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proceeds with little difficulty as long as the second page is also within main
memory. If the second page is not in main memory, the required page is
transferred into main memory as needed: this is called demand paging. or m
some cases the page 1s transferred in advance by special look-ahead opcra-
tions. Demand paging is more commonly used. Assuming that main memor,
is already full. the subsequent operations necessitate a replacement a]gorillu{]
to dcqu‘rmnc which pagc is to be removed, a mapping function to determine
wh_crc 1t 1s to be relocated on secondary storage. and means of keeping track
of its new location. Also the location of the desired page in secondary storage
must be determined. Since page replacement is a time-consuming opcrutio\n

c.ilhcr the CPU transfers operation to a different user’s program and con-~
tinues processing, or it sits idle while the transfer is performed. This is a design
option sct by the desired system cost-performance. Once a page is transferred
to main memory, many words within that page will be used more than once

such as in looping operations. Thus one rather slow transfer of informmim;
subscqucnlly results in many fast accesses to that information, with a net
gain resulting from the clustering of memory references. *

Assuming that memory references do cluster into natural page sizes of
rcasonable length, it can be deduced from the previous discussion that the
fundamental, minimum functions necessary for a virtual memory system
are as follows: )

1. Page mapping function (Section 9.5).
2. Address transtation (Section 9.6).
a. Word addressing within a page.
b. Page addressing within both primary and secondary storage.

"4

Page replacement algorithm (Section 9.7).

lp large, multiprogrammed systems, a number of additional practical func-
tions are needed to produce a feasible, efficient system. Some important
practical requirements in a multiuser system are as follows:

a. 17O processor and technique for eflicient page relocations.
b. Storage protection.

¢. Sharing of pages.

When a required page is not in primary storage. the 'O processor finds
and transfers the required page. allowing the CPU to transfer to a different
user and continue processing. These overlapping functions combined with
cycle stealing for data transfer (Section 9.2) greatly improve the CPU utiliza-

In lh‘ls case Tmemory references T means both program instructions and the actual alpha-
numeric data processed.
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tion. Yet even without this, some advantage in efficiency over a nonvirtual "
system can result becausc of the clustering of memory references,* but the
main advantage would be the virtual addressing capability. This is the situa-
tjon in some small, single user virtual system. In large. multiuser virtual
systems, speed and system efficiency are important as well as virtual addres-
sing capability.

The storage protection function ensures that any given page of memory is
not inadvertently changed or removed. nor accessed by unauthorized users.
In multiuser systems, sharing of pages that contain. for instance. the super-
visory program, is highly desirable to conserve memory space. In data bascd
systems, sharing of data between users with proper access rights becomes
a fundamental necessity, but this represents a more complex system than
that being considered here. In a simple, two-level. multiuser virtual hierarchy.
the latter three optional features are of practical importance but arc not
fundamentally necessary - -a workable, but perhaps incflicient system can be
envisioned without them. The advantages of an ;O processor, detailed in
Section 9.2, are valid here as well. Sharing of pages is a complex issue that is
not considered.

To better understand how the fundamental requirecments interact, we now
discuss a large, multiuser virtual system consisting of a disk as secondary
storage and main memory as primary storage. We consider only a multiple
virtual address space system: a single virtual address space is fundamentally
no different and is just a simpler, limiting casce. The total logical address
that addresses secondary storage consists of N bits, of which u bits are the
user identification bits. These N, bits can be contained in one or several
registers within the CPU -—typically, scveral are used. Each page is divided
into 2 words or bytes, where N, represents the lowest order address bits
(Fig. 9.3-1). The total number of pages in the virtual disk storage is thus 2%,
where

N.= N, = N, (9.3-1)

Since the number of users U must be

U =2 9.3-2)

* The main advantage is the saving in multiple access times. A nonvirtual system with improper
memory scgnientation My require RUMETrOus 4eeesses o the disk for the same number of words
processed, whereas a virtual system may use only one or few aceesses. The clustering of
subsequent memory references to pages already present climinates a large number of disk
accesses but not the data transter time.

T In practical terms, a single virtual space systen does not Tiave a separate user 1) register
(Fig. 9.5-2b and Fig. 9.8-2). Rather. the wbits are contained within N7 so cach user has avirtual
address space which is smaller than the total CPU address N but this can still be larger than

the actual main memory address 7,

‘é’ou" R:CEMA M’)\\cé) /R
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FIGURE 9.3-1  Defimitions of address bits in primary and secondary addresses.

cach user has a total virtual storage capacity of
pages/user = 2V (9.3-3)

where N. = N, — u = N, — u — N,. as shown schematically in Fig. 9.3-1.
This is equivalent to N address bits per user, where N is the standard address
length of the CPU as given by column 7 of Table 1.1-1. For instance. on the
IBM systems 360370, N = 24 bits and the additional user address bits u
are contained in a special register (see Scction 9.9). Primary storage is ad-
dressed by n, bits, where

n, < N, {(9.3-4}

Hence it can hold only 2" words, which is normally considerably less than
2N Since pages are of fixed size.

P =h, —n, (9.3-6)

The CPU can reference pages through main memory only. Since in prin-
ciple all 2%+ pages must eventually be referenced by the CPU, the page slots
in main memory must be shared by many virtual pages, at different times,
of course. The mapping of this large number o1 «iwaal pages into a smaller
number of page slots 1s performed by the mapping function (Section 9.5} as
indicated schematically in Fig. 9.3-2.

The addressing of such a system is considerably more complex than for an
ordinary memory. Each of the N bit combinations represents a unique word
in the virtual disk store therefore all these bits must be used to address main
memory. However the main memory address register can only hold #n,,.
giving a deficiency of

ny = NS - n, bits (9.3-7)
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FIGURE 9.3-2 Schematic of basic functional requirements in multtuser virtual memory
system. showing information flow during translation of virtual address to primary memory

address.

as in Fig. 9.3-1. These deficient bits must be used in addressing main memory.
hence this number of bits (but not necessarily these bit positions) must be
decoded externally. The words or bytes within a page arc addressed by the
lowest order address bits, denoted as N, in Fig. 9.3-1. These bits are real and
convert directly to n, in the primary address register (Fig. 9.3-1 or 9.3.0).*
Since many virtual pages can occupy that same page slot. the remaining N,
bits must be used to indicate IF and WHERE the desired page resides in
main memory. The various parts of the address transtation are shown in
Fig. 9.3-3. When the IF part produces a “yes,” the address residing in the
primary address register is used. When a "no " answer is obtained from the
IF part, that page does not reside in main memory and a page relocation is
necessary. The address that appears in the primary address register is aborted.

* These bits may be added to the contents of an index or base register but nevertheless are
converted directly to the real address.
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FIGURE 9.3-3  Schematic of translation of virtual logical address N, into primary address
showing F. WHERE, and DIRECT components.

and now the N, bits must be converted to the disk (secondary) address in
Fig. 9.3-2. A separatc external address translation function must be invoked
which, as before, provides an IF and a WHERE. When the [F 1s “yes,” the
WHERE address is valid. When the IF is “no,” that virtual page is not
present in the secondary store and a program interrupt is generated. The
WHERE function converts the virtual page address N, into a real disk page
address N,,. In principle N, represents the same number of bits as N,
hence any of the 2% pages of any user can be accessed in sccondary
storage. Since all words of a page are transferred, the real address bits N,
are incremented by either hardware or software from zero to N,, and the
translation must be concerned only with the page address bits N, as shown.

When main memory is full, it is necessary to remove one page before a new
one can be entered. The page replacement algorithm keeps track of page
usage in main memory and decides which page is expendable on request for
a new page not present. If this expendable page has been modified, it is
transferred back to disk. and only afterward can the new page be transferred.
These three fundamental requirements arc represented in block diagram
form in Fig. 9.3-2 with only some lines of communication and control in-
cluded. In actual implementation, these functions do not necessarily divide
into convenient, separate pieces but often are closely interleaved. The address
translation function has two major, separate components: to convert N,
into n,, if that page is resident in main memory: or, when a page fault is ob-
lained, to convert N, into a disk address. Each of these translations can be
done in several fundamental ways, as we see later. The integration of these
functions into a system can take various forms as detailed in Scctions 9.8
through 9.11. In large multiprogrammed systems, additional status and
control functions are often included to indicate whether pages have been
changed, to control each user’s access rights and sharing of pages, and to
implement other practical concerns.

Data Clustering, Paging, and Hit Ratio
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In summary, we can state that the basic functions of Fig. 93-2 are neces-
sary and sufficient to make a virtual memory work in a logical sense. From
a practical point of view, however, data clustering is nceded to make the
system efficient. If references to primary storage physical locations occurred
in a purely random fashion, page swapping between secondary and primary
storage would occur very frequently, greatly reducing the overall system
efficiency. Fortunately references to memory locations do not occur at
random but cluster into groups called pages. The clustering is not precise,
hence page size varies with the miss ratio required, size of primary storage,
and other factors. This subject is covered in detail in Section 9.4, Thus the
functions in Fig. 9.3-2 are those required to make virtual addressing logically
feasible; overlaid on these is the phenomenon of data clustering, which makes
the virtual memory economically feasible.

9.4 DATA CLUSTERING, PAGING, AND HIT RATIO

As was mentioned briefly in Section 9.1, early commercial virtual memory
systems were dominated by the use of segments of variable size. This ap-
proach evolved because in the early storage hierarchies, where program
segments were overlaid into main memory, the segments always appearcd
in widely varying sizes. In fact, the natural length varied with the problem as
well as with the programmer. Thus it seemed natural for a virtual system to
allow for variation if efficient operation was to be obtained. Later, however,
this notion proved to be incorrect. Though the natural scgment length
does indeed vary, allowing for this in any memory allocation proccdarc
leads to gross inefficiencies. A number of small, fixed size pages can ap-
proximate any segment, and since the memory allocation procedure is much
simpler, considerable improvement in overall efficiency can be obtained.
The fundamental problem with segmentation is that it requires contiguous
words in primary storage and the segments may be of varying size.* A request
for transfer of a segment into primary memory requires locating an empty
region of the proper size. The empty regions may not singly be large enough.
even though their sum may be more than suflicient. Since they are not con-
tiguous, however, they cannot be used, and on a statistical basis, many regions
of primary storage may remain unused. In a paged system with fixed page
sizes, transferring a page only requires finding or creating an empty page
slot in primary storage. This is considerably casicr than finding or creating

* Contiguous words are required just as for a page in Section 9.3, sinee the word within a segment
is obtained by catenating the lower order real address bits to the higher order segment uddress

bits.
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present in primary storage for many different user programs. Each program
is a maximum of 32 pages total size, cach page containing 1024 words. The
results for the particular set of programs indicate that relatively few pages
can give a rather small miss ratio. Four pages result in about a 1°, misw

0

ratio, whereas 10 pages can reduce this by 2 orders of magnitude. The con-’

clusion is that relatively few pages of a user’s program are required (o
achieve rcasonable miss ratios.

95 MAPPING FUNCTIONS

The secondary or virtual store contains a large number of pages that mus
be mapped or compressed into a smaller number of page slots in primary
storage. The mapping function, requirement 1 in Section 9.3, specifics how
this mapping is to be done. We consider the various mapping techniques in
their general, fundamental form and derive relationships that arc uscful
latter. The mapping function has a very significant effect on the address
translation.

In practice, mapping functions arc considered in four distinct groups
(Conti, 1969): direct, sector. set associative, and fully associative. Funda-
mentally, they form a continuum of set associative organizations, with the
direct and fully associative being two extremes and sectoring a spectal case

A point of confusion often arises in understanding mapping functions
because the mapping functions are only logical concepts that impart overall
organization to the page mapping schemcs. A given mapping function cun
be implemented in different ways and when implemented, it becomes part
of the address translation function. These logical concepts can be used 1o
visualize the mapping of logical to logical addresses. or logical address 10
physical address. The precise meaning of this and its consequences e
discussed later in this section. First we deal with the general forms of logicul
mapping functions, assuming that the page slot allocations and relationships
to follow are done in terms of logical structure withour necessarily requiring
the same physical structure.

Following the nomenclature in Section 9.3 and Figs. 9.3-1 through 9.3-%.
sccondary store contains a maximum of 2V pages. each of 2% words, whereas
primary storage contains only 2™ pages of the same size. The primary address
register has a deficiency of bits equal to n, given by (9.3-7) as in Fig. 9.3-1.
Since 2™ < 2% as in Fig. 9.5-1. it is necessary to specify how this compres-
sion or mapping is to be done. Any page slot in primary storage must hold
many diflerent virtual pages, but at different times of course. The actual
number of virtual pages that a logical page slot must accommodate varies
with the mapping function: the minimum number, however, is the total

ety
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Thus the minimum number is determined by the deficient bits n,. The
maximum number is the total page capacity of secondary storage. or 2™
These two cascs represent the extremes of direct and associative mapping.
respectively. Between these two limiting cases are any number of possibilities.
In a more general form, we can allow a virtual page from sccondary storage
to reside in any of S page slots in primary storage as in Fig. 9.5-2¢. These S
page slots form a set, and the mapping s the general form of set associative,
There are obviously 2" total slots: hence the number of possible sets in

primary storage is

Q=5 =5 =

where

My = 24 sets

(9.5-2)

(9.5-3)
{(9.5-4)
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But there are 2V virtual pages that must be accommodated in 2™ page slots.
The easiest way to visualize how this might be done is to think of secondary
storage as being logically divided into groups of pages, cach group of length
equal to that of primary storage or 2" page slots. Each group contains Q
sets and each set contains S pages. Each set slot in primary storage must be
shared by the Q" set in secondary storage. Thus set slot 1 is shared by sets 1,
I+ Q,....2" Likewise set slot Q in shared by sets Q, 20, 30, ..., 2™(Q.
Pages within a set are associatively mapped into any of the S page slots. All
virtual pages are thus assigned to one and only one logical set and can be
located in any one of § specific page slots within that sct. Sets from different
groups can be intermixed within primary storage; therefore not all sets from
one given group need be simultancously resident in primary storage. We
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may have, for instance, sets 1 from several different groups resident in primary
storage, which means that all these virtual pages would have the same ¢
address bits but different 1, address bits.

One reason for such a seemingly complex allocation of pages is that
knowledge of which logical set and group a page must occupy constitutes
additional addressing information that is used by the address translation
function. The total number of virtual pages that can possibly reside at dif-
ferent times in any given slot in primary storage is the total number of
virtual pages 2V divided by the number of sets Q, or

: . N e N, TN,
_virtwalpages 27 2%y, ©.

logical page slot  Q 24

hn
v
3

But from (9.5-3), ¢ — s; thus substitution gives

pOSSiblC Vll}i,ldil’gdg(;i — 2\" “es) 2"‘”‘\ (95-6)
logical page slot

= §2n4 (9.5-7)



568 Memory Hierarchies and Virtual Memory Systems

The logical level of organization in secondary storage of Fig. 9.5-24 starting
from the lowest to the highest is thus 2% words per page, S = 2% pages/set.
Q = 29scts/group, and 2" groups total. The analogous hierarchy in primar,
storage Is 2™ words/page. S = 2° page slots/set, and Q sct slots/primary
storage.

When the physical locations of sets in primary storage are fixed to be
cquivalent to the logical locations, the word “logical ™ can be replaced by
“physical” in all the above expressions. In the more general case, logicul
and physical allocations are not equivalent. In the most flexible case, any
virtual page can reside anywhere in primary storage, irrespective of the
logical structure of the mapping function. In such a case, the total possiblc
virtual pages per physical page slot is the total number of possible virtual
pages. Thus for the general case,

possible virtual pages Ve _ onatsta (9.5-5)

physical page slot

These relationships are important in the address translation process. The
smaller the number of slots S per set, or the larger @, the fewer logical places
a page can reside and the casier it will be to find. Likewise larger values of
S or smaller Q allow more possible slots per virtual page, and the more
difficult the page will be to find. Thus one factor in the selection of a mapping
function is the effect on the address translation.

Also important in the choice of a mapping function is the primary slot
contention problem. In any mapping scheme, all the virtual pages required
for a given problem can, statistically, reside in the same set, and the number
of required pages might exceed the size of that set. Thus contention problems
between two or more pages for unavailable slots can result in a large miss
ratio for that problem, which is undesirable. The probability of contention
problems, of course, varies with the number of page slots per set S.

The various distinct types of mapping function can be obtained by varying
the value of S. Fully associative mapping results when S is its maximum
value of 2" and Q is its minimum value of 1. Direct mapping is just the op-
posite, resulting when S is its minimum value of 1 or s = O and Q = 2™ Sel
associative occurs for any values of S and @ between these extremes. Scctor
mapping is just a special case of fully assoctative mapping with the page cn-
Jurged to encompass many pages, called sectors. Thus it is apparent that the
address parameters ¢ and s are logical entities that can be sclected by the
designer. They can be taken from the physical address registers, and the
value of cach 1s determined by the arrangement of the physical wires con-
necting the registers. The relationship between the various physical and
logical address bits is shown in Fig. 9.5-2b. Each of the mapping functions
is now considered separately.

“h
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9.5.1 Fully Associative Mapping: S = 2" Q = l.s=n.,g =0

If we allow S to become its maximum value of 2", there can only be onc sct
in primary storage (i.e., Q = 1). Under these circumstances, any virtual page
can be mapped logically into any page slot, and the mapping becomes fully
associative (Fig. 9.5-3). This mapping is the most general and provides the
minimum probability for page slot contention problems. Two virtual pages
can contend for a page slot only when the pages required simultancously
for a given problem exceeds 2™, which is most unlikely. Hence fully associa-
tive mapping provides the largest hit ratio for a given problem on a given
virtual system and is the most desired mapping function. However an as-
sociative type of compare is required in the address translation {Section 9.6).
making this the most diflicult mapping function to implement.

9.5.2 Direct Mapping: S =1,0 =2".5s=0.qy = n,

One way to completely avoid associative scarching and greatly simplify the
address translation is to let S = 1, giving only onc page slot per set. This is
referred to as direct mapping, illustrated in Fig. 9.5-4. Any given page n
secondary storage can reside logically only in a specific page slot in primary
storage. Using the rules previously described, the first logical page slot in
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primary storage is assigned to hold virtual page l.or 1 + Q.1 + 20, ....up
to page 1 + (2 — 1)2". Likewisc, the second page slot is assigned virtual
pages 2, 2+ Q, 2 + 20, and so on. as shown, where Q = 2" When thu
logical and physical allocations are identical, primary storage will physically
contain the pages as shown.

A scrious disad vantage of direct mapping is the high probability of primary
slot contention. For example, suppose a problem is being processed using
arrays or matrices. If each array is in a separate page with array A, n page
I and array M, in page | + Q. a problem of the form

Z(‘IA[,‘A + Cl‘,\'lijk = Fijk (9.5-9)

would require a transfer of one of the arrays for every evaluation of F;.
since both arrays are nceded for cach point. But only one of these arrays can
be present in primary storage at any time, giving a low hit ratio and very
incflicient operation. 1t could be argued that the data could, or should. be
organized so that this does not happen. This is possible in principle. but it
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is not always known beforchand how the data will be used. Even when
known, such organization presents many formidable problems to the system
allocation of storage, requiring *hand tuning” for efficient operation. There-
fore direct mapping of the secondary to primary logical address space is
never used.

9.5.3 Set Associative Mapping

In fully associative mapping, the slot contention problem is minimized but
the address translation problem is maximized. Dircct mapping does just the
opposite; contention problems arc maximized and the address translation
problem is minimized. Set associative mapping represents & compromise
between these two. The general form is that of Fig. 9.5-2u. Some typical
values are S = 2 or 4 page slots per set. The case for S = 2 is presented in
Fig. 9.5-5. A virtual page can now reside in cither of two logical page slots
in primary storage. Hence the contention problem arising with dircet map-
ping in solving (9.5-9) is climinated. However other contention problem
can and do arise. Larger values for S are desivable, when possible. A case
for S = 4 is described in Section 9.11.2.
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9.5.4 Secctor Mapping

Sector mapping is a special casc of fully associative mapping. In fact. if we
ignore the labeling of what constitutes a page, the two are fundamentally
identical. In practice there are some differences arising from the way the
words are divided and decoded.

Scctor mapping can be approached in two ways. The simplest method is
10 consider that the pages in Fig. 9.5-3 are increased in size (0 ecncompiss
many previous pages. If we wish 10 maintain our definition of a puge (i.c.
the number of words that is approximately the natural block size), we can
just redefine the groupings. Instead of larger pages, we now define a scctor
1o consist of several pages (Fig. 9.5-6). Both primary and sccondary storage
are broken into sectors of Z pages, and sectors are associatively mapped
into primary storage. Obviously a sector of several natural pages has now
taken the place of a single page in the fully associative mapping. All the pre-
vious rules pertaining to pages now apply to sectors. Note, however, that
for a given physical implementation, the value of S, the number of page slots
per set, takes on a slightly modified meaning and is reduced by the factor of
1-Z. In other words, the number of associative compares is now 2" /Z, since
only the presence or absence of the scector is required. In practice, this has
considerable merit 10 the extent that the number of scctors can be quite
reasonable (e.g.. 16): thus if tags are used for sector identification, the tags
can be kept in a small associative memory that is very fast and not exces-
sively expensive.
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FIGURE 9.5-6  General torm of sector mapping with Z pages per sector.
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This sector technique using tags has been used with some modifications
in the IBM system 360 model 85 cache. The essential idea remains the same -
namely, to reduce the size of associative compare hardwarce while giving the
flexibility of an associative mapping. The difficulty with this scheme 1s that
7 must be reasonably large (16 or more), thus the number of sectors in
primary storage becomes too small, resulting in a lower average hit ratio.

9.5.5 Logical versus Physical Address Space of Primary Storage

The mapping functions have been discussed in terms of sccondary to primary
logical address space, as previously indicated. The logical mapping rep-
resents the relationship between the symbolic addresses of page slots and
can be done independently of any physical address mapping. The descrip-
tions and figures require some conceptual representation of the primary
page slots, and these might give the appearance of being the actual physical
locations. Although this can indeed be the case, it need not be, and in general
is not. The confusion between logical and physical mapping comes about
becausc in our minds, we can picture page slots into which virtual pages may
be placed, and they appear to have some physical relationship to other page
slots. We can quickly address any specified page slot by visual inspection,
and we tend to overlook the fact that we have performed a complex address
(ranslation function. Yet such a visual search is a sequential associative ad-
dressing function. In a computer, the same or other addressing operations
can be performed but must be specifically implemented in hardware. just
as our visual search is implemented with our eyes and the associative func-
tions of the brain. Thus in our minds. the mapping function appears as though
il were mapping secondary store to the physical primary page slots. But
when we implement the mapping in the computer, we have removed the
associative function provided by the human brain and must supply it in
some other manner. This is then the primary logical to physical mapping.
which is an essential part of the overall mapping function.

To understand the fundamentally important difference between logical
versus physical address and mapping. let us consider the problem of mapping
a deck of ordinary playing cards into a set of boxes. For simplicity. we
assume that there are only four boxes into which cards can be placed. Also.
since an ordinary deck of 52 cards is not a power of 2, we use only the highest
32 cards, from aces to sevens. The cards essentially represent the secondary
virtual pages, and the boxes arc the primary store page slots. The exact
physical address of each box is in the item of importance ultimately, and
this has not yet been specified. Let us “logically™ label the boxes in some
random fashion «, b, ¢, d by attaching tags (Fig. 9.5-7). The mapping is
assumed to be set associative with s = 1. which means that a given card can
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FIGURE 9.5-7 Logical mapping of cards into boxes tor set associative mapping with v = |
and four primary storage boxes.

reside in only one of two specifically labeled boxes as shown. For simplicity,
we arrange the deck with the highest value card on top (ace of spades) and
the lowest card on the bottom (seven of clubs). Since logical mapping is
totally independent of physical address, it makes no difference which cards
are mapped into which “logical " boxes, as long as we are consistent and obey
the mapping rules. Thus we arrange the logical mapping so that the first set,
consisting of the aces of spades and hearts, can reside only in the boxes tagged
a and b the second set, consisting of the aces of diamonds and clubs into
boxes ¢ and d; set 3, consisting of the kings of spades and hearts into boxces
tagged « and b, and so on, similar to that in Fig. 9.5-2¢. This information
about how cards are mapped must be stored somewhere. In this very simple
case, we may be able to remenber the mapping, so it is stored in our brains.
As a rule, however, the mapping is too complex to remember, therefore
let us store this information on a sheet of paper (second, third. and fourth
columns of Fig. 9.5-84). To completely understand the mapping function
and the kind of information that is required, we must attempt to find various
cards in boxes, which invokes some address translation operations. How-
ever, we do these only in a very general way without specifying the actual
implementation. Section 9.6 demonstrates the various ways in which the
address translation function can be implemented in terms of the mapping
information.

Continuing with the example, we specify that only one card may reside in
a box at any onc time and start moving the cards in random fashion into
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FIGURE 9.5-8 Mapping information for cards in boxes.

and out of the boxes. At any given instant of time. the four boxes contain
four cards. We know from the mapping function which cards may be in
which boxes, assuming no mistakes in the swapping process. Suppose that
we wish to know IF and WHERE the ace of spades is residing in one of the
boxes: a quick check on Fig. 9.5-8a shows that it is uscless to look into boxes
¢ and d. Hence we need to associatively search only boxes a and b. If this
associative search fails to provide a match, the IF isa "no " and the WHERE
is irrelevant. A “yes™ match supplies the IF and WHERE directly. Only
two associative searches are needed because the boxes are logically tagged
and the tags are visible on the boxes. Suppose we remove the tags from the
boxes so that the required mapping information is contained only on the
picce of paper of Fig. 9.5-8. Since the boxes are identical. it may be difficult
determining which two boxes to search for the ace of spades. But we re-
member that box a is on the lower left and box b on the upper right: thus we
might search these boxes. However we have made a very important assump-
tion, namely, that there is a “dircct™ relationship between the logical tags
and physical location of the boxes: that is, the logical to physical mapping
of the boxes (primary) is direct. If this relationship is true, our search is valid.



576 Memory Hivrarchies and Virtual Memory Systems

Suppose, however, that we rearranged the boxes in some random fashion
as we swapped cards. Now with the logical tags on the piecc of paper only,
there is no way to find the physical location of the ace of spades except by a
completely associative search of all four boxes. If we had provided some
mapping of the logical tags to physical location of the boxes, only two assocta-
tive searches would be needed to locate the ace of spades. For instance, sup-
pose we keep the boxes on four shelves and specify that boxes a and b arc
always on the top two shelves and ¢ and d are always on the bottom two
shelves. Now there is no need to scarch the bottom two shelves, which makes
the search simpler. This additional information about where the boxes
physically reside must be stored somewhere (e.g., in the primary logical to
physical mapping of Fig. 9.5-8h). There are various techniques for implemen-
ting this mapping, but then it becomes part of the address translation. The
essential point is that in the most general sense, the secondary to primary
mapping function is a logical map. When the physical position of the boxes
is specified by the use of tags stored directly on the boxes, the logical map is
directly converted into a physical map. When the tags are stored separately
{rom the associated boxes, an indirect conversion to the physical location of
cach box is required. Both cases of directly or separately stored tags involve
the use of an additional mapping of the logical tag to physical location of
the box, the former represents direct mapping and the latter a form of as-
sociative mapping. In either case. this logical to physical mapis a fundamental
requirement.

The case of finding IF and WHERE the ace of spades might be in the
boxes requires a minimum of two associative searches plus the second, third.
and fourth columns of Fig. 9.5-8« and the map of Fig. 9.5-8b. It is possible
{0 avoid associative searches completely by storing more information within
the mapping tables. Suppose we provide a fifth column in Fig. 9.5-8a called
“WHERE ACTUAL,” specifying IF and WHERE any card actually resides
logically within a box. Thus the ace of spades and three other cards have a
“yes ™ for 1F and a logical box location WHERE cach is. The boxes logical
to physical translation must make use of Fig. 9.5-8b as before. Thus the
location of the ace of spades requires direct addressing only: a reference to
its binary address, shown as 111-11 in Fig. 9.5-8a, yields “yes,” “tagb " for IF
and WHERE from the last column; an access to tag b in Fig. 9.5-8b yields
shelf 2 (note that any of the four shelves just as casily could have been in-
dicated here). The price we pay for the elimination of associative searches
is the need for more stored mapping information.

In a completely analogous manner, we can show that the initial orientation
of the entire deck of cards as in Fig. 9.5-71s a logical orientation, and the
initial selection of a physical card from the deck (secondary) before being
placed in a box requires a mapping of the secondary logical to secondary
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maps required for a two-level virtual memory hicrarchy.

physical location. In other words, we picture the logical orientation of the
cards as in Fig. 9.5-7, but given a shuffled deck, we would need a logical to
physical mapping to find the ace of spades, and so on. Thus we can conclude
that any two-level virtual hierarchy requires three mapping functions. One
map is required for cach level to map that level’s logical to physical space.
and one map is required between levels. Figure 9.5-9 shows these maps
schematically for a disk--main memory type of two-level hierarchy. Map 1
is generally provided by Table 1 discussed in Section 9.8. In a cache- main
memory type of two-level hierarchy without a disk-main hierarchy. there
arc no pages in the main memory that are visible 1o the user. The CPU
(secondary) logical address is converted into a physical main memory ad-
dress by the compiler, assembler, link editor, and so on: thus Map 1 in Fig.
9.5-9 is essentially a direct mapping in such a casc. The internal memory
physical pages are mapped into the logical cache pages with an analogous
Map 2, and likewise the cache logical to physical mapping with an analogous
Map 3.

In a threc-level hierarchy, containing a disk- main virtual store and a
main-cache hierarchy, the cache is paged out of main memory just as in the
the two-level hierarchy. However additional mappings are obviously re-
quired. One logical to physical map for cach level and one map between cach
level results in a minimum of five maps for this case. The disk and main
memory mappings would be as indicated in Fig. 9.5-9. with disk being the
secondary, the main memory the primary, and the total CPU logical address
the equivalent to the ™ secondary logical pages.” When a cache is inserted into
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this system, its position in the mapping scheme must be determined. Funda-
mentally, the logical cache pages can be mapped into the cache starting
from the CPU logical pages. from the main memory logical pages, or from
main real (physical) pages. However since the CPU logical pages are so much
more numerous, and since they must be mapped into the main memory logical
space anyway, it is advantageous to start either with the main logical or
physical pages. For various practical reasons, the latter are often used (sec
Section 9.12). The schematic of the various maps for such a case appears in
Fig. 9.5-10. In all systems, Maps 2,2, 3, and 3" are implemented as an integral
part of the address translation function discussed in Section 9.6. All three
maps can take on any of the possible forms discussed previously from direct
to fully associative. The degree of associativity of one does not aftect the
associativity of the others. since each is completely independent.

Some of the important conclusions about mapping of physical secondary
pages to physical primary pages in a two-level hierarchy can be summarized
as follows.

1. Three mapping functions are a fundamental requirement.

2. Contention problems for primary page slots are determined only by the
secondary logical to primary logical mapping function and become less
severe as the degree of associativity 2* increases.

3. The mapping of primary logical to physical address has no bearing on
the page slot contention problem: more generally, all three maps arc
independent of each other in principle.
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9.6 ADDRESS TRANSLATION FOR A TWO-LEVEL VIRTUAL
HIERARCHY

To understand virtual memory addressing, familiarity with the concepts and
mapping functions discussed in Section 9.5 is imperative.

The functions performed by the address translation were outlined in
Section 9.3. The N, bits must be converted into an [F and WHERE rcal
address. As shown in Fig. 9.3-3, N, is directly translated, hence only the
virtual page address N, need be considered. When the desired page happens
to be resident in primary storage, the IF translation produces a “yes™ and
the correct, real n, must be provided by the WHERE translation. This is
essentially an implementation of Maps 2 and 3 of Fig. 9.5-9. When the desired
page happens not to be resident in primary storage, the [F produces a “no™
and the real address of that page in secondary storage must be found. This
is an implementation of Map 1 of Fig. 9.5-9. In a two-level hierarchy, the
conversion of N, into n, when the desired page happens to be resident (i.e.,
IF = “yes”)becomes the critical factor in the overall speed of address transla-
tion. If the entire process is to run at an effectively fast cycle time, this part of
the translation should not introduce excessively large delays. We concentrate
mainly on this, the most important part of the translation function, and its
associated Maps 2 and 3 of Fig. 9.5-9. We consider the various fundamental
schemes in considerable detail and derive important tradeoffs and relation-
ships.

9.6.1 Translation of Logical Address to Primary Storage Address

Irrespective of the mapping function used. the address translator must decode
all N, bits of the secondary storage logical address. Only a WHERE function
is performed in ordinary nonvirtual decoding, since in such cases cach
logical address has the same length as the primary memory address register
and uniquely specifies a memory word. In virtual address decoding. the
WHERE function is more complex and the additional IF function must be
performed. More generally, ordinary nonvirtual decoding could be thought
of as virtual decoding with the IF functions always set in the “yes™ state.
However the given nonvirtual address will always be unique and real. which
allows for a simple implementation, since a one-to-onc correspondence
exists between the address and the physical location. In virtual addressing.
this correspondence is lost. As indicated in the general mapping form of
Fig. 9.5-2a, a given page slot in primary storage can contain diflerent pages
at different times. Although the virtual page address N, uniquely specifies
the virtual page in secondary storage, N, by itself is not suflicient to specify
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IF and WHERE that puge resides in primary storage. Thus additional in-
formation must be stored in some manncer to tell how the mapping is per-
formed, and this constitutes the mapping function. The manner m which this
information is stored and used constitutes the address translatton function.
A mapping function is only a conceptual. logical view of how page slots arc
{o be shared. and when implemented. it becomes part of the address transla-
tion function. Clearly these two must work closely together. As previously
indicated. we must implement both Maps 2 and 3 of Fig. 9.5-9 -~ the second-
ary to primary logical address map and the primary logical to physical
address map. The address translation must provide the IF and WHERE for
both maps. However the logical 1F is easily converted into a physical IF
(c.g. by the hard-wired " Yes;No™ control line on the primary memory
address register as in Fig. 9.3-2). There are numerous ways of implementing
this conversion, but it is relatively straightforward, and we concentrate here
on the fundamentals of the address translation function to provide the logical
IF. logical WHERE. and physical WHERE. The exact form of the address
translation function varies in a continuous manner from a pure table re-
quiring look-up for cach request. to a simple associative directory. assuming
a general form of mapping as in Fig. 9.5-2q. With such a mapping function,
some form of association must be established between the real and the virtual
page, irrespective of the method of address translation. The table form of
translation provides this association by storing the real location of every
virtual page. hence requires considerable storage. The associative directory
provides this association very directly but requires a great deal of associative
logic. Between these two methods lies a continuum of translation techniques
requiring varying amounts of storage and associative logic, as might be
expected. In fact this represents the fundamental tradeofts in the choice of
an address translation function: the table look-up is relatively slow because
the table is stored in primary memory and requires additional memory
access. The directory is small, thus can be fast. but it is expensive because of
the necessary associative hardware.

The example of placing cards in boxes in Section 9.5 did not specify the
details of implementing the mapping function because it is carried out by
the address translation function. To sec the range of possible schemes, let
us continue with the “cards in boxes™ example and consider two possible
approaches, representing the end points of a continuum. After the example,
we investigate address translation in its general form and derive important
relationships.

Section 9.5 partially described these two cases of a table and an associative
directory, but without the details and some remaining important considcra-
tions. We alrcady know that certain mapping information must be stored
somewhere. the exact amount varying with the address translation scheme
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chosen. Let us store this information in a gencral random access memory
called the “tag store™ and see how much and what information it must
actually contain. We arbitrarily define a table scheme as one for which no
associative compares are needed and a directory as onc for which associative
compares are needed. If we arc to avoid associative compares and use direct
decoding instead, some form of Fig. 9.5-8a and b must be stored. We initially
assume set associative mapping for both Maps 2 and 3. The tag store will have
to contain at least one tag in the form ot a table entry or word for each card. If
we use a 5 bit address X5, ..., X, for cach of the 32 cards, the logical name
of cach is replaced by an address of the tag store: hence the column fabeled
“Logical name”™ in Fig. 95.84 is unnecessary. To determine IF and
WHERE a given card resides, the last column must be included. In addition.
the information of Map 3, Fig. 9.5-8b, must somehow be incorporated. Note
that the last column of Fig. 9.5-84 contains the logical tag for cach of the
four boxes and is redundant with the first column of Fig. 9.5-8h. Hence the
physical WHERE of Map 3 can be included directly within the last column
of Fig. 9.5-8a in place of the logical WHERE tag. This greatly simplifics both
mapping information and address translation. Furthermore, since cach of
the four cards resident in a box now has the physical box location {(i.c.. sheif
address) stored with its entry in the tag store, this address can be any of the
four shelves within invoking any difliculties. Henee the box logical to physical
mapping can be fully associative as easily as set associative, so the former 1s
chosen. This does not necessarily have an effect on the secondary to primary
fogical Map 2. If the latter is set associative, we do not need to know where
it possibly can reside for address translation because its address is already
given by the physical WHERE. To swap a new card into a box. however. we
would have to specify which logical boxes are permitted. But this is totally
unnecessary: if the address translation does not need to know the set. we
may as well make this mapping fully associative and climinate the complexity
of mapping and replacement: Thus columns 3 and 4 of Fig. 9.5-8u are un-
necessary, leaving only the first column contained in the address decoding
network of the tag store and the last column as the actual stored information.
The IF function can be done with a one-bit logical operation called a flag.
and the WHERE function must be able to specify at least one of 2™ pages in
primary storage, which requires i, bits, or 2 in this case. The general form of
this table (Fig. 9.6-1) represents that actually used, with some modification.
in virtual memory systems as detailed in Section 9.9. The logical flag “1F”
is shown converted to a physical IF by a direct enable input to the primary
address decoder.

The associative directory can be approached in many different ways. If
we study the table of Fig. 9.5-8a, we note that most of the entries contain " no ™
for the IF function. In fact, only four cards can cver be resident in a box:
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FIGURE9.6-1  Tublc address translution showing fully associative mapping for Maps 2 and 3.

thus it is necessary to store information about these four boxes only, which
greatly reduces the size of the tag store. In other words, instead of storing
information about each card, most of which is “no,” we store information
only about each box. The difficulty is that many different cards can reside in
any given box, and although the required storage is reduced. the process of
address translation becomes more complex.

We assume a fully associative mapping, giving s = n, = 2. The tag store
must now contain only one entry or word per box to implement Map 2.
Since we do not know a priori the identity of the card in any box, this must be
stored in the tag store word, which requires 5 bits of Xs..... X, This is
cquivalent to N, or iy + n, bits, as is evident from Fig. 9.3-3 and 9.5-2b. To
implement Map 3, we can do as previously with the table and store the real
physical address of the box as part of the tag store word. The tag store then
becomes a fully associatively addressed directory (Fig. 9.6-2). The S bit 1D
of each of the cards resident in a box would be stored in the N, portion of
cach word. An associative match on cach of these produces one “match”
condition that is equivalent to IF = “yes,” and the physical WHERE ad-
dress of that box is the », portion of that match word. For instance, if we
want to test for the ace of spades whose ID is 11111, each word of the tag
store is matched against this ID. The second word in Fig. 9.6-2 will give a
match, and the n, portion indicates shelf 2 (binary 10), as originally indicated
in Fig. 9.5-8. Thus Maps 2 and 3 are both contained in the dircctory, and
both are fully associative in this example. The tag store is much smaller than
previously with the table scheme, but now it must perform associative selec-
tion capabilities, which is more difficult.
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We now consider the address translation in its general form to see the
“continuum”™ of schemes and subtle tradeoffs. Some profound conclusions
that become evident are summarized later. For the gencral case, we assume
the mapping to be the general set associative form of Fig. 9.5-2a. In our two
specific examples of “*cards in boxes,” we saw that the amount and character
of the additional stored information could vary considerably, depending on
the implementation of the mapping function. Therefore fet us assume that
the required information is stored as 2¢ logical entries or words of as yet
unspecified length, in some undefined tag store. These entries contain all
tags and other information needed to implement Maps 2 and 3. as well as
the address translation function. Let us first determine the bounds on the
number of such logical entries, the amount of information that must be
stored in each, and the various ways in which this information can be used
to determinc IF (logical) and WHERE (logical and physical) the real page
exists in primary storage. We let ¢ be some fraction of the total secondary
virtual page bits as in Fig. 9.6-3. where the maximum valuc is e < N,. The
minimum value for e can be deduced casily. Since there are 2™ page slots
in primary storage, it is necessary to store some information concerning at
least each of these slots with one logical entry per page slot. Thus ¢ must be
at least as large as n,., and the bounds on ¢ are

(9.6-1)

Obviously the two previous cases of “cards in boxes™ were the ends points
¢ = N, for the tabic and ¢ = n, for the dircctory. Let us now consider the
various possible cases for some general value of ¢ between the bounds of
(9.6-1). First note that the associativity of the sccondary logical to primary
logical mapping functions, specified by s, can vary independent of ¢. that is.
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any degree of associativily can be translated by any value of e satisfyin

(9.6-1). This is fundamentally true for the logical mapping, but lh;: méthofig
of implementation forces certain relationships between ¢ and s in terms of
the number of bits that must be associatively compared. For the general
cgse with ¢ < N, the number of stored logical entries is less than one per
virtual page by the amount 2%7¢ To find IF and WHERE a given N

address is resident in primary st srage, this “unstored " information oflengt};‘
N, —e bits must be stored in each logical entry. In addition, for a given
mapping of associativity 2*, a required page might possibly reside in any of
these 2* slots of a set. Hence s bits must also be stored in each logical entr

of the tag store to assist in the logical 1F and WHERE determinaliony
Completing the search therefore requires '

number of associative compares = 2° (9.6-2)
number of bits/compare = N, — ¢ + (9.6-3)

These fundamental requirements are valid irrespective of the primary logical
to physical mapping or the remaining implementation. These associative
compares provide only the logical IF and WHERE, the former signaled by a

‘y‘cs/no’.’ match condition. This can be easily converted (o a physical IF by
using afxmple logic gate to activate or deactivate the primary address register
as in kig. 9.3-2. Other techniques are possible, but we assume the method
Just described in subsequent cases.

. The primary logical to physical mapping (Map 3) can be done as pre-
\’1()qsly, by storing the real address of length n, bits within each of the 2¢
entrics. As before, this makes Map 3 fully associative without affecting the
overall address translation, irrespective of the value of s used in Map 2. We
do not haw to make Map 3 fully associative: if a set associative m;p of
assoctativity S, = 2% is used, only n, — s, bits need be stored in this portion
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of the tag store. Since this seldom saves many bits and greatly complicates
the system, a fully associative Map 3 storing n, bits is typically used. A direct
map could also be used, which would require no stored bits but only a direct
enable or similar function on a page of a semiconductor chip (sce Section
9.13). A direct map 3 becomes very important in one special case of a fully
associative Map 2 as discussed later.

Now we have a tag store consisting of 2¢ entries or words, each storing
N, — e + s bits, which are associatively compared to provide the logical
IF and WHERE for Map 2, and cach contains also from 0 to n, bits for Map
3 depending on the associativity of the latter. The general scheme is given
in Fig. 9.6-4a, assuming that Map 3 is fully associative and Map 2 is of
associativity 2°. Since at least 2° entries must be associatively addressed, 2°7*
can be directly addressed. The address translation procedure would be as
follows. For a given virtual page address N, the higher order bits ¢ — s =

(N, — e) + ¢ are used to directly address one of the possible sets in

ny —
24

the tag store; only 2¢ of these can have valid entries. since there are only
sets in primary storage. Comparison of the N, — e + s bits stored within
each of the 2* entries of the directly selected set with the same bit positions
from N, produces a “yes” or “no” match. If “yes.” the n, from the matched

T

e-s bits
\ﬁ*/% - ——
[ N4 '} q' E s j NrJNs
N,-e+s' bits @,‘Y;ij‘ [
s' Match? o
g No  Relocate
Directly “Yes'-Use
Select | \\\
of 2878 r |
f*/_\f-_‘_/;\ f_—Aﬁ____
Ny-el s | ny } ny T 1np
~~~~~~~~~~~~~~ Set¥| ===
. i ) s
Associatively ) 2
Select | of 25:* entries
. e
‘\,—\_\ entfries
Set #
Zefs'
TAG STORE
(a)

FIGURE 9.6-4  («) General case of a tag store directory with 2 logical entries.
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FIGURE 9.6-4 (h) Example of minimum tag store directory implementing a set associative
Map 2 and fully associative Map 3 showing 2* sequential compuares.

entry provides the real WHERE address for the primary store address
register as shown. In this case, the tag store must be accessed first to find the
real n, and subsequently the primary store is accessed using #, + n, to ob-
tained the desired byte or word. A specific example for ¢ = n,, set ass;ciative
Map 2 and fully associative Map 3 appears in Fig. 9.6-4b.

A fundamental relationship of considerable importance is the total number
of possible pages in secondary storage that share the same logical set in the
tag store. This is simply the total number of secondary pages divided by the
number of logical sets in the tag store, or

. 2V
secondary pages sharing each tag store set = Ererie QVemets (9 6-4)

This relation is used later to obtain a number of important conclusions
about the tag store.

9.6.2  Special Cases of the Tag Store

Wc shpuld be able to obtain previous examples of the table and fully associa-
tive directory from this general scheme by letting e take on the values N,
and n,, respectively. Let us try these to see some important consequences.
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CASE 1

When e = N, and s > 0, the tag store contains 2" entries. Following the
general operation already given, a search requires a direct decoding to one
out of 2¢7% or 2V~ S entries, and 2° associative compareson N, — e + s = s
bits. The result of a correct match must produce n, bits for the real page
address, assuming Map 3 to be fully associative.

Equation 9.6-4 indicates that the total number of possible secondary
pages sharing the same logical set in the tag store is 2° pages. But since this
is also the maximum number of logical page slots in a set, any number of
pages of any mix can be accommodated simultaneously in the tag store.
Hence the logical mapping is fully associative for any value of s in this
special case. Let us choose s = 0, to permit the number of associative com-
pares to reduce to 2° = 1, and the number of bits to be compared to reduce
to zero. This results in a direct decoding to one of 2%+ or the entire table,
storage of n, real address bits, and one associative compare over zero bits.
The latter represents the degenerate case of merely specifying whether that
page is resident. It could be done by performing a logical check on whether
an n, address is present. It is simpler to provide a one-bit logical flag: hence
we have reduced the tag store to the previous table scheme.

CASE 2

When e = n, and s > 0, the tag store contains 2" entries. A search requires a
direct selection of one of 2¢7% = 2" 7°, 2% associative compares on N, —
n, + s = ny + s bits, and a match must produce the real n, bits. This is a
specific case of a set associative directory such as that in Fig. 9.6-4b. If we lct
s = n,, the direct selection of one of 2"~ reduces to zero and 2™ associative
compares are required on ny, + s = n, + n, = N, bits. This is the fully
associative directory previously discussed.

A fundamental conclusion of profound consequences is that the associa-
tivity of the secondary to primary logical mapping, Map 2, provided by a
general tag store, hence the required number of associative compares, is
fixed at 2* for all values of e except for the special case of the table where
e = N,. The fundamental reason for this foilows very directly from (9.6-4)
and results from contention problems for logical page slots. Even when the
real primary store is not full, contention problems can arise because the
pages required simultaneously might happen to be all from the same logical
set, and the number required might be greater than 2°. For instance, for any
tag store with N, — e > 1 or ¢ < N, — 1, the number of sccondary pages
sharing a logical set, given by (9.6-4), is obviously greater than 2°. But by
chance, this larger number could be needed simultaneously in that logical
set, whereas only 2° can be accommodated within the tag store (i.e.. the
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degree of associativity is 2*). Hence a new contention problem may arise
within the tag store cven though the primary store has empty page slots. Set
associative mapping, therefore, introduces a second kind of contention prob-
lem, one for tag store space, in addition to the ordinary contention arising
because the primary store is smaller than secondary storage. We did not
have this contention problem in the special case of ¢ = N, becausc as pre-
viously discussed, the maximum number of sceondary pages sharing a
logical set is 2°, which exactly equals that which can be accommodated.
Hence except for the special case, the associativity of the general tag store
with 2° entries is determined only by s.

The above conclusion raises the question, What properties of the address
translation are affected by changing ¢? As the number of entries ¢ aries,
only the number of bits that must be associatively decoded varies as

N,—e+s (9.6-5)

As e increases, the number of bits associatively compared decreases, and vice
versa, Thus we merely trade the number of tag store entrics for word size
and associative bits compared. The minimum number of bits required in
any tag store schemc is just the number of logical entries times the number
of bits per entry. These various expressions and other important relations
are summarized in Fig. 9.6-5 for the general case, the table. and the minimum
sized directory. The table can require considerably more storage than the
minimum directory. The ratio of total storage capacity for these two (from
Fig. 9.6-5, assuming Map 3 to be fully associative) is
_ ) table (I + n 2% I+ n,

bit capacity ——— = — T o (9.6-6)

directory (g + s + n 2™ N, + s

Some typical values might be

N =18, i, =6, s=2g = 4), ng =12

Substitution of these into (9.6-6) gives the ratio as 0.35 x 212 = 1434, a
substantial difference showing the value of the minimum directory. However
we have said little about the hardware characteristics of the tag store for
cach case. Typically for the table implementation, the tag store uses primary
{main) memory, since only random access addressing is required and the
table can become quite large. A fundamental requirement of this table is that
the entries be logically contiguous, since successive binary values of N, refer
to successive logical entries in the table. Thus even if many cntries are blank,
they cannot be removed from the table to make the table shorter.* The table

* Except for the rare case that all entires above a certain binary address urc blank or the user
requests a saller total number of pages, which automatically makes the table smaller.
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TAG STORE NUMBER [NUMBER LOGICAL| NUMBER BITS MINIMUM NUMBER| MINIMUM
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o
Description e\ TRIES] Directly | Assoc JASSOCIATIVELY Map 2 | Map 3 | CAPACITY *
T T
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* Can be 2875 physical words - see section 912
# Assuming Map 3 =n, & excluding control bits

FIGURE 9.6-5  Compurison of tag store characteristics for diflerent implementations,

must contain one entry for each possible logical (virtual) page. A method for
reducing the amount of this table that must be stored in primary memory is
deseribed in Section 9.8, and examples are given in Scction 9.9, For {he
minimum directory implementation, the tag store is usually a separate
random access memory because of the required associative compares.
Further discussions concerning the various design considerations are given
in Sections 9.8 and 9.10.

It is clear that the choice of mapping function has a significant effect on
the method of address translation. This effect can be linked to a telephone
directory in which names are listed in various ways. If we assume that no
two names are identical, a purely alphabetical listing is like direct mapping:
there is one and only one possible logical position for cach unique name, and
it 1s easily found. If the listing is purely random or has no structure, this is
comparable to fully associative mapping and requires the capability for an
associative search on every name. to be able to find the final phone number.
Set associative mapping would be analogous to listing together all names
say. starting with A, then all those starting with B. etc.. but no order within
the A’s or B's, ete. Hence the number of associative searches cquals the
number of names under the letter of interest, which is identical to the number
S of possible logical names per sct.

In all the above examples we have emphasized the use of fully associative
mapping for the primary logical to physical Map 3. even though in principle.
direet or set associative mapping can be used. The reason is practical in
that a direct or set associative Map 3 would involve additional complexity
in the actual page swapping and would greatly limit the ability to incorporate
operating systems and memory expansion. Thus a fully associative Map 3 is
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most desirable. A very special and important case arises in which this Map 3
has the appearance of being fully associative even though it is a direct
mapping, in fact can be a hard-wired direct mapping. This situation occurs
when the secondary to primary logical mapping (Map 2) is fully associative:
that is, s = #,. In such a case. any virtual page can reside in any logical page
slot. If a direct Map 3 is used. logical and physical page slots become identical.
Now, any virtual page can reside in any physical page slot as desired, and
Map 3 has no effect on this capability. This principle is discussed more fully
in Section 9.13 with example.
Some important conclusions about address translation are as follows.

| The address translation function cannot be implemented without n-
cluding the mapping function for both Maps 2 and 3.

> Translation schemes form a continuum of tag stores of varying number
of entries e. with the table and minimum directory at the two extremes for
e equal to N, and n,, respectively.

3. Any secondary to primary logical mapping with associativity of degree
2" must perform 2* associative compares on N, —¢ + s bits: a special
case occurs for e = N, which yields a table of any degree of associativity.

4. Increasing the number of entries e in the tag store only reduces the number
of bits that must be associatively compared: it does not change the required
number of such compares.

5. Implementation of the logical to physical IF function is very simple.

6. Implementation of the primary logical to physical WHERE map is much
casier than the secondary logical to primary logical WHERE map. and
the former can typically be fully associative as easily as any other mapping.

7. When the secondary logical to primary logical mapping function is fully
associative, the primary logical to physical map can be direct while giving
the appearance of being fully associative in the sensc that complete free-
dom is provided for the physical locationof any page in the primary store.
This 1s a special case.

Fundamentally, the address translation function is required only to per-
form the 1F and WHERE translation of virtual to real pages. In practical
systems itis also desirable to provide a certain amount of “status and control™
information. For instance, if no changes (i.e.. no writing) have been made
within a given page, it can be crased when it is to be swapped out of primary
memory. In addition, storage protection in the form of access rights can be
implemented within the address translation function if desired. Additional
information stored within the previous necessary logical entries of the tag
store can control access and sharing of pages among various users. Examples
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are given in Section 9.9. When the address translation is accomplifged,
with a directory, the need for speed dictates that the information for the
replacement algorithm be contained within the logical entries or an equiv-
alent hardware scheme (see Section 9.7). Thus the various schemes for storing
the additional information for address translation sormetimes contain status
and control information in addition to the IF and WHERE information.

97 REPLACEMENT ALGORITHMS AND IMPLEMENTATION

Replacement algorithms can be placed arbitrarily into two broad categories:
(a) algorithms that do not use historical information to determine which
page to remove from primary, and (b) algorithms that do use historical in-
formation for replacement.

The first category does not require storing any information about page
referencing, hence essentially includes random or near-random replacement
algorithms. The second category requires storage of some kind of informa-
tion about page referencing, depending on the exact nature of the algorithm.
This represents the bulk of algorithms— first in, first out (FIFO), least re-
cently used (LRU), least frequency used (LFU). and so on. The implementa-
tion of the first type —say, a near-random replacement —is simple in principle.
requiring only a pseudo-random number generator. The second type requires
additional storage hardware and logic processing functions, both of which
can vary considerably depending on the exact nature of the algorithm and
sometimes are quite complex.

Intuitively it would seem that if data clustering (Section 9.4) occurs.
page replacement should be based on some history of page usage. This
generally seems to be the case, but there are many exceptions wherein a
random replacement can give a better hit ratio. Unfortunately, the best
algorithm cannot be derived from first principles but must be obtained from
simulation of actual job streams as was done in Section 9.4. Vavious studies
(Belady, 1966) have resulted in the conclusion that no one best algorithm
exists: rather, certain algorithms are best for particular classes of problems
and worse for other classes. As a result, disk-main memory virtual systems
use a “not recently used” type of algorithm that is an approximation to the
LRU algorithm. This can be implemented in many ways. Intuitively it seems
reasonable to suppose that the more historical bits that are maintained about
page usage, the better would be the choice of page to be replaced. However
this requires more stored information and updating, which is expensive and
time-consuming. Hence a tradeofl is necessary. In the selection of a page for
replacement, one would expect that if a page has not been referenced over a
certain time period, it is less likely to be needed next than pages that have
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been referenced. Hence a reference bit R for a certain time period is neces-
sary. But before selecting a page for removal, it must be recognized that if a
page has not been modified (i.e., has not been written into). it need not be
written back onto disk but simply can be overlaid (i.e., erased). If it has been
modified, however, it must be placed back on the disk before erasure. Since
this requires considerably more time than just overlaying, u second status bit
is also stored with the previous R “reference™ bit. The second bit M specifies
whether the page has been moditied while residing in main. A page that has
not been modified is more eligible for replacement than one that has been
modified. In addition, locking bits are often used to protect storage when a
page is undergoing swapping, or for other reasons, which we ignore for now.

In principle, the replacement algorithm can be implemented with the R
and M bits alone. Whenever a page is referenced, its associated R bit is auto-
matically set to *17; likewise, M is set to “1” when that page is modified.
Eligibility for replacement then goes as “not modified and not referenced.”
“not modified but referenced,” and so on. The time period over which the
“not referenced” criterion exists requires some consideration. The M bit is
not affected because once modified, a page must be so indicated for the entire
time it is resident in main memory. The time period over which the R bit is
evaluated can be a fixed or variable period.

Theoretically we do not have to evaluate pages for replacement until a
page fault occurs in main memory. At this time, we can scan all pages for
replacement, select one, and reset all R bits to zero, indicating a new time
period. We may introduce additional historical bits H. to indicatc the number
of such successive scan intervals over which each page was not referenced.
One historical H bit would allow indication of usage during the previous
scan interval, two bits over four intervals, and so on. For such a case at scan
time. any page with R = 0 would have the “unreferenced interval” H bits
incremented by binary “ 17 and R would remain unchanged. If R were *1,”
indicating “referenced,” the H bits would be turned off and likecwise R would
be turned off. A large binary value for the H bits would indicate a large
number of successive intervals over which that page was not used. Of course
the opposite polarity could also be used. Eligibility of pages for replacement
is then modified to include these H bits, pages with a large binary value of
successive “not referenced” intervals (large H) being more eligible than
those with smaller values. The scan interval in this case would be variable,
since it is initiated by a page fault. This scanning can also be done periodically
during fixed intervals. For various practical reasons, the latter scheme is
often used in large commercial systems. There are, of course. numerous pos-
sible variations of this procedure as well as other replacement procedures.
The cost/performance tradeoffs vary with the system as well as the manu-
facturer, hence the details can differ substantially. This type of algorithm is
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often referred to as an approximation to the LRU algorithm, but it is a gross
approximation at best. It really replaces pages not recently used in a some-
what random fashion according to the simple referenced/modified priority
scheme. Considerable logical processing is required, but much less than for
even slightly more complex algorithms. The implementation can be in hard-
ware or software, but more of the latter 1s common.

In the cache-main memory type of virtual system, which typically uscs
set associative mapping, a required page that must be brought into the cache
can go only into a fixed logical sct. Hence a page must be removed from
that logical set. Typically an LRU-type algorithm for each set is stored and
processed with separate hardware. This is basically the technique used on
the IBM 195 and 168.

Of the various types of algorithm in use, the LRU has intuitive appeal as
an average technique over a large job stream, despite many exceptions. Since
a pure LRU over a large number of pages is rather difficult to implement,
some approximation of the type described earlier is used in main-disk
virtual memories. However the mapping of a cache paged out of main
memory is typically set associative (sec Sections 9.10 and 9.11) with very
few page slots per set. An LRU algorithm is typically implemented in hard-
ware for each set of the cache. The following discussion considers some of
the fundamental aspects of implementing a pure LRU in a general case.

9.7.1 LRU Algorithm Implementation

To implement any general ordering type of algorithm, some means must be

provided within the system for keeping track of cach page usage with respect

to all other pages. In other words, all pages must be continually ordered

among themselves for each new page reference. This calls for two funda-

mental pieces of information: (A4) the address of the pages within a given

ranking order, and (B) the relative order or ranking of page usage among

themselves. In conjunction with these two pieces of information. two

fundamental operations are necessary:

A’. Search Rank for Address. Scarch usage information and produce address
of page with required ranking.

B'. Update the Usage Information. Enter new page slot usage into the ranking
after each page reference.

These operations can be implemented with the use of associative or non-

associative functions.

9.7.2 LRU via Associative Functions

In general, there are two basic ways to implement an associative ordering
algorithm. We can store the address of the pages within a stack of registers
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FIGURE 9.7-1 Two fundamental schemes for implementing LRU replacement algorithms
by way of the associative function. )

and perform the ordering by the arrangement of the stack (i.e., order from
top to bottom of the stack via a push-down (or up) stack) Fig. 9.7-1a. An
alternative is to store the ordering within a stack of registers and allow each
register to have a direct, one-to-one correspondence to each page slot in
primary storage. For instance, the top of the stack contains ranking (usage)
information for page slot 1, and the bottom register contains the ranking
for page slot 2 (Fig. 9.7-1b). Thus for the very general implementation, we
can store the page slot address in registers and perform the ranking externally
by ordering the registers from top to bottom (push-down stack) or, alter-
natively, we can store the ranking within the register, allowing the page
address to be determined externally by the physical correspondence to page
slots. If an ordered stack* is used as in Fig. 9.7-1q, the bottom (or top) of the
stack contains the identity of the least recently used page and the top con-
tains the most recently used page. Under these circumstances, B is determined
by the physical ordering of the stack and requires no extra information. In
such a case, 4. the identity of the pages within the stack, requires a number

* The stack can be a list in main memory or special hardware registers.

»
i
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of bits given by
identity bits/page slot = log, p = n, (9.7-1)

where p is the number of pages requiring ordering. The stack would have
p = 2™ entries each of the length given. The fundamental operation A" of
finding the LRU page is very simple and requires only reading the address
from the bottom entry. However, operation B is not so simple. A new refer-
ence to any page within the stack, except the most recently usced page. involves
considerable logical reordering of the stack. For instance. the ranking or
actual register corresponding to the referenced page must first be found, and
thus requires some kind of associative compare, either serial by register or
all in parallel. After the correct ranking position is found and the register
position stored, this page slot address must bc moved to the top register
(MRU), and all registers from the top, down to the previous register position
of the referenced page, must be pushed down by one ranking position.

In the alternative scheme of Fig. 9.7-1b, the situation is not much better.
We still need 2™ registers, one for each page slot. and n, bits per register,
to be able to rank these from 1 to 2. Note that the same number of bits is
stored in both schemes, but the information is ditferent (an address in the
first case and a ranking order in the second). The operation of entering new
ranking or usage information (i.c., B’) is very casy for the referenced page 1t
now becomes the highest rank (i.e, MRU). However reordering these pages
between the previous MRU and the previous ranking of the referenced page
becomes quite complex. An associative search must be made on cach entry
to see whether it requires reordering: if so, it is lowered by one. The operation
of finding a page slot to be replaced (i.e., 4') also requires an associative search
to determine which of the registers contain the desired ranking position
(e.g., LRU rank).

9.7.3 LRU via Nonassociative Functions

The above method of implementing the LRU algorithm are only two funda-
mental ways that require associative compare capabilities. These associative
techniques minimize the number of additional bits required for large numbers
of pages, but the hardware becomes expensive and slow. It is possible to
eliminate the need for associative compares, but for large numbers of pages.
the additional stored information becomes large. Let us first study the basic
technique, then compare the additional hardware required versus that in the
previous associative schemes.

In the nonassociative scheme, each page is paired with every other page.
If there are p pages to be ordered, the total number of pairs of pages is p
pages for the first one of the pair and p — 1 for the second. or a total of
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FIGURE 9.7-2  Nonassociative implementation of LRU algorithm with pairwise inequality
bits.

plp — 1) pairs. However there are many duplicates, since pairs such as AB
are identical to BA. Hence the number of distinct pairs'is half the value just
given, or
- _pp =1
number of distinct pairs = —-— -~
5

(9.7-2)

where p = total number of pages.

One ranking bit is stored in separate hardware for each pair. The bit is,
say, " 17 4 is more recently used than B and “07 if 4 is less recently used
than B. The total number of such stored ranking bits is thus equal to the
number of pairs of (9.7-2). The general idea for the ranking 1s simply that
these bits form a pair-wise inequality that uniquely specifies the LRU page.
For instance, if we have three pagesand weknow 4 > B,B < C,and A > C,
we can deduce that B is the lowest entry. The question now is, How can we
implement this in nonassociative hardware? It is actually quite simple. Each
page has one AND logic gate assoctated with it (Fig. 9.7-2) for the example
with four pages. Each AND receives an input from a “pair bit” that has that
page for one of its pairs. For instance, page A must have an input {from the
pair bits 4 B, 4-C, and A-D. Similarly page B must have an input from
pair bits 4--B, B--C, B-D, and so on. Thus the fan-in must be p — 1. If we
specify that the AND gate with an output signal indicates the LRU or lowest
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ranking page, we must connect either the pair-bit or its complement, de-
pending on which page in the pair, being more recently used. gives a 17
output. For the pairing in Fig. 9.7-2,iff 4 > B=1, A <B=0,B>C =L
B < C =0, and so on, the complements must be used on pages for which
that page is the higher ranking in the pair as shown. Obviously searching for
the LRU page is trivial compared to the associative case. The LRU page is
always specified by the AND gate that is “on.”

Let us now determine the number of stored pair-bits required for this
nonassociative scheme for a system that has, say, 256 pages, all of which
are ordered. From (9.7-2), the additional storage required is

256(255)
pair-bits = e = 32,640 bits

In addition, 256 AND gates cach with an equivalent logic tree fan-in of 255
are required. For the associative scheme. (9.7-1) indicates that the total
number of stored bits is only

plog, p

256(8) = 2048 bits

total associative bits

This is more than 15 times less than the nonassociative scheme but requires
associative hardware. If one uses set associative mapping, only the LRU
within each set must be maintained. For instance, for a four way associative
set (i.e., s = 2), only 6 bits/sct are required as in Fig. 9.7-2. Such a scheme is
actually used on the IBM model 195 cache (Section 9.11.2). Other schemes
are possible for reducing the total number cf stored bits, but the logic can
become complex. For instance, it is possible (o store one string of bits
specifying the entire ranking of all pages relative to one another. For p pages,
there are a maximum of p factorial combinations or rankings relative to one
another. The number of bits required to specify any one relative ranking of
all pages is log, p!. This can be substantially less thun that for the previous
cases. The scheme takes on the form of a decoding tree in which one logical
combination must be decoded from the given bit stream. For large p. the logic
operations become complex for scarching (decoding) and. especially. for
updating after a reference.

There are, of course, many possible ways to implement replacement
algorithms, but all require additional hardwarc and time. In addition. the
updating after a page reference, which must be performed by the storage
control unit, can become quite complex even in the scheme of Fig. 9.7-2,
The 1BM 370 models 195 and 165 cache memories use the latter type of set
LRU implementation, whereas the model 168 cache uses a stored address
type of stack register similar in principle to that of Fig. 9.7-1a.
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FIGURE 9.7-3  Percentage of misses versus primary storage capacity for various algorithms.
showing hypothetical gencral cases.

9.7.4 Effect of Replacement Algorithm on Hit Ratio

The variation in hit ratio for different replacement algorithms is a matter of
fundamental importance. Since it is a function of many variables. we give
some general trends* and demonstrate a basic technique for circumventing
the problem.

If the miss ratio is plotted as a function of primary storage capacity for a
fixed page size, a curve similar to one of those in Fig. 9.4-2 is obtained for
any replacement algorithm. The miss ratio must obviously approach 1007,
as primary storage capacity approaches zero, and it must approach zero as
primary capacity approaches the total capacity required by the problem
or job stream. If we consider these curves as applied to specific users in the
job stream, the primary capacity axis becomes a measure of the number of
pages allotted to that user. If we were to plot similar curves for different
replacement algorithms, the results might be something like the hypotheticul
curves of Fig. 9.7-3. All show a general improvement with increasing storage
capacity. For a specific user, one of the algorithms (e.g., I in Fig. 9.7-3) might
require a certain minimum number of pages to achieve any reasonable miss

* See Belady (1966) for discussions and performance of various algorithms relative to the
optimum for specific cases.
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ratio, because of the nature of the problem. This could arise under the con-
ditions described by the example in Section 9.14 or similar cases. If the
allotted pages were in this “minimum” neighborhood on the horizontal
axis, a different replacement algorithm could give a much improved miss
ratio. If the algorithm is fixed, as is usually the case, an improvement can
also be obtained by increasing the number of pages or primary bytes allotted
to that user. Unfortunately in a given multiprogrammed system, this reduces
the number of pages available to other users. Thus while the hit ratio may
be improved for the first user, the overall system hit ratio and through-put
may degenerate. Theoretically, dynamic fine tuning of the system hit ratio
is possible but is usually too complex to be feasible.

9.7.5 Working Set Replacement Algorithm

Denning (1962) attempts to dynamically assign the number of page slots of
primary storage allotted to a given user in terms of past history. The working
set for a given user is defined as the set of pages that are referenced in a given
period of time. In other words, referring to Fig. 9.4-1a and assuming that the
address references refer to pages rather than words, the working set would
be the total number of different pages appearing in the trace for a single user
over some specified number of time intervals, usually referred to as the
window size. The longer the time period, the larger the working set and hit
ratio for a given user, but the poorer the hit ratio will be for another user.
If the time period is too small, a very poor hit ratio will result. The major
problem is then determining the correct value of the time period. Additional
fundamental statistics are required to ascertain whether the optimum time
period is substantially smaller than the problem running time to be useful.
Also needed is information on variations between problem sizes and prob-

lem types.

98 VIRTUAL MEMORY SYSTEM DESIGN CONSIDERATIONS

Using the previous sections, let us now consider the conceptual design of a
virtual memory system consisting of main memory and a disk-like backing
store. Remember that the primary goal is to bridge the capacity gap between
main memory and disk. However the overall speed must be reasonable, or
the primary goal is of little value.

The system is assumed to be identical to that of Fig. 9.3-2, consisting of
U = 2* users, each with a virtual store of 2% pages or 2¥ words as shown.

Each of the three fundamental requirements must be implemented with
the design consideration in mind. The choice of page size and replacement
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algorithm depends on problem statistics and is not amenable to any analysis
from first principles. The results of Section 9.4 indicate that the LRU al-
gorithm can give adequate miss ratios. However the LRU algorithm is
difficult to implement, and an approximation to LRU is commonly used.
The required miss ratio for a given system can be determined only by
simulation. In a large system, a miss causes transfer of control of the CPU
to a new user whose pages are in primary storage. The transfer of control
may require tens, hundreds, or thousands of CPU execution cycles. Although
time-consuming, it nevertheless introduces much less delay than the page
access and relocation time. However, maintaining a high CPU utilization
requires a small miss ratio—in the range of 0.02% or less. To achieve this
ratio, the results of Section 9.4 indicate that page sizes of 1K' to 4K’ bytes,
with a minimum of 256K" bytes of useful primary storage, are required for
the job streams and parameters used. The actual values change for different
job streams, but the difference is not orders of magnitude. These parameters
represent typical values that are adequate for many cases. The two address
translation functions of Fig. 9.3-2 (external and internal) can be implemented
separately: thus the type of tag store to be used must be decided for ecach.
The external translation, which converts N, into a real disk address, is
rcquired only on a page fault in main memory. This occurs rather rarcly.
and when encountered, the CPU transfers to a different user already resident
in main memory. Thus speed is not a major concern, and this translation can
be implemented economically with a table, called Table I as in Fig. 9.8-1.
This table contains a maximum of 2% contiguous entrics, one for cach virtual
page. A software algorithm uses the N, address to access the table. Each

L Ny i Ny B Ng=SECONDARY STORAGE
7 A LOGICAL ADDRESS
INCREMENT O TO N,

BYTES (READ SERIALLY)

Nvd

{DRIVE THEAD [ TRACK]RECORD]] | N,4=ACTUAL LOCATION
J OF VIRTUAL PAGES

ON DISK
"WHERE"
SOF TWARE
ALGORITHM
E——————_— R A
1 |~
e Nvd __ i1l FLAG
TABLE I
—/\_/\’

FIGURE9.8-1  Translation of logical address N 1o actual disk page address using Table |
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entry contains an IF flag, the actual WHERE address, and any other desired
control functions. Such an implementation automatically makes Map 1 in
Fig. 9.5-10 fully associative. Since Table I potentially can be very large. it is
normally stored on disk and transferred into main memory when a uscr is
entered. In principle, Table I can remain on disk (located, ¢.g.. as the first
file on the first disk, ctc.). This would conserve mitin memory space but at
the expense of a sequential search of the disk via the I'O processor. The
Jatter is slow but would be feasible if sufficient time werc available between
page faults. Since this is not usually the case, Table I would have to be entered
when needed.

The internal translation, which converts N into n,. is required on every
memory reference; hence speed is of vital concern. In addition, maximum
flexibility in physical page location within main memory is necessary, making
a fully associative Map 3 in Fig. 9.5-10 essential. The need for speed suggests
the use of a fast, minimum tag storce (directory) with a fully associative Map 3
and set associative Map 2 in Fig. 9.5-10. However this directory would need
2" logical entries, and the associativity would have to be rather large for a
good hit ratio. In other words, the directory would be large and would have
to perform many associative compares, which would make the directory stow
and very expensive. The use of a table translation scheme stored in main
memory would be relatively inexpensive and would provide fully associative
mapping. However every CPU reference to main memory would require a
minimum of two or more main memory cycles, which is a severe speed
penalty. To circumvent this dilemma, large commercial systems typically
compromise, storing a few of the most recently used pages in a very small
partial directory for speed, while using a table as backup. Examples are
given in Sections 9.9 and 9.12. The partial directory is usually quite straight-
forward and need not be detailed here. The table translation, however. be-
comes somewhat complex because of practical considerations.

Table Translation: Design Considerations

In principle, the table translation of the virtual address N, into a real address
in main memory can be accomplished with a single table. This table (referred
to as Table 1) is fundamentally as shown in Fig. 9.6-1, although this rep-
presents a very general means of address translation. For a virtual memory
system as outlined in Section 9.3 and specifically in Fig. 9.3-2, one important
requirement that does not appear in the scheme of Fig. 9.6-1 is the means
cach user employs to address the memory in terms of the full CPU logical
address N. To see this, the reader should study Fig. 9.5-2b, which gives a
complete identification of all address bits used previously. The total virtual
or secondary store logical address N, consists of the processor logical address
N. and the user ID bits u. In other words, Ny = u + N. Not only must each
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user be able to address main memory as if it consisted of 2V words, but the
system must contain the capability to be transferred from one user to another
yvhcn a page fault 1s encountered. The simplest way to achieve this is shown
in Fig. 9.8-2. The user ID bits are contained in a separate register. These bits
give the real, origin address of that user’s Table II in main memory. The
virtual address part of the CPU logical address, namely, N, then increments
1o one of the entries in the table. This entry contains a minimum of n, plus
one flag bit as specified in Fig. 9.6-5, where n. = ¢ + 5. Thus the hlighcr
order bits

u+ No=n,+q+5s (9.8-1)

do indeed point to the table as shown in Fig. 9.6-1. Each entry in the tablc
must contain the higher order address bits n, for each page of that uscr.
Since each user must be able to use the full CPU logical address length. cach
user has 2% pages as in Fig. 9.3-2. Thus Table I must contain 2% entries
for cach user. In the implementation in Fig. 9.8-2, when the processor lrans‘—
fcr§ to a new user, the [D bits are changed in the user 1D register and then
point to user y, for instance. Thus each user current on the system must have
a Table I stored in main memory. The following analysis reveals that it is
gcncrally not possible to store Table I as a single table: hence it is divided
into smaller parts. Nevertheless, the concept of address translation using
1a}b]cs 1s identical in principle to that achieved with a single table as show n.
U Table I 1s stored in main memory for the active users, it can be addressed
In a manner very similar to that used for Table I1.
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To seec why a large table and only a partial tag dircctory is used for the
internal address translation as well as why Table 1T 1s divided into parts. let
us make the approximate calculation of the additional storage capacity and
number of associative compares required for a full-sized directory and table
translation. This requires some estimates of the values of various param-
eters. If a virtual memory is to be eflective, the total external storage should
be considerably larger than main memory by a factor of 1000 or more. We
will assume a minimum value of

N> 1024 x 2% or N, = log, 1024 + n, = 10 + n,

Using the definition of n, given by (9.3-7). we have

ng = Ny —n, = 10 bits

For further parameters of the system, let us assume that n, = 10 bits (i.c,,
1K’ words/page) and main memory has the minimum size of 256K” words or
n, = 18 bits. Since Ny = n, + ny, the number of secondary storage address
bitsis N, = 18 + 10 = 28 bits (this in somewhat on the low side). We further
assume that the mapping is fully associative or ¢ = 0,5 =n.=n, —n =38,
and that each user can have 2'2 = 4096 pages maximum.

The various parameters arc thus

n,=n, +n, =8+ 10 = 18

s=n, =38 qg=10 ng =10 u==6

N,=n,+n,=10+ 18 = R4
N,=n.+ n, =18 N, =12

From Fig. 9.6-5, the minimum storage capacity for full translation for all
20 = 64 users is

Directory Storage

e = 28 = 256 words

ny, + 25 =10 + 16 = 206 bits word

Table 11 Storage
2N = 218 = 256K’ words

1 + 5 = 9 bits/word

The table storage requires a 100°, increase in addressable words or entrics
at a minimum of 2 bytes/entry, assuming 8 bits;byte. Note that a similar
storage capacity would be required for Table 1 if it is all stored in main
memory. The full directory requires one-thousandth as many addressable
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FIGURE 9.8-3  Address translation on typical virtual memory system using tables and partial
directoty.

words as the main memory, with a minimum of 4 bytes entry. The latter thus
seems more reasonable except that 2 = 256 associative compares arc re-
quired, whereas the table needs no associative compares. Both methods
appear to be rather expensive, and the designer is faced with a dilema that
is solved by the use of both, as previously indicated. This solution is shown
schematically in Fig. 9.8-3 for typical commercial systems. A CPU reference
to main memory initiates the address translation simultaneously to the small.
fast. partial directory and to the slow Table I1. Since the partial directory
contains only a few (e.g.. 8 or 16) of the most recently referenced pages. a
page may be in main memory but without an entry in the partial dircctory.
[f' the latter is true, the translation proceeds by way of Table I1. The real and
virtual addresses of the page are then entered in the partial directory, since
itis most likely to be referenced next. If the required page already was present
i the partial directory, the Table 11 access would be aborted. When the
required page is not resident in main memory, a page fault occurs. Then
Table I must be accessed 10 obtain the real address as discussed in Section
9.3.
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For the partial directory scheme to be eflect, it must have a high hit ratio.
A small hit ratio would require excessive translations via Table I1 in main
memory, which would seriously deteriorate system speed. The partial direc-
tory must contain enough entries to achieve a high hit ratio. thus it is an
important design parameter.

The above analysis assumed that all 64 users used the maximum number
of virtual pages and all 64 tables were stored in main memory. Two serious
objections are first, few users actually use the full virtual memory size.
second, in the normal course of operation, programs are completed and
new users must be entered. Thus it would be desirable to make these tables
pagcable just like other data, to permit relocation as required and also to
provide a means for acquiring a variable table length. For the most general
case, a pageable table (Table 1 or 11} requires a table hierarchy and auto-
matically provides a means for variable table length. The need for a table
hierarchy can casily be understood as follows. In general, the maximum
size of Table 11 for any given user can be much larger than one main memory
page slot. If Table II is divided into many such page sizes, physically each
page can reside in any real main memory page slot, but logicully the table
must be contiguous. Thus some means is necessary to associate the logical
contiguity with the random physical locations. This can be done with a
small, additional table that maintains a listing of the real origin of any portion
(page) of Table I1. If this additional small table excceds a page slot size. there
must be another level of this table hierarchy. The number of levels required
in this table hierarchy for accommodating a single logical Table I1 for each
user can be deduced from a knowledge of the page slot size of 2™ bytes or
words, the maximum number of virtual pages per user of 2V, and the neces-
sary number of bytes or words per table entry B,. Let us assume for sim-
plicity that B, can be expressed as a power of 2. or B, = 2", A page slot then
holds a number of table entries given by

4N,
number of table entries per page slot = ;} = 2% (9.8-1)

In effect, the table entries in this page slot are addressed by N, — i, address
bits. If we assume that any additional levels in this table hierarchy also require
B, bytes or words per entry, the number of levels can be determined by the
number of groups of N, — n, address bits required in the total virtual ad-
dress per user N, Thus the number of fevels in this tuble hicrarchy is the
higher integer value of the ratio of total table address bits divided by the
eflective address bits per page slot, or
t

number of levels in page table hicrarchy = {\r‘ - 1 (V.8-2)
N, —n,

r
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Obviously a one-level table results when N < N, — n,. In the previous
example we had N, = 12, N, = 10. and n, = 1. Substituting these into
(9.8-2) gives

12
number of levels = [19“—’ =2

Thus our one long contiguous logical table of Fig. 9.8-2 for each user would
require another level to contain the origin of the various pageable parts
of the actual table. The next section indicates that the virtual address space
and page sizes result in the need for a two-level table in [BM 360,370 virtual
system and a theec-level table in Multics.

If the external page table, Table 1, is stored and paged into main memory,
it must be handled in a manner analogous to that given. The number of
bytes or words per entry may be different as a result of additional information
which is conveniently stored in these tables.

It should be clearly understood that these translation tables arc not fun-
damentally necessary. The address translation can be done in hardware with
atag store. Most commercial virtual memory systems use such tables created
by softwarc and paged into main memory because they provide a flexible,
cconomical scheme. In addition to address translation. these tables can
provide such other functions as the control of access rights and sharing of
pages among users. These multiple functions are often incorporated into
the table because of convenience and economy. Fundamentally, they can
also be done in other ways with hardware or software. The details of such
subjects require a consideration of the overall architecture of a virtual com-
puting system that is beyond the scope of this chapter.

The replacement algorithm typically used in virtual memory systems is
some form of a “not recently used ™ algorithm discussed in Section 9.7. The
page usage and control information can be stored in hardware/software-
created tables, or both: typically combinations of both are necessary. The
various commercial and supervisory systems offer wide variations in details.
but not in principle.

Current virtual memory systems tend to implement considerable amounts
of the necessary functions in software for economy. However this has created
enormous supervisory programs and tables that not only are complex, but
consume cver-increasing amounts of main memory. It can be shown that all
these functions can be implemented in associative-type hardware either in a
separate array or on-chip as in Section 9.13, while still providing overall
system flexibility and fine-tuning capability. This hardware would be highly
desirable if sufliciently inexpensive and reasonably fast. Eventually the new
high density, low cost FET may take over more and more of these functions.
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9.9 EXAMPLES OF VIRTUAL MEMORY SYSTEMS
Examples of a few large virtual memory systems are included here.

9.9.1 Ferranti Altas

One of the early paged virtual memories, the Ferranti Atlas, used a 98.304
word magnetic drum secondary store paged into 16K’ core primary store.*
The total logical address length, N, was 20 bits, allowing a maximum of 1M’
words for all users. This was the total size of secondary storage permitted
on the system, and it was all addressed randomly by the 20 bit logical address.
Hence there was only one mode of addressing. and the system represented
the first operating example of a one-level store. Secondary storage was divided
into 2048 pages of 512 words/page. Thus the logical address consists of 9
lower order real bits and 11 higher order virtual bits (i.ec. N, = 9. N, = 1,
as in Fig. 9.9-1. Main memory (primary) thus contained a maximum of only
32 page slots, which requires a higher order address length of n,. = 5 bits.
Hence the address translation must convert the 11 bits of N, into an IF
(yes/no) command and a 5 bit page slot address specifying WHERE the
desired page is in core. This is accomplished by a tag directory. Each of the
32 page slots in primary store is assigned one register or word of the directory.
The 11 bit virtual address tag N, of the correct page stored in cach primary
stot is maintained in the directory.t For translating a given logical address.
the 11 N, bits are associatively compared with the 11 bits of all 32 tags in the
directory. If no match is found, a relocate cycle is initiated. Ifa match is found,
the register (i.c., page slot number) of the directory is flagged. and its address.
expressed as 5 bits binary, is used as the higher order bits n, of the primary
store address register as shown. The 9 real bits complete the 14-bit address
required to select one of 16K’ words in primary storage. When a miss occurs.
location of the desired page on the drum is accomplished by use of a page
directory (i.e., Table I of Section 9.8). This table stores the 11 bit logical page
address and the associated correct drum address. The 11 bit logical address
of cach page is scanned sequentially until the correct drum address is found.
Subsequently that address is used to read the desired page into primary
storage. This tag directory is similar to the cache directory used in the [BM
model 85 in that the binary address of the entry in the tag directory serves as
the higher order address bits of the primary address register. In other words.
since there is a one-to-one correspondence between the position of the tag
in the dircctory and the position of the page (or scctor in model 85) in the
primary store, in essence Map 3 (Fig. 9.5-9) is direct.

* In addition, there was approximately 4M words of tape storage for I-O.
+ A twelfth bit for storage protect is also stored in the directory.
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FIGURE 9.9-1  Schematic of virtual paging scheme on Ferranti Atlas.

To determine which page to remove from core to make room for a new
page, the Atlas system used a learning program, part of which is similar to
the LRU algorithm. Each of the 32 page slots in primary storage has as-
sociated with it a “use™ bit stored in a separate register. Hence there are a
total of 32 “use™ bits. A given bit is set to 1" whenever a word from the
current page in that slot is used. The learning program reads these bits
destructively, setting them to 07 but storing them in a new list in a subsid-
lary memory (private store). These “use™ bits are read every time 1024
instructions have been exceuted as determined by an instruction counter.®
These bits are added to the subsidiary store list, then used by the program to
update two scts of imes also stored in the subsidiary memory. Thesc times
consist of 32 values for r and 32 values for T, one of each for each page slot
in primary storage. The vatue of ¢ is the length of time¥ since the current page
in that page slot was last used: T 1s the length of time of the last previous
period of inactivity of that same page. A page is then removed from primary
store based on three simple tests in the following order of priority: remove

* This is not real time, since T O interrupts can cause real time to be any value.
“Time measured in 1024 instruction intervals.
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the page that has

I.t> T+ L.
. Maximum value of (T — 1) with 1 # 0.
Maximum value of T with all 1 = 0.

Wt

The first rule selects the page that has been out of use for the longest time,
hence is equivalent to LRU except that in this casc it is possible for no page
to qualify. Rule 2 ignore pages in current use (t = 0) and selects the page
that will not be needed by the program for the longest time. If the first two
rules fail, rule 3 ensures that one page will be selected and also that if this
page is immediately required again, T becomes 0 and the same mistake will
not be repeated on the next page replacement.

When a page is relocated back to the drum, a mcans is also provided to
store the value of T so that when this page is once again called to primary
storage, the value of T is set in the subsidiary memory.

The Atlas was not multiprogrammed in the sense that program control
was not transferred when a page miss occurred. Nevertheless, it was parti-
tioned such that output from a previously completed program or input for
a new program could share main memory during idle cycles (e.g.. page
misses) of a third program that was being processed.

This machine thus represents a one-level store of a very simple type. One
limitation 1s the small number of page slots. Also, and more scrious. is the
maximum of 1M’ logical words to be divided among all programs if there
are several programs resident at one time. It 1s more desirable to allow cach
user to have the full 20 bit addressing capability of the system and to multi-
program the entire logical address space. However this could not be done
because there was no user ID register, hence no “u” bits as in Fig. 9.3-2.
This feature evolved in later systems.

9.9.2  IBM System 360/370 Virtual Memory Fundamentals

The IBM virtual memory systems implement the various requircments of
Section 9.3 in a manner very similar to that outlined in Section 9.8 in the
following way:*
1. Page Muapping Function. This is fully associative both from diskt to
main memory and from main memory back to disk.
2a. Word Addressing. Pages consist of from 1K’ to 4K’ bytes. depending on
model.

* This section 1s not intended to be a full description of IBM systems: it merely indicates how
the fundamentals are implemented.
+ In some systems the secondary store may be drums, disks, or a combination,
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b. Page Address Translation. This makes use of a partial tag directory and
table schemes to capitalize on the strengths of each while minimizing
the respective weaknesses. The tables make use of a Table I and Table I1
as described in Scction 9.8, and both are implemented entirely in soft-
ware.

3. Puge Replacement Algorithm: An approximation to the LRU algorithm
is implemented in various ways, depending on the system.

a. /0 Processor. This function is provided by the channel coupled to the
control units as explained in Section 9.2. The channel is a basic part of
system 360 and 370 architecture, with or without virtual storage.

b. Storage Protection. This is provided in the form of keys associated with
each 4K’ word module of main memory. The modules and keys are
assigned by the operating system and only protect SUPErvisory programs
from unauthorized usage. They do not protect users from cach other and
are required irrespective of the virtual memory.

¢. Sharing of Pages. Global sharing of supervisory programs is implemented
by way of Table 1L

We now cover the address translation in more detail with particular
reference to the system 360 model 67, although the basic concepts pervade
the 360/370 virtual systems. The CPU logical address is 24 bits, {32 bit version
available on 360/M67). This provides a virtual store of 2** = 16M’ bytes/
user. The user ID bits in Fig. 9.8-2 are maintained in a separatc 32 bit register
as shown.

The maximum value of n, is 24 bits, which would allow 16M' bytes of main
memory. However n, is generally much smaller but has a lower limit for
cach system (e.g., for the model 67, 18 < i, < 24). Some typical parameters
for a system might be as follows.

Since fully associative mapping is used,
s=un, <12 ¢ =q=0 s =N, =12
s # s except in special case of s = maximum value

n, =13 or 256K’ byte main memory

n, =n, —n,= 6Dbits

N, =n, = 1010 12 bits or 1K’ to 4K’ bytes/page
N = 24 defined by system 360,370 architecture

In principle. the address translation function is implemented cxactly as
as shown in Fig. 9.8-3. To allow a relatively large number of page references
to be done fast, only 8 of the most recently used pages arc kept in a partial
directory, as illustrated in Fig. 9.9-2 for the model 67. This associative direc-
tory compares all the s” (i.e., N,) bits to determine a match: hence u bits are
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FIGURE 9.9-2 {BM 360, model 67, address translation, using small partial directory tfor the
eight most recently used pages.

unaccounted for. These bits must be decoded or an invalid page could be
referenced by the s bits found in a matching word. These u bits are taken
care of by the use of control bits 36 and 37 of the associative register. When-
ever a specific user is first given control of the CPU. these two control bits
are sel to 0" in all words of the register, meaning none of the pages is valid.
The given user must first reference pages through the tables. after which
time the associative register is loaded with the virtual address N = ' and
the correct value of s for that page of that user as shown. This correct value
for s is obtained from the page table, to be described shortly. When a page
address is loaded in the register, the control bits 36 and 37 are both set to
“ 1™ to indicate a valid page for that uscr. A user must reference cight dif-
ferent pages through the tables before the partial dircctory is full. When all
entries are full, such that all bits 37 equal = 1,” they are all set cqual to =07
and bit 36 of all is still “ 1.” A subsequent reference to an already present page
will reset bit 37 to ™17 for that page. Thus bit 36 indicates the presence of a
valid page, whereas bit 37 indicates usage. In essence. then. bit 36 is the control
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bit that indirectly decodes the u bits while bit 37 is used as a means for re- 52 "
placing entries. For instance, if a page reference is found to not exist in the o3 a
directory, the first entry with bit 37 equal to *0™ is replaced by the currently £ W Wk ;@_ g g
demanded page. Note that this does nor constitute the page-swapping o g g L 25 o] g
algorithm from sccondary disk to main memory. rather, only replacement g E E 'g 3’2*2‘: =
within the directory. This small directory does nor perform a full address s gmg gy So golug &
translation as would the directory of Fig. 9.6-4a or b. The currently demanded 5z ggf 2 ¥ E 58 éga £
page may be in main memory (in the table described below) but not in the §§ “,(‘Bom :; g—:,‘ U <8 5% =
directory. If the CPU control switches between users too frequently, of Ex 5‘% x EZ2 S 2z @
course, the partial directory is of little value. Hence a high hit ratio is desired. 8z ‘3€¢ 9 8w 57 of 3

The main memory obviously holds more than eight pages. If the desired e = \\ e
page is not one of those contained in the partial directory, the IF and WHERE i =11 1 f
arc determined from a Table 11 much as that shown in Figs. 9.6-1 and 9.8-2. | [ I \\ K
Actually the table scarch is initiated simultaneously with the partial directory | — } } { \
as in Fig. 9.8-3. Table T and IT can each be organized as one list as described ! g |1 \\\ \
in Section 9.8. However the need for pageability requires a multilevel table g : g, o1 \ \\
hicrarchy. The number of levels is given by (9.8-2). For the current case, the ¢ | ;_‘.j Lo \:
real page address N, can be from 10 to 12 bits. the number of virtual pages I = ! \\\ e
per user N from 14 to 12, respectively. and n, = | (2 bytes/table entry). = 2 wily ) |
Substituting these into (9.8-2) gives for IBM 360,370 table hierarchy | & | %

number of Levels = 'ilAO]jl—l to (ﬁl:]-’ i ® § hﬂ i -
i
. | i
=2 o !
B g T 880 ;

This two-level table hicrarchy is organized as follows. Referring to Fig. 9.9-3. é i | % % Q
assuming N, = 12 bits, the N|. bits of the CPU logical address are divided =l &l Qg
into a 4 bit segment and an 8 bit page portion as shown to form a segment & 5 ' ;9: ¥ <>
table and multiple page tables. Each user can have up to 2* = 16 scgments, ES izt_uj o) Q
with cach segment having 2% = 256 pages for a total of 4K’ pages per user 'E 5 ;(‘;2‘2 o - :
as required. Each of the 16 segments of the segment table contains the origin H 305 > 2 Y
address of one page table for that user. > =2z o TN . g— ('\1_'_

The address translation by way of this table hierarchy proceeds as follows. — Sg { E‘Eﬁ T “ ' Z
T : » : < o . , z3 "ol 0 6 -
I'he user ID register contains the 24 bit address of the origin of a given user’s S5y JdPTL g <
segment table in main memory. The 4 bit portion of the CPU logical address °  pE I S=a 9 w
represents the lower order address bits and indicates how deep the desired gg =" goe é&@ . r
word 1s within the table. The so-located word contains a length portion, a 5% ":,137 z08 @ ]
page table origin address. and a control bit. The control bit indicates whether E@g i —-— ! ég%}’
the required segment of pages is actually present. The length portion is tzf?é qx;orl\ls)_(;\l?%%as%%%%ud g

compared with the 8 bit page portion of the CPU logical word only to save
time. The comparison is done very fast in CPU hardware and tells whether
the page table is large enough to possibly hold the page identification bits.

REGISTER

IBM 360370 virtwal memory showing address translation using segment and page tables.
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If yes, the page table portion of that scgment word points to the origin of the
page table and the 8 bit page portion of the CPU logical address indicates
how far into the table to go. The so-located word then produces the one-bit
yes/no or IF control as well as the correct s bits, which are then placed into
the memory address register for subsequent reference to the correct page.
The lower order N, bits in the CPU logical address translate directly into
the n, bits of the memory address register, hence the table hierarchy works
exactly as the single table in Fig. 9.8-2. The external page Table 1 is trcated
in exactly the same way. For convenience Table I is appended to the bottom
of cach “internal page table™ in Fig. 9.9-3 (not shown). Note that for the
example given, the Table 11 slot occupies a maximum of 256 entries at 2
bytes/entry or 512 bytes. Since the assumed page size is 4K’ bytes, the re-
maining portion is allotted to Table 1. When a page fault occurs, Table 1 is
addressed as in Table II except the 8 bit page address is displaced by the
appropriate amount. This seemingly complex system provides overall
flexibility in virtual system implementation and compatibility among dif-
ferent models. The supervisory program is granted complete flexibility for
control of the primary storage consumed by the various segments and page
tables. These tables may be stored permanently for each current uscr or
swapped dynamically as needed. IBM 360/370 batch processing systems
generally load the full page tables. both Tables I and I1, at the time a user is
made active in the CPU. In time-shared systems, when a user is in a wait
state his cowaplete Table 11, or only part, may be removed from primary
storage if necessary. All these possibilities are design options that must bc
cvaluated in terms of the actual system and type of job stream environment.
Different types of virtual supervisory system. IBM CP67, VS1, VS2, MVS.
TSS, as well as Multics and others handle these tradeofls in different ways.
There does not appear to be one best approach. In any case, the overall
architecture of a hierarchy for Table 1T provides considerable flexibility.

A two-level table also facilitates global sharing of pages among users, al-
though other techniques may be used. Two users may share a page by having
the “page table origin™ portion of each user’s scgment table contain the same
information. hence pointing to the same page table in main memory. Sharing
could be done with a one-level address table but becomes unwieldy.

A fundamental characteristic of this system is that the segment table
consists of contiguous words in main memory. Consequently, if a user’s
storage requirement overflows from one segment into another, the higher
order segment address bits are incremented by one to allow addressing of
the next segment. In other words, addressing between segments is continuous.
One disadvantage is that the user is limited to a finite number of segments,
namely. 16 maximum in this case.

Since all references to main memory must proceed by way of the memory
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address registers, the pointers form the user’s [D register pointing to a
segment table, the segment table word pointing to a page table, and page
table pointing to actual page must be correctly loaded and aligned in the
memory address register. This requires some control logic but is rather
straightforward in principle and is not considered further. The replacement
algorithm is essentially the “not recently used” algorithm described in
Section 9.7 and is primarily software implemented. The various supervisory
programs use varying number of historical H bits, called unreferenced
internal count (e.g., VSI uses 1 bit; MVS uses 8 bits). Storage protection
makes use of a storage key that is associated with cach 2048 byte block of
main memory. Each program is assigned a protection key that is stored as
part of the status word, or In a scparate arrdy. A memory reference into any
specific block of main memory is permitted only if the user’s protection key
matches the storage key, or if the former is zero. These keys only protect the
supervisory programs from unauthorized access.

9.9.3 Honeywell Multics Virtual Viemory (645 Processor)

The intention behind the original Multics was to allow a user to program
any problem with essentially an infinite number of scgments. The system
has evolved over the years, taking on various forms. In one form. the
Honeywell Multics (Multics, 1972; Organick, 1972) allows a user to program
up to 2'% segments with 2! words;segment. In other words, the processor
effective logical address is 36 bits long and each user may program as if a
main memory of 23¢ bits were available. But the main memory address
register can contain a maximum of 24 bits and the real main memory may
be smaller than this (e.g., 2'® words, or 18 bits effective main memory address
register as in the previous example). Thus it is nccessary to translate thesc
36 logical address bits plus a uscr ID into a rcal address of 18 to 24 bits
specifying WHERE the required word might be and [F it does in fact reside
there. This address translation function, assuming the logical address to be
alrcady available, is performed in a manner very similar to that in Figs.
9.8-2 and 9.8-3 but with some practical differences in detail. Memory and
storage are divided into pages of fixed length (1024 words). The 10 lower
order address bits of the logical address are real: hence as in all previous
cases, these bits address one of the words in a page. This leaves N, = 36
— 10 = 26 bits/user for addressing pages. Since the table used for address
translation must be pageable, a multilevel table hierarchy is required. Since
N, =10 and N, = 26 bits, assuming n, = | bit (2 bytes table cntry), the
number of levels for Multics, from (9.8-2), 15

26
number of Level 9 = [10_1 l =3
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Obviously the larger virtual address has resulted in a more complex table
hierarchy. The Multics address translation (Fig. 9.9-4) is implemented as
follows. The origin of each user’s first table is contained in the so-called
descriptor base register, which is the user 1D register described previously.
This register contains the real core address of the first table for address
translation and a ficld L, which specifies the length of the descriptor segment
table in main memory. The processor logical address consists of two major
components s + i, cach of I8 bits for 36 bits total. This logical address is
divided into four components, namely

s+ i=sc+ s+ i+,

These are used in conjunction with the descriptor base register (user 1D) as
follows. Referring to Fig. 9.9-4, the length bits L, of the descriptor base
register are compared with the s bits to determine whether the first sct of
scgment tables is long enough to contain the desired information.® If *yes.”
the u bits are catenated to the s, bits to give the origin address of the page
table PT, of the descriptor segment.t A flag bit F indicates presence or ab-
sence of the desired entry; F = ON indicates “not present.” This flag provides
one part of the “1F™ translation function. If the flag is ofl. the contents of
this word provide the origin address of the page of the descriptor segment
table P, and the s, bits increment to the correct entry in that page. The
entry in this table contains the origin address of the page table, a length L,,
which specifies the fength of the segment, an access field ACC, which specifics
the access rights of this segment, and a flag bit F as before. The ACC field
provides storage protection at the segment level. The second flag bit provides
further “[F ™ translation. Assuming that the F bit does not generate a fault,
the binary value of the L, bits is compared with the 7 bits to determine if
the next table PT, is long enough to contain the desired information, as
before. If L is less than i, a miss is generated. If L, is greater than i, the ACC
ficld is compared with the operation code of the instruction to determine
whether the specified operation is permitted. If ~yes,” the origin ficld points
to the page table origin and the i, bits select one of 256 words in the page
table PT,. This page table likewise specifies the true higher order address
bits of the required page: the 10 lower order address bits i . which are real
and equivalent to N, previously defined, give the correct word. The last two
address bit fields constitute the final memory address as shown in n,,.

This table translation works in principle just as that described 1n Section
9.8 and previously except for details of the control bits and number of com-
ponents into which the CPU logical address is divided. Because of the large

* These tables need not be tilled.
7 The nomenclature is that used by the Multics system.
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size (36 bits), of the logical address, this translation uses three tables; which
are stored in main memory as needed. The address translation by way of
these tables can be very slow, requiring three memory accesses plus a final
access to the desired word. To speed up the translation process, a small,
partial directory stores several of the most recently used pages just as in
Fig. 9.8-3.

The implementation of Multics in the 6000 series machines works much
as the 645 except two small partial directories are used (one to store several
scgment descriptor words and one to store several page table words); also
the fleld formats of these table words have been changed somewhat for
more cfficient operation (MULTICS, 1972).

In the Multics system, the Table I required for keeping track of all segments
on the secondary storage is maintained in a file hierarchy called directories.
As with other similar systems, this directory hierarchy is implemented
cntirely in software under direction of the supervisory program.

The original Multics on the 645 supported two page sizes of 64 and 1024
words, the choice being left to the programmer. This reflected the historical
concern of variable segmentation versus fixed page size. The 6000 series
processors support only one page size (1024 words), although page size can
be changed by field modification to any power of 2 from 64 to 4096 words.

9.9.4 Comparison of IBM and Multics Virtual Systems

We have already seen that the virtual memory address translation is nearly
identical for the IBM and Multics virtual systems. The major difference
comes about from the use of symbolic segment referencing in Multics, where-
as IBM systems use linear segmentation. This basic difference gives rise to
rather different ways of generating the logical address within the processor.
I'he difference in address formation has some effect on the undcrlying virtual
memory subsystems but only results in some practical differences in details
such as the organization and amount of information stored in the various
tables (essentially Table 1 and Table II)., the manner in which these tables
are searched, and the method of sharing and protecting segments.

In Multics, the symbolic segment names are converted by the supervisory
system to segment numbers —namely, the address s—in a manner that
prevents the programmer from knowing what value of s will be assigned.
Hence two successively referenced symbalic segments do not get successive s
numbers except in rare coincidences. Such a scheme provides complete
cenerality of segment names within a procedure scgment and is desirable
from a logical point of view. Howerver it can lead to practical problems.
Suppose, for instance, that a large problem is being executed which requires
more than one segment (i.e., more than 2'® pages). In particular, suppose
two segments arc required. An instruction in scgment | may branch to a
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word in segment 2 and then wish to come back. The programmer knows
that in his program (virtual space) this required word is a certain number of
memory references from the branch instruction. In logical memory space,
however, since the branch must cross the segment boundary, the actual
number of memory references cannot be known to the programmer before-
hand. This is true because the linkage mechanism assigns the two segments
noncontiguous locations in the descriptor segment table. Hence the program-
mer cannot use a simple indexing scheme to cross the segment boundaries
but rather must use a more complex method of indirect addressing. In the
IBM systems, during execution time, each user’s segments are loaded contig-
uously in his separate segment table, ensuring that the boundaries between
segments are contiguous: that is, the logical address of the last page of the
first segment C is contiguous with the logical address of the first page of the
second segment C + 1. Thus segment boundaries can be crossed with simple
indexing.* It can be seen that this segment linkage difference is completely
independent of the virtual memory subsystem. In fact, this difference comes
about mainly from the method of compilation (or assembling) and loading
of the source program. In the IBM systems, segments are assigned specific
numbers and predetermined positions in the user’s segment table. Con-
secutive segments are loaded into consecutive positions, hence are lincarly
related. In Multics a position in the segment table (descriptor segment) —
that is, a value for s in Fig. 9.9-4 —is not assigned until execution time: there-
fore the positions of segments in the table are not related in any way. These
types of segmentation are known as linear (IBM) and symbolic (Multics).

In a nutshell we can say that the Multics and IBM virtual memory systems
differ mainly in the way the general logical address is formed. with Multics
maintaining symbolic segment representation and IBM using lincar segmen-
tation. The virtual address translation, mapping, paging, and replacement
display practical rather than fundamental differences.

9.10 CACHE MEMORY SYSTEM DESIGN CONSIDERATIONS

A cache memory system represents a type of memory hicrarchy that attempts
1o bridge the CPU -main memory speed gap by the use of a very small. high
speed random access memory whose cost per bit is roughly 10 times that of
main memory [sce (1.3-1)] but whose total cost is relatively small because of
the small size.

The cache-main memory hicrarchy is really a virtual hicrarchy of a limited
variety, since the CPU now can reference stored data only through the cache.

* This continuity across segment boundarics exists only for the logical addresses. The real
physical address is seldom continuous but is of no concern.
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and main memory assumes the role of secondary storage. The only difference
is that here the secondary store is directly addressable out of the main memory
address register, whereas when secondary storage is a disk, a completely
different accessing method must be initiated by way of the 1O processor and
controller. Otherwise, the same concepts are used for both and the samc
fundamental problems arise. However the method of implementation is
usually different because of the high speed demanded by the entire cache -
main memory hierarchy. Thus this hierarchy usually has the addressing.
paging, and other extra requirements implemented in special hardware,
whereas a multiuser virtual memory is usually implemented by a combina-
tion of hardware and software features.

To understand the detailed organizational aspects of cache, it is essential
to keep in mind that the primary requirement is speed, particularly the access
and cycle time to a given page. Thus we have a demand for high speed both
in the basic cycle time of the cache and in the address translation function.
Speed is also of some concern in the page replacement function for moving
pages out of and into the cache. One can imagine that the use of special logic
control function similar to the 1:O processor in Section 9.2 could be used to
free the CPU during a page replacement. In other words. the time required
for page replacement could be overlapped with CPU operation by cycle
stealing during contention references or by available open periods for mem-
ory references due to the problem statistics (e.g.. “multiply” may require 3
to 10 or more CPU cycles between memory references). Unfortunately,
transferring control to another user’s page requires a considerable amount
of processing in itself, which can be greater than the time the CPU remains
idle during a page transfer. This is true only when the speed difference between
cache and main memory is not loo large, when a wide data path between the
two can be achieved, or both. Section 9.4 indicated that a page size of about
64 bytes is adequate for cache. The data bus width can be 8 or 16 bytes per

memory reference: if the latter. only four main memory cycle times are inter-
leaved to achieve the page relocation. This can greatly speed up the system.
The remainder of this section explains how the need for speed influences
the organization of the address translation. Before proceeding, the reader
should be thoroughly familiar with the gencral operation of virtual memory
of Section 9.3, especially the fundamentals of mapping and address transla-
tion of Sections 9.5 and 9.6. We make use of the fundamental system diagram
of Fig. 9.3-2. The only difference is that secondary storage is now main
memory, the cache being primary storage. We can use the same notations
and definitions for address bits as previously.
As before, the lower order bits N, = n, are rcal. The problem is to translate
the higher order N, bits to specify IF the desired page is present in the cache
and if so WHERE. Both these should be done on one memory cycle if at
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all possible. This eliminates the use of a table (Fig. 9.6-1) for translating the
ng + 8" bits of N, leaving only tag directory schemes, Again bccﬁusc oéf 1hL'
r‘leed for versatility in physical page location, Map 3 of Fig. ;;)5-9 slﬁould b(:
tully qssociativc, suggesting the tag store schemes of Fig. 9.6-4. Wc ﬁssumt
a minimum directory with ¢ = n,. For Map 2 of Fig. 9.5-9, § comp’ikrcg ‘1rh‘
quFll‘er, ‘dl?d since S depends on the mapping f‘unclion.‘ this is ‘; m';'o:
decision. Direct mapping with S =1 or s = 0 is unworkable bccwus;‘]ol‘
page slot 90ntcntion problems. Fully associative mapping would hl\L 1o
be done with an associative memory, which is not only expensive but ‘would
be stower than a random access memory. Hence a set associative manpin
scems more feasible. The value of S must be chosen such that a page ()rr\)\lf)ordg
access can be done in one cycle. This seems to be comradictofykccause S
associative compares must be made simultancously, which implies at ]éaé[
a partially associative memory. In other words. we must make S com arés
in one gycle. How can this be done without an associative directory”? II:Jon;
ussouagvc memory requires that the compares be made external 'to the
array. Simultaneous compares require that all § tags be available on on
directory fetch. Together these requirements mean that a physical Worg
must bc.a composed of S logical words. each logical word with iis ;\\'n tag
as in -Flg. 9.10-1. Each physical word of the directory is thus composed ((L}
S .loglcal words. Obviously while there are only 2¢ physical words tr;lérc ar)
still 297% = 2" [ogical words, as required in Fig. 9.6-5. A set is 110\;/' s‘peciﬁcg
by one physical word of the directory, and when one such word is‘sc]cctcd
by the ¢" address bit of the logical address. all S tags appear in the >dircct0r
output buffer register. Since we do not know which if any of the logical WOl'd)S
Is correct, S compares are still required. as shown. These can be done simul;
taneoqsly, and when a “yes™ is obtained, the correct page origin address in
cache is immediately available. Thus retrieval of the dc;ircd word rcquircs
one access to the page directory and one access to the cache itself. If no match
gives a.“ycs“ answer, the required page is not present and a relocate cycle is
n}jmcduucly initiated. This entire system is identical in principle to that of
Fig. 9.6-4 except for the use of several logical words per physical word w(hich
allqws several simultaneous external compares. The compare functi(;m can
be implemented in high speed CPU register technology. hence il]l]‘(;(iLlLC‘
very small additional delay. i )
One might ask, Why not make the tag directory contain more entries?
Why not !el ¢ = N,, reducing the number of associatively compared bilsi
to s (see Fig. 9.6-5)? This can be done in principle. but since primary storage
only comaips 2% = @ set slots, there would be a considerable numbcruof
wasted entrics in the table. Only 27 entries could contain useful information
at any one time, the others being essentially blank. Since directories are
cxpensive, 11 is desirable to reduce the size as much as possible by rcm(;\'ing
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unnecessary, unused entries. which is achieved by reducing the value of e.
For example, assuming ¢' = n, = 7 bits (e.g., Fig. 9.11-2), if we use a directory
with ¢ = N, this requires 2'* = 16K’ physical words. Each word must be
capable of storing 2*(s" + n,) bits, but most entries will be empty at any onc
time. The scheme of Fig. 9.10-1 (or Fig. 9.11-2) with ¢ = n, obviously is
smaller because normally it will be full, representing only the information
part of the 16K’ directory.

The need for speed in a cache hierarchy, coupled with only about one order
of magnitude difference in speed and cost of cache versus main memory.
raises two other important design considerations: “store-through™ and
“load-through.™ In store-through, whenever a change is made in a page
residing in the cache, the same change is made in that page as it resides in
main memory. Thus when a page is to be removed from cache, it can be
simply erased instead of recopied into main memory. Since statistically only
some bytes are changed, store-through can be more ctficient and is often
employed in practical systems. Load-through allows the data from main
memory, as they are being paged into the cache, to be available simul-
tancously to the CPU without waiting for a full transfer and cache rcad
cycle.
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In essence, scratch-pad memories (Section 9.1) operate as a cachelike
virtual memory system except the page is only one word long. The primary
store or scratch pad is very much smaller than secondary storage, hence the
addressing of the scratch pad requires both an IF and a WHERE function
similar to those described in Section 9.3. As originally conceived, scratch
pads were very small (in the range of 256 words). to introduce only small
additional costs.

9.11 EXAMPLES OF CACHE MEMORY SYSTEMS

Early computing systems such as the Univac 1110 used fast scratch-pad
memories to bridge the CPU-main memory speed gap as pointed out in
Scction 9.1. The first computer to incorporate a complete system using
paged cache was the IBM 360/85.

9.11.1 1BM 360/85* Cache

To achieve flexibility and high hit ratios, associative mapping is desirable.
However fully associative mapping requires a large number of associative
compares. A cache must be accessed at high speed, necessitating an associative
memory for address translation. Since this is expensive, the model 85 uses
sector mapping as a compromise between these conflicting demands. Main
memory and the cache are divided into sectors of 16 blocks/sector. Each
block, which is almost equivalent to our previously defined page. COTSISTS
of 64 bytes/block. Hence each sector consists of 1024 bytes (Fig. 9.11-1).
Blocks or pages are mapped in sequential order within all sectors. Hence the
location of any byte in a scctor is fixed so that the 10 lower order address
bits are real. In essence, the six lowest order bits specify one of 64 bytes within
a block and the next four bits represent one of 16 blocks within that sector.

When a miss occurs requiring data transfer from main memory to cache,
only the desired block is transferred. If all 16 blocks of a sector were trans-
ferred, additional, unnecessary delays and degradation in performance
would result. The tag directory is a small associative memory built of CPU
register technology for speed.

For a given logical address, the 14 high order bits uniquely specify the
sector in main memory. Since there are only 16 sectors in the cache, these
14 bits must be decoded into an IF and WHERE function. This is accom-
plished with the tag directory in the following way. An associative compare
is performed on all 16 tags of the directory. If no match occurs, a relocate

* There is no disk- main but only a main cache virtual memory. For a more complete descrip-
tion of this system and the cache, sce TBM (1968).
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cycle is initiated. If a match occurs, the [F determination is “yes™ for that
sector (but not necessarily for the required block). This represents the first
part of the IF translation, indicated as IF; in Fig. 9.11-1. The number of
the physical word of the directory for which the match occurs specifics the
physical origin in cache of that sector. This number, in binary form. rep-
resents the four higher order address bits of the cache, the 10 lower order
bits are real as shown. Since not all blocks of a sector need be present at one
time, a further translation step is necessary to determine IF the required
block is present. This is done by storing a “validity ™ bit for cach block in
cache, hence requires 256 such bits. Each validity bit, normally *0.” is set to
“1” when a block is placed in the cache and reset to “0™ when a sector is
reassigned. The remaining IF translation (IF, in Fig. 9.11-1} is then ac-
complished by testing the proper bit for the specified block: 17 = yes.
“0” = no. Thus two processor cycles are required to fetch a given byte from
the cache. The first cycle simultaneously searches the tag directory and the
validity bits to determine I[F and WHERE the data are in the cache. The
second cycle fetches the data out of the address specified by the first cycle in
combination with the real address bits. These validity bits arc stored in CPU
logic registers. Selection of the correct bit is done by using the four bits
decoded from the tag directory plus the four higher order bits of the 10 real
bits of N, as in Fig. 9.11-1.

When a miss occurs, the least recently used sector is replaced. This is
determined by a logical stack that maintains a logical ordering of sectors
in terms of usage. When a sector is referenced, its number is moved to the
top of the stack. Hence the bottom of the stack always specifics the least
recently used sector. This logical stack, like the validity bits, is implemented
entirely in CPU logic hardwarc. The model 85 cache uses both store-through
and load-through to increase overall speed.

The bus width for transfer of data from main memory to cache is 16 bytes
in parallel because the physical words of main memory are 8 bytes long, and
two units are paired to give and effective word size of 16 bytes or 128 bits.
Since a block is 64 bytes, four main memory words are required. Each of
these is stored automatically in four separate memory modules. which can
be separately accessed (i.e., four-way interleaved at time intervals equal to
the cache time). Hence transfer time is approximately one main memory
access time plus four cache times or about 0.880 + 4(0.080) = 1.2 uscc.

Performance studies (Liptay, 1968) on 19 job streams of about 250,000
instructions each and simulated on the model 85 cache gave a hit ratio of
from 92 10 99 °;, with a mean of 96.8?,. Though adequatc in many cascs, the
sector mapping did not provide the high hit ratios desired for such large
systems. The difficulty is that when a miss occurs and the required block
belongs to a sector not present in the cache, an entire sector must be removed.
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This means that up to 16 blocks are removed, and even though being the " @
least recently used sector, one of these 16 removed blocks has a high prob- € B . ‘.‘.’L W e
ability of being referenced subsequently. Nevertheless this system demon- 5"8‘ . E:J’ c §5
strated the power and utility of the cache concept. The subsequent IBM gj z o} N i E%
| models 360/195, 370,158, and 370,168 use set associative mapping for their %Z, © } —|r|3E
‘3 cache—main memory hierarchies. %% 2 —||&
‘ 9§ } b
9.11.2 IBM System 360 Model 195 Cache* _:_ Q' g ;
w
This cache memory consists of a random access arrdy using the organization —{ M %gﬁ P
of Fig. 4.9-5. The cycle time of the array itselfl is 54 nsec, which equals the ~ ;’§<L§ <
basic processor clock cycle time. Pages are 64 bytes long, since this length is ﬁ
more optimum, as previously described. The cache capacity is 32K’ bytes. or . 4 T
512 pages maximum. Main memory is IM’ to 4M’ bytes of core storage with :3 Y _k ”tup%
756 nsec cycle time. A physical word consists of 8 bytes; thus one access to a i &0
physical word every 756 nsec produces 8 logical words or 8 bytes. The W 1 1
mapping function is set associative with four page slots per set. §§ 1 s 2
As indicated in Section 9.10, two design factors are especially important. 8™ I
First, it is desirable to perform a memory reference with only one access time 102
to the cache, plus a minimum of other celays for address translation and data §%
wransfer. Second, when a miss occurs, it is desirable to have a fast page transfer &©
from main memory to cache, to minimize any possible subsequent delays. ltﬁai :'“ [~
Considerable concurrency exists in this system by way of pipeline processing. %é { & g
as well as up to 10 instructions simultaneously in various stages of decoding © F--14 F--
and execution. Thus one cannot easily specify exactly what happens on, say. 2 0 _{ uzg WES
a miss, without analyzing an entire instruction stream, yet fast page transfer : Z 2z i
is desirable on an average basis. The first criterion results in the use of a tag " I
directory and associative compares for address translation. gtg’ oy <
The second criterion is fulfilled because the main memory is at least eight- §8 = =
way interleaved.t so that cach of the eight modules can be accessed sep- = 71 T
arately. In this way the 8 physical words of 8 bytes each, which equals one cj) § e w2
page, can be transferred into the cache at the cycle time of the cache. If the < |4 » 2z 44
main memory were not interleaved, 8 cycles of 756 nsec each would be :i =% -~ > [ ]
required to transfer one page, an intolerably long time. o { B ©
To allow fast address translation without consuming large amounts of gé &a 2
additional storage for the translation, the address translation is done exactly . Cal g
as shown in Fig. 9.10-1 but with § = 4 pages/sct, hence 4 logical words per EEE x -
physical word. The dircctory (Fig. 9.11-2) contains 128 physical words, with - 328 =
cach word storing four tags of length ny + § and the correct s + ¢ bits Wi o
Sy
8@°
© There is no disk main but only a main cache virtual memory.
7 2M’ and 4M° byte versions are 16-way interleaved.

2
PHYSICAL {
WORDS
FIGURE9.11-2
mapping.
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associated with each tag. The virtual ¢’ bits are used to select one of the 128
words, which is read into the output buffer register, yielding four possible
locations. Four logical compares are simultancously made of the n; + &' bits
of the virtual address with each of the four tags. Only one of these can give
an equal or “yes,” which then gates the correct page location bits s + ¢ into
the primary address register. Since the n, bits are real. the translation is
complete. If none of the four compares gives a “yes,” a page transfer is
initiated.

Although the cycle time of the cache array itself is 54 nsec and equals the
processor clock cycle time, a full cycle of the system requires three such
cycles for a total access time of 162 nsec. The first cycle gates the information
from the processor to the directory, accesses the directory, and obtains the
correct page address. The second cycle accesses the cache and produces the
required word in the cache buffer register.* The third cycle gates the data to
the proper section of the processor as required for processing. Hence the
data became available for use by the processor only after three machine
cycles. Since any page origin (s + ¢) can be contained in the directory. pages
can reside anywhere in the cache so Map 3" of Fig. 9.5-10 is fully associative.

Even though the directory performs associative compares, it is not an
associative memory in the strict sense. The directory is a high speed, random
access memory with only onc word accessed at a time. The associative logic
is external to the array. It would be desirable to have a fully associative
directory, which would allow fully associative mapping, since better overall
paging efficiency could be obtained. Associative mapping requires a smaller
cache for a given miss ratio objective than set associative mapping. Further-
more, the fully associative design is less sensitive to the particular job stream
being processed, since it tends to optimize itself into the map most appro-
priate for the job. Fully associative design is more expensive, howcever, as
well as slower for typical cache designs (Meade, 1971).

The replacement algorithm is the LRU procedure previously discussed.
Since a page can reside in only one of four possible page slots, the least
recently used page of each set must be tracked. In any design using LRU
replacement, the order of all elements relative to one another in terms of
usage must be stored. For four elements or four pages per set. there arc four
factorial or 24 possible combinations of relative usage. This requires 5 bits
minimum plus an occupancy control bit, giving a 6 bit usage control function
for cach of the 128 scts. These are stored in special hardware with separate
control and updating algorithms. Two other important features used in the
model 195 to increase the overall speed are store-through and load-through.
Store-through merely ensures that when a change is made in the cache. it s

* This register s contained in the buffer storage control unit.
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simultaneously made in main memory. Thus when a miss occurs and the
cache is full, the least recently used page within the proper set can be crased
without having to write possible changes back into main memory. Load-
through arranges the order of page data transfer when a miss occurs. It
ensures that the referenced 8 byte word of the desired page is retrieved first
and simultaneously provided to the processor and cache. The remaining
bytes are then transferred, furnishing the necessary information to the proces-
sor with minimum delay.

The operation of the cache is hardware controlled by a storage control
unit and is not program addressable. The user addresses main memory as
usual, and the cache opcration is transparent to the user. The user’s logical
address 1s equivalent to @ main memory or in this case a secondary storage
address. Table I, needed in Section 9.8 for keeping track of virtual pages on
the disk or in this case in main memory, is unnecessary because this informa-
tion is contained within the user’s program.

Performance evaluation of the model 195 cache (Murphey and Wade.
1970) using 17 job segments indicates that the effective cycle time of the
hierarchy is about 162 nsec, with occasional increases to 175 nsec. The 17
segment job stream contained a mixture of commercial processing and
moderate amounts of decimal arithmetic, scientific, engineering. and systems-
type processing (sorting, assembling, compile, link edit). The average hit
ratio for the buffer during simulated processing of these 17 scgments was
99.67,. Smaller hit ratios give quite adequate performance.

9.11.3 CDC 7600 Memory Hierarchy (Cyber 70 Model 76)

Although the operation of the memory hierarchy in the CDC 7600 system is
quite diflerent in detail from that of the cache concept. it serves the same
purpose—to speed up the effective or apparent cycle time of a large. slow
main memory with a smaller, faster memory. This hicrarchy has certain
aspects similar to the older scratch-pad concept and certain concepts similar
to the cache, hence it could be classified as an alternative to both. This
system 1s not a paged virtual system in the fundamental sense for scveral
reasons. («¢) The operation of the hierarchy is not transparent to the user.
in fact must be programmed in detail (i.c.. no automatic address translation
nor relocation hardware). (b) The number of words that are block transferred
between secondary and primary storage can vary at the discretion of the
programmer (i.c., pages are not of fixed size). Because of these ditferences,
greater involvement is required from the programmer, but more freedom is
also provided for fine tuning the system to individual problems. This freedom
is often useful in scientific problems for which this system was specifically
designed.
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The memory hierarchy within the central procesing unit gonsi§ts basically
of a large core memory (LCM), which is the secondary store in .thns hierarchy.
This memory has a maximum capacity of 512K’ words of 64 bits/word.* The
complete read/write cycle requires 64 CPU clock cycles of 27.5 nsec each (see
Table 1.1-1) or 1.75 usec. This memory is backed by a small core m'emor‘y
(SCM) with a maximum capacity of 64K’ words x 65 bits/word.t Thls
smaller primary store has a read/write cycle time of 10 CPU clock per1'0d.5
or 0.275 usec and an access time of 4 clock periods or.O.l 10 psec. This is
considerably slower than the CPU clock period but is compens.ated by
interlcaving of modules. The SCM is organized logicglly into a maximum Qf
32 independent modules or banks. Since the read,/write cycle time is a maxi-
mum of 10 clock pulses, 10 banks can be in operation at one time. Under
ideal conditions with data that can be perfectly interleaved, the et’fegnve
cycle time is thus one-tenth that of any module; that 1s,.thc successively
operating banks deliver one memory reference on successive clock pglses.
Hence an effective access rate of 27.5 nsec is obtained under ideal COIldltl(?I]S.
In random addressing, far fewer banks, typically only four, are in operation,
giving a longer cffective cycle time of the primary store.}

In operation, block transfers of data from the lar.ge secondary store to the
small primary store require that the program specify the length of the blogk
and the beginning address in both stores. Each of these thr'ee parameFers is
placed in separate CPU registers,§ thus acting as bas_e registers for. simpli-
fying subsequent word addressing during programming. The 60 bit words
are read and copied from consecutive addresses at the rate Qf one word per
CPU clock period. All other activity is stopped dqring this data transfer
except for 1O word requests, which can proceed mmqltaneously. Exqctly
the same circumstances exist when data are transferred in the reverse dircc-
tion, from the smaller memory back to the larger store. Thus it is apparent
that the operation of the primary store is not transparent to the user and in
fact must be programmed in detail.

The architecture of this entire system is very different from that of pre-
viously described systems. The central processor is augmented by 10 peri-
pheral processing units, each with its own memory of 4096 words x 12 bits
{plus onc parity bit) per word. These periphf:ral processors act both as I/Q
controllers and as local computers as described in Section 9.2. This archl-
lecture represents one approuach to the problem of speeding up the entire

* This is a 60 bit word plus 4 purity bits.

7 This is a 60 bit word plus 5 parity bits, » .

* This is quite different from the cache, which has a basic read. write cycle time equal to one
CPU cvcle tume. ‘ . . ) »
Y The total block length is obtained by adding an 18 bit field trom the instruction for BLOCK
COPY 1o the register containing the block length.
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computational process. Increasing the effective speed of main memory is
one important aspect of this larger problem.

9.12  VIRTUAL MEMORY SYSTEMS WITH CACHE: THREE-LEVEL
HIERARCHY

The foregoing discussions and examples have dealt with systems that had
either a disk—main memory or a cache-type of virtual store. In large multi-
programmed systems, it is often desirable to combine both features for better
efliciency and versatility. Since the overall operation of such systems becomes
very involved with the overall computer architecture, we consider only a few
basic ideas pertinent to operation of the various storage levels. Assume a
three-level hierarchy in which the main memory is paged out of a disk and
the cache is paged out of main memory. To maintain consistency with
previous definitions but to provide a distinction between various level, we
define the various address bits as follows. Referring to Fig. 9.5-2b, we let
n, and n, represent the total address register capacities of main and cache,
respectively, with n,, > n.; N and N remain as previously. but now we have

main My = Ny + 1y, {9.12a-1)

cache ne = n, + n, {9.12a-2)

where n,,, and n,, are the page address bits and Ny, and n,, are the real byte
reference bits. Section 9.4 stated that page sizes for disk to main should be n
the range of 1K’ to 4K’ bytes, whercas 32 to 64 bytes is more reasonable for
cache.* So the real address bits using the nomenclature just given would be

N, =n,, ~ 10to 12 bits

My > N, ~ 510 6 bits

In principle this presents no problem and need not change the translation
scheme. We are normally given a total logical address N,=u+ N, and
ideally this byte should reside in the cache as well as main memory. Thus it
is necessary only to translate ail the N, bits into n. with an IF and WHERE
part. This can be the same as that described in Sections 9.10 and 9.11 for
translation from main to cache, except for some practical differences. First.
N, is so much larger than n, that the directory becomes large and expensive.
The major question is, Can it be simplified ?

* In IBM manuals cache pages are called * blocks.”™ Also. main memory page slots are called
“frames™; the term “ page slot ™ refers only to those on disk.
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Before answering this, let us analyze the operation of the three-level
hierarchy more closely. If we decode N into n, by the usc of a directory,
ideally the IF part of the translation will be “yes™ (i.c., a hit). However, when
4 *miss” occurs it is necessary to determine IF and WHERE this N address
resides in main memory. Since the processing cannot transfer 10 a new user
on a miss 1o the cache. it is most desirable to initiate the address translation of
N, to main memory simultaneously with that to the cache. A hit to the cache
can then abort the main memory decoding, and a miss will provide faster
fetching from main. So far, this requires nothing different from the previous
separate picees of the hierarchy. The translation of the total logical address 1o
main memory physical address can be done as in Section 9.8 or 9.9, using a
Table 1 assisted by a small partial directory. The simultaneous translation of
the same logical address to the cache physical address can be done with a full
directory as in Section 9.10 or 9.11. Since such a three-tevel hierarchy is
useful only on rather large systems, both the partial and full directorics begin
to require large amounts of expensive) storage capacity. Thus ways to reduce
these amounts are desirable and are possible, since the two stages of transla-
tion of N, to n,, and n, have in common certain elements that can be used to
advantage. As a result, the address translation for such three-level hier-
archics appears to be more complex, though in principle it is simpler. We
shall try to show this, then relate to an example using a large system, the
IBM 370/168 virtual memory system with a cache. Theoretically, the partial
directory could be expanded to perform a full translation of N, into the
real i1, with no change in the three-level translation scheme.

Let us continue with the idea of the two stages of decoding to main and
cache simultancously, using a partial directory to be called a translation
lookaside buffer (TLB) for the former and a full directory to be called buffer
address array (BAA) for the latter. The former TLB must decode the N, page
address to give an IF equal “yes™ or "no.” and a WHERE, in terms of the
real main page address bits n,,,. The BAA must take N, + N, — 1, bits and
convert these into n,, bits for WHERE and a yes/no for IF. Note from Figs.
9 6-2 and 9.6-5 that the number of bits that must be stored and associatively
compared in the minimum tag store directory increases with the size of N,.
But we really need not separately translate N. + N, — n,, bits in the BAA
for the following reason. If a portion of a page is in the cache, it must be
somewhere in main memory, with an entry either in the TLB or in Table 1.
Such being the case, it is necessary only to translate the real value of n,., which
is already availuble from the TLB or Table 11, into the real cache address.
This is the first fundamental principle of such a three-level hicrarchy, and it
greatly reduces the number of bits that must be associatively compared in
the BAA.

Another general principle, mentioned now and described in the example

Virtual Mcmory Systems with Cache: Three-Level Hierarchy 633

later, is as follows. There are different page sizes in main memory and cache:
however even though the cache pages, which are called blocks or lines, must
be in contiguous memory locations in main memory, they may bc set as-
sociatively mapped into cache. This permits a simple translation of the bits
N, — R,

We now examine the IBM 370/168, primarily to sec how the address
translation is implemented in terms of the fundamentals prescnted in this
chapter.* No attempt is made to be complete: rather simplification of such
systems into fundamental principles can greatly assist in achieving an overall
understanding. As always, there are two general, fundamental problems n
address translation that cannot be avoided but only designed around. First,
as the size and versatility of the virtual store increases. maintaining overall
efficiency tends to increase the number of associative compares and the
number of bits that are associatively compared; second, these increases
make the translation slower and/or more expensive. Hence the genceral
design approach is to minimize both factors. These problems should be
kept in mind in the following example.

IBM 370168

For a large multiprogrammed system with a fully associative disk--main
memory mapping function, it is desirable to make the partial directory, which
assists Table . larger than the eight entries of Fig. 9.9-2. to improve the hit
ratio and to accommodate several user’s pages. However if a full dircctory
were used, the large number of associative compares of 2™, and the large
number of bits compared associatively (namely, N, — n,,.) would make this
impractical. The model 168 circumvents these two problems while providing
an effectively large partial directory (TLB) in the following way. The large
value of Ny — iy, (1€ ng O Ny — 1) is reduced inside the CPU by reducing
the large user [D address to a 3 bit STO ID. The large number of associative
compares is reduced by combining the N bits with the STO ID. using a
hash decoding that produces an address to directly address the TLB directory
for WHERE and requiring only one associative compare {on four ficlds)
for IF.

More specifically, the principles of the model 168 are as follows. The total
size of N,, which equals u + N bits. is rather large, representing many
possible logical pages for many users. Of this possible size. only a small
fraction will ever be used at any one time by the current users resident in the
system. Thus it would seem desirable and expedient to reduce the potentially
large size of N, to a more manageable size. The model 168 accomplishes
this in two steps. In the first step the logical user ID. consisting of u bits

* Additional details can be obtained from manuals [1BM].
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representing millions of potential users (v > 24 bits), is reduced to a more
manageable size. The full user logical IDs of only the six CPU-active users
are stored in a STO address array consisting of six registers of « bits each.
Associated with each register is a 3 bit STO ID. Thus the u bits are reduced
to 3 bits represented by one of the addresses of the STO array as in Fig.
9 12-1. When a transfer to a second user is performed, an associative search
of the array produces the 3 bit active STO ID of that user. if a match occurs.

If no match occurs, the new user is entered, assigned one of the six possible & 117
STO 1D values, and the TLB directory must be cleared of all such IDs that i
referred to the removed user. In the second step, the active STO ID is com- N

bined with the higher order N bits of the CPU logical address in a hash < ]P

real n,,,

TLB-2
N-npm

STO D

1
COMPARE
I EQUAL
- " E..

YES

decoder to produce a smaller address to directly select the TLB as shown.
The hashed address need not be unique either for the current user nor among
various users. In other words, the nature of hash decoding can produce the
same TLB entry address for different users, or for different logical pages of

COM’;

TLB-I
N-npy,

the same user.
This nonunique hash address problem is circumvented by the use of a

onc-step associative compare as follows. The direct selection of one of 64
TLB entries yields six data fields; two fields are different STO 1D bits (plus
storage protect keys) for two different users who happen to hash code to the
same entry. or alternatively are the same STO ID. Similarly. two ficlds
contain the same. or alternatively different logical addresses N — n,,, that
happen also to code to the same entry. An associative comparison on these
four fields is required to select one of the correct “real i, address bits. very
much like the directory scheme of Fig. 9.11-2. In this case, however, a “yes” z
match must be obtained simultancously on both the STO 1D and the cor-
responding logical page address. to permit use of onc of the real 1, addresscs.
In this implementation the TLB allows only for two-way redundancy in

Nm (mMinimum main)

N IN CPU Logical

[

Directly select
lof 64
toTable I

v
HASH
DECODER
PREPROCESS
Ny+STO ID
(non-unique

address)

6 bits

v
¥y

[N
, N-n,

the hash coding, which usually is sufficient. If greater redundancy occurs by > o
chance in the hash decoding, no match is obtained in some cases and the 5@§9
translation must proceed by way of Table II. Incidentally, since hash decoder Sty —
is also used to initially store a user’s entry in the TLB, once established, a a %=
given logical address for that user will always decode to the same TLB entry. § o _/;_
The primary purpose of this hashing procedure is to randomize virtual page ° 555902
allocations within the TLB so fundamentally, hashing is not necessary. The e .g 9(‘
actual hash decoder is relatively simple. The large CPU virtual address and %5 g'g 8? 51N
STO 1D bit positions are merely arranged into six columns and added. No _ng §§ |
carry is used between columns but only the absolute value, giving the 6 bit I3
TLB entry address. Obviously the above translation scheme has reduced the g
number of bits to be compared associatively through the use of the STO s

2

stack array and has reduced the number of associative compares by the use
of hash decoding and providing only for two-way redundancy. This TLB and

real ng,

real npg,
to main AR

address via hash decoder and partial directory (TLB) on [BM 370 168

Translation of virtual address (o real maimn memory

FIGURE 9.12-1
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associated logic has many features in common with the directorics of Figs.
96-4b and 9.11-2. However it should be clearly understood that the TLB
holds only a small percentage of the more recently used pages of the current
active users similar to the model 67 directory of Fig. 9.9-2. As such, it does
not perform the complete address translation for main memory. A Table II
similar to that of Fig. 9.6-1 performs the complete address translation and
serves as backup to the TLB. On the other hand, the cache directory, de-
scribed below, must perform a complete address translation. which it docs
in a manner similar to that illustrated in Figs. 9.6-4b and 9.11-2.

The cache address decoding is initiated at the same time as the decoding
of the main address. In eflect, we must decode all of Ny into n.. However the
first fundamental principle of a three-level hierarchy specifies that the cache
may use the real n,, address bits instead of N,. Since these bits must be
produced anyway, they might just as well be used to simplify the cache
translation function.

The decoding of the cache is donc with a tag store that is identical in
principle to that of Figs. 9.10-1 and 9.11-2 except for some minor changes in
detail. We now show how all the total logical address bits N, are decoded
in conjunction with a tag store directory or BAA to yield the cache address
n.. The cache blocks (pages) are 32 bytes. giving real bits of n, = 5; the
mapping is eight-way set associative, thus s = 3 bits. Referring to Fig. 9.12-2,
the five lower order bits of N, are real in the cache, hence convert directly to
n,, as siown. The remaining six higher order bits of N,, labeled ¢, are real
il‘] main memory, hence must be in contiguous addresses there. In the cache
storage array, however, the corresponding blocks can belong to different
virtual pages. Thus these six ¢’ bits may also be real in the cache address,
but the actual page to which each address belongs must be determined.
Hence these ¢ bits go directly into the cache address register. but they also
must be used in decoding the s’ bits by selecting one of 2¢° in the BAA. The
5" bits of the cache logical address plus the deficient bits are decoded exactly
as in Fig. 9.11-2 except that these bits are first converted into the real main
virtual page address n,,, as in Fig. 9.12-1. Then these bits are used to do the
cight-way associative compares on the real n, + 8" bits in the BAA as shown.
Si}xcc the real bits of the main memory address are used to select the sct in
the BAA directory. as well as for the associative compare, the mapping goes
from physical main to logical cache as in Fig. 9.5-10 rather than from logical
main 1o logical cache.

A simpler way to understand this translation is to merely think of the
entire process as being identical to that of Fig. 9.11-2, but with two minor
changes. First, the ny + 5" bits are preprocessed because of the interaction
with main memory. Scecond, rather than making Map 3’ of Fig. 9.5-10 fully
associative, which requires s + ¢ bits. we may make it set associative with
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FIGURE9.12-2  Translation of real main memory address to real cache address via a directory
(BAA)on IBM 370 168.

no difficulties. Hence we do not store ¢ bits within the page origin of the
directory as is done in Fig. 9.11-2, but rather only the s bits: the ¢ bits are
obtained directly from N,. Hence the model 168 cache uses a tag store
directory with set associative Maps 2" and 3 and real main memory address
bits for the associative compare bits ny + 5"

Note that in addressing the cache, a minimum of two cycles is required
as previously (Fig. 9.11-2). The first cycle interrogates the TLB and BAA
simultancously to obtain the real cache s bits; the second cycle then accesses
the cache itself. If only read operations were required from the cache, it would
be possible to do this in approximately one cycle by accessing a full set in the
cache (i.e,, all possible s bit locations) simultancously with the interrogation
of the directory. The directory would then specify which. if any, of 2* cache
pages 1s correct. The latter logical operation can be done very fast : hence the
entire access is performed in one cache cycle. For writing, however, we must
first determine the correct s bits, then write into the cache on a second cycle.
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Rather than having two different accessing schemes, two cycles are used for
all accesses.

In prm.ciple, the three-level hierarchy translation of the Amdahl 470 V/6
works as just described, although there are some differences in details.

9.13 ASSOCIATIVE MEMORY APPLICATIONS IN VIRTUAL MEMORY
HIERARCHIES

It was poin.ted out in Section 9.5 that fully associative mapping of the blocks
between primary and secondary storage provides a system that is less sensitive
to the particular job stream being run than any of the other mapping func-
tions. Fully associative mapping is used in commercial virtual memory
systems, but the address translation is done with tables because of the high
cost of associative type hardware. However the table scheme is slow, and
cache systems use sel associative mapping as a compromise betwecn’ cost
and spgcd. In this section we assume that fully associative mapping is used
and we investigate the various applications of an associative memory in lhé
address translation function. The complexity and speed of associative mem-
ory, which determine the cost, are discussed i Chapter 4 and are not con-
sidered here.

Section 9.6 presented the fundamental ways in which address translation
could _be carried out, and these should be understood before proceeding
Referring to Fig. 9.3-1, when pages of fixed size are used, the maximuﬁ
number of bits that require decoding is N, = N, — N,, where N, are the
real bits. Since n, = N,, primary storage contains 2""' directly a:idres%ed
words within each page, but each of the 2™ pages must be indircctly éd-
dressed (e.g., with an associative memory). It is easily deduced from this that
we would not use a totally associative memory for primary unless n, were
very s:mgll (e.g., 0 or 1). However n, 1s generally from 6 to 12 bits: 1l;us an
associative primary memory would be uneconomical and slow. In other
yvords, .lhe n, bits need not be decoded associatively, and doing this becomes
mcrcgsmgly wasteful as n, increases. Thus the first general conclusion is lha}
it is fundamentally unnecessary to make primary storage entirely associative

The next question is, Where and how might associative memory be uscfui"
Thcr§ arc two' basic choices: use a fully associative directory or use a hybrici
ussoc.:mlwc primary memory. The former is no different from the directories
prqwously discussed, except with s = n,, 2™ associalive comparcs are rcl
q'mrcd for each page reference. In addition, when a match is found, the real s
bits must be transferred to the primary address register for a sixbsequen‘t
rgfcrcn'cc. to the desired page (Fig. 9.13-1). The storing and transfer of the s
bits privides a fully associative Map 3 (Fig. 9.5-9) as discussed in Section 9 6
Recall, however, that when Map 2 is fully associative, Map 3 can be a diréc£
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FIGURE 9.13-1 Fully associative directory using 1, + 2s bits word:s =1,

mapping and still provide the appearance of a fully associative map. The
directory can have hard-wired direct enable lines to primary pages in place
of transferring the s bits, thus eliminating the second access. This is one of
the principles used in the hybrid primary store. Rather than fabricating a
separate directory, the associative functions can be placed close to the proper
pages, as in Fig. 9.13-2. Large-scale integration allows either of these schemes
to be implemented with a number of possible configuration. Let us consider
some of the advantages and disadvantages of each approach. Assume for
simplicity that fully decoded 25D semiconductor chips. similar to those of
Fig. 4.9-4, are available, and each chip contains a full page of 2™ bytes or
words. The real address bits must then be broken into two parts i, and 1,
as in Fig. 9.13-2—one part to select one of 2" word lines and the other part
to select one of 22 segments of bit/sense lines. each segment of b bits as in
Fig. 4.9-4. As detailed in Section 4.9, these address bits are paralleled to all
chips, hence require an additional chip selection, which is provided by the
ENABLE input to the chip decoder as shown. The ENABLE input permits
a very simple implementation of the associative translation function. Along
with the other devices, cach chip has a separate register fabricated that per-
forms a single compare on all N, bits. and this compare is done simul-
taneously on all chips. Only one chip can have a match, and this match




ey i i
Micmory Hierarchies and Virtual Memory Systeas

PRIMARY ADDRESS —
REGISTER Ny=ng+s'
RO v™d

SELECT | OF
22 GROUPY

2™ BYTES
c | ro T
X | ! COMPARE
IREGISTER
grfng+s BITS

NON-ASSOCIATIVE
ENABLE
DECODER

‘fm

[___.__.______._.__.___l

' SELECT | OF]
J 2™M2GROUPS

| OUT OF
2

Ny
<

b-v

- —— )

i
|
I
I

e
| COMPARE

' REGISTER

lsng+ |
Erld s BiTS
3

SELECT | OF
L llgl

IGURE 9.13-2  Hybrid primary store with on-chip associative address trunslition

produces an immcdiale ENABLE signal on the chip decoder as shown. [t is
not necessary in this case to first provide the s bits in the primary '1d;Jres‘;
register for ENABLE decoding, as would be required in the schemc(of Fi‘;
9.13-1, since this is actually done directly. Of course nonassociative decodiné;
of the n, or s bits in the primary address register would still be done by i
scparat? decoder and a separate input to the same ENABLE function }on
cach ;hxp* (dashed lines in Fig. 9.13-2). Hence only one access (;) the primar

store is needed, and if the on-chip compare 1‘cgistér is fast, the entire lran;Iu}j
tion could be fast. The decoding of the real 5, bits for the word and bit/sensc
]chof cach chip can be performed simultancously with the as%ocjati/\‘c d‘c—
codn'lg of the N, chip selecuon bits. One serious disadvantage ohhis on-chi

hybrid scheme is thuat an additional N, pin connections must bc»madc 12

* The two inputs to the ENABLE terminal would be ORed together

Potential Pitfalls in Progragining \ iruin s tiiony sy s

every chip.* The identical scheme can be implemented with off-chip as-
sociative compares and direct Enable signals to cach page, and only onc
additional pin per chip is required.

The direct page ENABLE signal necessary in the above scheme can be
obtained from an associative memory array that provides F type flags as
detailed in Section 4.12. A simple inverter NOR gate with F as input for each
page would provide the ENABLE signal immediately. Note that if Map 3
were fully associative as in Fig. 9.13-1, rather than direct with a direct
ENABLE as previously, an associative memory array such as that described
in Section 4.12, which performs the compare functions internal to the array,
would require two cycles to fetch the real n, page address. The first cycle
would provide the match flag and the second cycle would read the match
word to obtain n,. This second cycle can be avoided only by doing the
compare functions external to the array as in Figs. 9.10-1 and 9.11-2. This
still necessitates a subsequent decoding of the n, bits in the primary address
register, and both requirements arc avoid by the direct ENABLE implemen-
tation for Map 3 as in Fig. 9.13-2.

The page usage and control information required for each page could also
be included in the on-chip associative register, which uses the same direct
page ENABLE linc. Such a scheme would have considerable advantages.

9.14 POTENTIAL PITFALLS IN PROGRAMMING VIRTUAL MEMORY
SYSTEMS

Even though virtual systems can relieve the user of much detailed program-
ming, there are potential pitfalls which can sometimes seriously degrade
the problem solution. We wish to show by example that the programming
is not always optimized, and in some cascs the user must pay close attention
to data organization. Generally the key problem is to minimize the number
of page swaps-—in other words, to maximize the hit ratio required for prob-
lem solution. The following case demonstrates that the number of page
swaps can depend critically on the organization of arrays and the method of
iterating or looping the array elements.

Let us assume that an engineering problem to be solved involves three-
dimensional arrays. A virtual memory system is available having the fol-
lowing characteristics.

* We would also need some method of signaling that no match has oceurred on any chip to
initiate a relocate cycle. Conceivably this could be done on the existing sense lines. but an

additional pin might be needed.



Demand paging. “LRU™ page replacement algorithm.
Page size = 2048 words, 40 bits/word.
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16,384 words/user).
4. Virtual memory on disk (any size).
The problem requires evaluation of the function.

F,= Z (CiApx + Crdig)

all I.J. K

Maximum allotment of 8 pages of physical main memory per user (i.e

-

The 3D array Ay 1s organized as follows. Each element A,,, occupie
one word: I varies from 1 to 2048, J varies from 1 to 4, and K Iflrt)nl l tglzs
The pages are made up of segmented listings of the array elements startin_;
page Lwith Ay, Ay, A5, ., Aygus. ¢ page2with d,,,. 4 ‘ 4 ‘
and so on, through page 8, with 4,4,, 4, 4 5. ..., 4204842 T:I;C ;;gcs r;ljy

be placed in any manner on one disk surface.

} 'Lzl us first do this problem by looping or iterating on subscript K with
and J constant, then J, and finally I. A Fortran program that would ac-

complish this is as follows:
DIMENSIONS A4(2048, 4, 2).
I(EIOM(I;/IENT/ARRAY A OCCUPIES 8 PAGES.
DO 21 = 1,2048.
DO2J = 1,4
DO2K =1,2
I FL=Clx Apyg + C2 x (A4)°
F2=F2+ FL.
COMMENT—F2 SUMS F1 OVER ALL
S ARRAY ELEMENTS,

COMMENT—PROGRAM AND ANSWE
R
WORDS MAXIMUM. REQUIRES 1000

g9

Note. In this Fortran program, K loop is done first, then J, then |

Let us now determine the number of page swaps exccu’led Wé will sce
lhu( copsujerable page swapping is required because of poor d;na orga ‘S%L
tion. S.1gmﬁcant improvement will be seen to be possible by simi‘l;lzrz_
arranging a . ¢ 1thy )
Ix};r}d;rgrgi.the order of I, J, and K within the DO loops, or by reorganizing

O'ne page is required for the program and work space to hold constant
zmd‘ intermediate results in the calculations. Thus there are onl scvcn‘ ‘S
aw}]lublc l.O hold alphanumeric data. Page numbers are dcteriﬁncd bp/dthLS
JK subscripts only since cach page contains all I from 1 to 2048 words}'ﬂzc‘
page numbers and corresponding J K subscripts are listed in Table 9“14-1L

TABLE 9.14-1 Page Num-
bers and Corresponding Sub-
script Designations

Page Number  J K
1 1 1
2 ! 2
3 2 l
4 2 2
5 3 !
6 3 2
7 4 1
8 4 2

The program first increments K from 1 to 2 with J = 1 and I = 1. whici
requires pages 1 and 2. Next J is incremented progressively from 1 to 4
requiring pages 3,4, 5,6, 7, and 8. Since only seven pages can be present a
one time, and these are assumed to be already loaded. page 1. the leus
recently used, is removed and page 8 is transferred in. Next [ is incremente.
to 2 and the interactions on J and K are repeated. This requires pages
through 8 successively. But page | is out and page 2 is the least recently used
Thus page 2 is replaced by page 1. But 2 is needed next, and 3 is now the leas
recently used. Therefore another swap of 3 with 2 takes place. The proces
continues, requiring a total of seven page swaps. As the end. the pages ar
back in the original order, and when I is incremented to 3, only one pag
swap is required. On [ = 4, however, again seven page swaps arc required
Hence when I is an even number, seven page swaps arce required. wherea
when I is an odd number .only one swap is needed. Thus a total of 1024 +
(7 x 1024) = 8K’ swaps are needed, a rather formidable amount.

The situations can be greatly improved simply by reversing the order ¢
the DO loops to

DO2K =1,2

DO2J =14

DO 21 = 1,2048
Now all 2048 interations on a total page are performed before incrementit
to a new page. After the seventh page is complete, page 8 must be swappe
in as before. but only one page swap is required for the entire program.

Clearly the ordering of page references can be very important. Of cour

the problem could be eliminated by allotting more pages per uscr. but th
is not always possible, and the programmer must be aware of these limit.

tions.




