- 
tiplication provides yet another illustration 
of efficiency of pipeline processing in vector 
operations. Given a matrix [A] of dimen- 
sion K by N and a matrix [B] of dimension 
N by M, the element ij of the product 
matrix [C] is given by 

hr 

ci~ = ~ aim'b~" 
nml 

Figure 25 shows the execution rate of mul- 
tiplication of square matrices as a function 
of matrix dimension. The execution rate is 

t o t I t 2 t~ t 4 t 5 t e t 7 t m t I tlo t. tew t ~  t14 tls tl6 tmr tl= t t l  tzotzm tzz t 2 3 t z 4 t t s t t 6 t z 7  I zmt l t i so t$ l  . 
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- - -  V 5  s 
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- - -MS r 

V5e 

c d e f q 

a transit of memory word to "read functional 
unlt" 

b transit of memory word through "read 
functional unlt" 

c transit of memory word from "read 
functional unlt" to element of VO 

d transit of operand elements In VO and VI to 
integer add functional unlt  

e computation of  su~ by integer add 
functional unlt  

f transit of sum from Integer add functional 
unlt  to element of V2 

F I G U R E  23c.  

i j k 

g - transit of operand element in V2 to Shlft func(lonal 
unlt 

h - shift operatlon perfomed by shift functional unit 

i - translt of shifted sum from shift functional unit 
to element of V3 

l - transit of operand elements in V3 and V4 to loolcal 
functional unit 

k - loq~cal Operation perfomed by loqlcai functlon~| 
unlt 

£ - translt of final result to ele~nt of V5 

Timing diagram for chaining example. 
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FIGURE 24. Scalar/vector timing comparison. 

defined in terms of "millions of floating 
point operations per second" (MFLOP~). 
The number of floating point operations 
required to multiply two n-dimensional 
square matrices is (2n - 1)n 2, since each of 
the n 2 elements of the result matrix is formed 
by summing n products. The fall of through- 
put rate at discrete time instants is caused 
by the architectural design in which a 
vector length of 64 is chosen (for buffering 
register size). Consequently a vector restart 
is necessary at those time instances. 

4.2 Amdahl 470 V/6 

Finally, a few words must be said about the 
more recent Amdahl 470 V/6 machine [31]. 
Besides adopting high speed LSI chips for 
the CPU and most of the channel unit, it 
employs the technique of pipelining in a 
reasonably simple way. The CPU instruc- 
tion execution can be partitioned into six 
phases, A-F. Phase A consists of instruc- 
tion decode and reading of general purpose 
registers (if ready). Phase B calculates the 
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F1GURE 25. Matrix multiplication timing. 

effective address of the memory operand 
and start fetching (time not fixed). Phase C 
reads the memory operand into buffer and 
start execution. Phase D continues the 
completion of execution (time not fixed). 
Phase E checks the result generated from 
the functional unit to see if retry is neces- 
sary. If not, phase F writes back the result. 
Because write back is done at the last phase, 
software rollback and retry of instruction 
can be replaced by a simple hardware retry 
(for most instructions). 

The execution unit is decomposed into 
four subunits: multiplier, adder, shifter, and 
byte mover. These subunits have a propa- 
gation delay of one basic cycle (though many 
instructions need several iterations and 
hence several basic cycles). Besides parity 
check, each functional unit checks for error 
using residue arithmetic. 

Therefore the CPU architecture of this 
machine is a simple pipeline served by four 
functional units. With high speed circuits 
and pipelining, the major problem to be 
solved is the operand supply rate. Since 
virtual addressing is implemented, address 
translation and subsequent memory fetches 
have to be performed most efficiently in 
order to be compatible in speed with the 
pipeline. Two distinct features are used to 
achieve this. First, the primary memory is 
buffered by a 16K byte cache that is man- 
aged by the set associative scheme (a set of 
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primary memory blocks is mapped into a 
corresponding set of cache blocks assoei- 
atively). To speed up translation, a 256- 
entry Translation Lookaside Buffer (TLB) 
is installed for tag (virtual address tags) 
matching (associatively). To complete the 
virtual memory mechanism, a Segment 
Table Origin (STO) stack is used to identify 
the environments of different TLB entries. 
With a high hit ratio and possible prefetch 
of quarter-line segments, each CPU re- 
quest may take only two cache cycles for 
completion and hence can be speeded up in 
a manner compatible with the pipeline 
flow (c/o Phase B). A comparison of this 
machine with the IBM 370/168 (a com- 
parably priced third generation computer) 
shows that the Amdahl 470 V/6 provides 
three times the performance, yet requires 
only one third the space of the 370/168 
(60 ft? vs. 200 ft?) [32]. One other factor 
that contributes to this comparison is the 
substantial savings in packaging size with 
the improvement in LSI technology. The 
LSI portion of the 470 V/6 takes up 51 
cards, each 7 ½ inches square, and 42 chip 
positions. With simpler and shorter con- 
nections, the reliability of the system is 
unquestionably upgraded. 

While the Amdahl 470 V/6 makes use of 
technology advancement to its great ad- 
vantage, its comparatively simple pipeline 
architecture prompts more future design 
efforts. Specifically, the floating point fa- 
cilities in the system are rudimentary (the 
functional units are not designed for float- 
ing point operations), and for many appli- 
cations phase D (execution phase) may be- 
come a bottleneck of the pipeline flow. 
With the success of this machine, the versa- 
tility and prospect of pipelining make it an 
attractive feature in future system design. 

5. CONCLUSION 

Pipelined processors represent an intelli- 
gent approach to speeding up instruction 
processing when the memory access time 
has improved to a certain extent. Without 
having to duplicate the entire processors n 
times, a throughput rate of close to n times 
improvement over a nonpipelined case may 
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be achieved. To make this possible, certain 
problems have to be solved, including: 
parallelism and busing structure; handling 
of unexpected events; and efficient sequence 
control with a well-designed instruction set. 
Special vector processing capability is one 
way to specify parallelism in programs 
easily. These problems and solutions are 
discussed and solutions in existing machines 
illustrated. The multilevel application of 
pipeline discipline is promising in upgrading 
the performance of a processor, especially 
from a cost-effective point of view, and 
certainly deserves future investigation to 
generalize its application to even smaller 
scale systems. 
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