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continues by fetching instructions from the predicted
target address.

This article presents a systematic approach to selecting
good prediction strategies, which is based on 26 program
address traces grouped into four [BM 370 workloads (sci-
entific, commercial, compiler, supervisor) and CDC 6400
and DEC PDP-11 workloads. Results show the effective-
ness of various prediction strategies, the number of past
branches that should be remembered, the amount of
state required for each, and the effect of workload and
branch type. Improvements of 5 to 20 percent can be ex-
pected in CPU performance when a branch target buffer
is installed. Issues relating to the implementation of real
branch target buffers are also considered, as are alter-
native approaches.

Existing approaches to the branch problem

Loop buffers. A loop buffer is a small, very high speed
buffer maintained by the instruction fetch stage of the
pipeline. A single loop buffer contains one set of sequen-
tial instructions, while multiple-loop buffers contain n
sequences, one per buffer, but the contents of the vari-
ous buffers need not be contiguous with each other. The
loop buffer functions in two ways. First, it contains in-
structions sequentially ahead of the current instruction
fetch address; thus, instructions fetched in sequence will
be available without the usual memory access time. Sec-
ond, it will recognize when the target of a branch falls
within its contents (including backward branches) and
will deliver those instructions without accessing memory.
All instructions for a loop could be fetched entirely from
this buffer; hence, the name *‘loop buffer.”” Among the
machines using a loop buffer are the CDC Star-100 with
a buffer of 256 bytes,’ the CDC-6600 with 60 bytes,* and
the CDC-7600 with 12 60-bit words.*

The Cray-1 maintains four loop buffers, and replaces
their contents in a FIFO manner. (This structure can also
be considered to be a four-block, associative instruction
cache.) The idea here is that a loop may consist of several
noncontiguous instruction sequences and may be better
captured this way than by a mechanism that permits only
one sequence.

Multiple instruction streams. A normal pipeline suffers
a branch penalty because for a conditional branch it
must make a choice—the instruction fetch unit must
fetch either the next sequential instruction or the branch
target. A brute force approach to this problem is to
replicate the initial stages of the pipeline so that both the
sequential instruction and the potential branch target can
be fetched, decoded, and processed. However, this ap-
proach gives rise to three problems. The first is that the
branch target cannot be fetched until its address is deter-
mined, which may require a computation, such as when
a displacement is added to both a base and index register.
This computation requires time even when all operands
are available. Further delays may occur when operands
are not available, such as when an operand is the result
of an uncompleted instruction or when a memory fetch is
required. Contention delays are also a problem, for ex-
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ample, in accessing the register file. Also, additional
memory traffic is generated, further creating resource
contention.’

The second problem in replicating the initial stages of
the pipeline is that if instruction /is a branch instruction,
then additional branch instructions may need to enter
the pipeline (either part) before I can be resolved as
1aken/not taken and its target determined. Riseman and
Foster® found that for a pipeline of typical length, more
than two branches would have to be processed this way
1o yield a significant improvement, and the net amount
of hardware required would be impractical.

The third problem is that the cost of replicating signifi-
cant parts of the pipeline (including instruction fetch, in-
struction decode, operand address generate) is substan-
tial, making this mechanism of questionable cost-effec-
tiveness.

Despite these problems, a number of machines follow
multiple instruction streams, including the 1BM
370/168,° which can fetch one alternative instruction
path and the IBM 3033,° which can pursue two alter-
native instruction streams. The 3033 fetches an alter-
native instruction stream only when the stream is
predicted to be taken; the prediction depends on the
branch condition mask in the instruction, the operation
code, and the target address operand register. These
machines do not decode the alternative instruction
paths. Hughes'! proposes that fetching alternative in-
struction streams be combined with predictive informa-
tion from a branch target buffer so that the most likely
instruction stream is decoded.

Figure 2. Typical pipeline time sequence showing the in-
structions executed per stage.

Figure 1. Typical pipeline stages in a 370-like architecture.



Prefetch branch target. Rather than replicate several
initial stages of the pipeline, we can duplicate only
enough logic to prefetch the branch target. That is, when
a branch is recognized, a special mechanism calculates
and prefetches the target of the branch; thus, if the
branch is found to be taken, the target is loaded im-
mediately into the instruction decode stage of the pipe,
with no additional delay for instruction fetch.'? Several
such prefetches can be accumulated along the main in-
struction sequence, but since the secondary (prefetched)
sequences are not decoded, no additional prefetches can
be generated there.

The IBM 360/91 uses this mechanism to prefetch a
double-word target.'

Data fetch target. In the 1BM 370 architecture, the
“branch conditional’’ instruction has the same form as
the ““load”’ or ‘‘add’’ (from memory) instruction; that is,
the target of the branch is computed in just the same way
as the memory-based operand of the load or add. The
Amdahl 470 computers'® use this feature to produce an
effect very much like the target prefetch mechanism of
the 360/91: the branch target is accessed as if it were an
ordinary operand; if the branch is taken, the target is
loaded into the instruction decode stage of the pipeline,
rather than being placed in a register, as for load, or be-
ing sent to the adder, as for add.

Prepare to branch. The Texas Instruments ASC com-
puter'® uses two buffers into which it alternately pre-
fetches instructions from memory. The ‘‘prepare to
branch’ and ‘*load look-ahead’’ instructions can cause
the machine to prefetch from the branch target rather
than to prefetch sequentially. The effectiveness of this
scheme depends on the programmer or the compiler cor-
rectly inserting these instructions.

Delaved branch. The problem with a branch is that if
instruction 7 is a taken branch, then instruction / + 1 will
be out of sequence, with the consequences just de-
scribed. The instruction set architecture can be specified
such that a branch is defined to affect the address not of
instruction / + 1 but of instruction 7+ k. That is, con-
sider a sequence of instructions /1.../10, where /4 is a
conditional branch whose target is /9. Assume that
branches are delaved two instruction times, making
k =2, and that /4 is a taken branch. Then the actual se-
quence of instructions would be: /1, 12, 13, 14, 15, 16,
19, 0.

If k, the branch delay, is equal to or larger than the
number of pipeline stages preceding the stage in which
the branch is executed, then the instruction fetch can
almost always be given the correct address from which to
fetch. (The *‘almost’’ refers to the occurrence of asyn-
chronous events such as interrupts, which cannot be pre-
dicted from the instruction stream.)

In designing a machine to use a delayed branch, we en-
counter several problems. The most significant is that
human programmers will find it very difficult to write
code containing instructions (branches) with delayed ef-
fects. Thus, code for such a machine must be almost en-
tirelv compiler-generated, with the consequent need for a

bug-free and very efficient compiler. The delayed
branch, requiring a new architecture, cannot be used as a
technique to speed up an existing one. In addition. not
all the potential speedup of the delayed branch can be
realized; it may not be possible to schedule & — 1 instruc-
tions after the branch.

Despite these problems, two experimental computers
are actually using the delaved branch: the IBM 801, an
experimental minicomputer constructed at IBM T. J.
Watson Research Center, Yorktown Heights,' and a
dedicated microprogrammed machine constructed by
E. R. Berlekamp'” 1o insert and remove error-correcting
codes from signal transmissions. It has been proposed
for the RISC computer.'®

Taken’not taken switch. As we will show later, we can
predict with good accuracy whether or not a branch will
be taken. A prediction mechanism that specifies whether
a branch is or is not likely to be taken is called the taken”
not taken switch. The idea is that one or more bits are
associated with every instruction in the cache memory.
The setting of these bits determines whether the branch is
predicted 10 be taken or not. After the branch is re-
solved, the values of the bits may be reset in the cache to
reflect the prediction for the next time.

In the taken/not taken switch proposed for the S-1
computer,'¥ two bits are stored with each instruction.
One bit specifies whether a jump should be predicied
(the Jump bit) and the other tells whether the last predic-
tion was wrong (the Wrong bit). Two wrong predictions
in a row cause the Jump bit to be changed. As we note
later, this mechanism still encounters delavs due to target
address computation and the out-of-sequence fetch.
Widdoes! discusses the effectiveness of the prediction
algorithm in more detail, and Liles and Willner®' propose
a version of this scheme.

Look-ahead resolution. Another proposed solution 1o
the branch problem is to place extra logic in the pipeline
so that an early stage of the pipeline can resolve a branch
whenever the condition code affecting a conditional
branch has already been determined.!' Rao provides fur-
ther detail on this method.**

Branch target buffer. The branch target buffer (Figure
3) is a small cache memory associated with the instruc-
tion fetch stage of the pipeline. The BTB retains three
tuples, each of which contains the address of a previously
executed instruction, information that permits a predic-
tion as to whether or not the instruction branch will be
taken, and the most recent target address for that
branch. The BTB functions as follows: the instruction
fetch stage compares the instruction address against the
instruction addresses in the BTB. If there is a match,
then a prediction is made as to whether the branch is like-
ly to be taken. If the prediction is that the branch will oc-
cur, then the target address field is used to select the next
instruction fetch address. When the branch is actually
resolved, at the execute stage, the BTB can be updated
with the corrected prediction information and target ad-
dress. Since the BTB can be used for every instruction
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reteh, it can have as many predictions as there are un-
completed instructions in the pipelinc.

The major optimization problem in the design of a
BTB is the selection of the algorithm that predicts
whether or not the branch will be taken. How large the
BTB will or should be and how it should be organized
(c.g.. set associative or hashed) are also issues. Holgate
and Ibbett™* have studied the BTB design effectiveness
for the MU-S, which actually implements a branch target
bufter. roughly of the type described. Losq™ proposes
the use of the BTB, and Smith®* examines a number of
BTB designs using traces for the CDC Cyber 170 com-
puter. Results from these studies are similar to our own,
but here we consider three different machine architec-
tures (1BM 370, DEC PDP-11, CDC 6400), and predic-
tion strategies are examined much more systematically.

Figure 3. Branch target buffer organization.

Methodology and data

There is now no statistically acceptable model to
characterize any aspect of program behavior (although
much research has been done in paging and memory
management).’3’ For the design and evaluation of
branch target buffers, we still need a model of when
branches occur, whether or not they will be taken, and
whether or not the branch target will change. Because no
existing model can now predict these things accurately,
our research is based on the thorough analysis and use
for trace-driven simulation of program address traces.

Data. We have 26 program address traces (see box at
right ), grouped into six workloads. Four workloads are
for the IBM 370 architecture and consist of compiler ex-
ecutions (PL/1, Cobol, Fortran-H), business programs
(Cobol, PL/D), a scientific mix (Fortran), and supervisor
state set of traces (MVS operating system). Six traces
form the DEC PDP-11 workload, and six more make up
the CDC 6400 workload.
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From each program trace, we extracted the branch in-
structions, along with their targets, addresses, sequence
numbers, and operation codes. All analysis was based on
this extraction.

The large number of traces used in this research and
the grouping of them into workloads serves several pur-
poses. First, the large number of individual traces and
the use of several of them in each workload should give
representative behavior; no individual trace, no matter
how peculiar, can significantly throw off the overall
results. Conversely, the use of workloads, rather than a
grand average, shows the variation to be expected from
the different job mixes experienced at different computer
centers, on different machines, and at different times of
the day. Certain workloads are known to have different
instruction mixes: business programs use many more
storage-to-storage, or string, operations on the IBM 370
than scientific programs. Conversely, the scientific pro-
grams have far more floating point operations. If such
differences impact the efficiency of a branch target buf-
fer, our study will show these effects. Similarly, the use

of traces from three very different machine architectures
will indicate whether the results are sensitive to the in-
struction set architecture.

Some of our studies show results for various specific
machine instructions, and branch instructions for each
machine are given in the box below. Some studies are
limited to conditional branches only; the instructions
considered to be conditional branches are also listed.

Methodology. Trace-driven simulation is a technique
by which a trace is recorded of the operation of some
svstem. That trace is then used to drive a model of the
svstem that allows us to vary different parameters or fea-
tures of interest. 1f the variation does not affect the
validity of the trace, then the trace-driven simulation can
accurately predict the effect of changes in the system.

We use program address traces in two different ways.
First, we examine them and measure various features of
interest; for example, the frequency of taken and not
taken branches. We then use these measurements as one
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basis from which we can formulate branch-buffering . Table 1. .
strategies. The traces are then used to evaluate designs Fraction of branches, taken T and not taken N and fraction of

R branches overall r.
for a branch target buffer.
IBM 1BM 1BM IBM DEC coc
Branch behavior CPL BUS SCl Sup PDP11 6400 AVERAGE

0.640 0.657 0.704 0.540 0.738 0.778 0.676

Before presenting actual measurements of branch N 0360 0343 0296 0460 0262 022 0.324
behavior, we need to consider what we can expect. There ! 0.317 _ 0.183 0.105 0.376 0.388 0.079 0.242
will be several types of branches: loop-control branches,

—

which are usually taken and go backward; branches used Table 2.

as part of IF/THEN/ELSE logical constructs, which Frequency of branch types.

alwavs go forward and may or may not have a consistent  gp BM___I8M  IBM  IBM  OP DEC  OP coC
behavior pattern; branches used for subroutine calling, ~ CODE CPL BUS SCH SUP  CODE  PDP11  CODE 6400
which will always be taken: branches used to load BRB 0222 0243 0254 0.138 JSR 0.111  RJ 0.049
registers, which are never taken: and branches used as BAL 0.056 0036 0013 0036 SOB 0.008 JP 0.017
“no-ops,”” which are never taken. While for most of BALR  0.036 0.050 0.079 0.065 BGET 0113 XJ 0.560

e et behavior. the rolatie fre. BCT_ 002 0013 0027 0016 BVCS 0030 E0 0757
these. we can predict likely behavior, the relative fre-— perg 922 0050 0006 0.019 BHSL 0031 NE 0199

guency of each makes reasoning out overall average  gxH 0.004 0000 0000 0000 BNEQ 0278 GE 0000
behavior extremely difficult. Thus, we rely almost ex- BXLE 0.032 0000 018 0003 RTS 0.074 LT 0.003

clusively on data analysis and empirically derived predic-  BC 0544 0521 0318 0674 JMP 0190 SYS  0.015
tion algorithms BCR 0.051 0.081 0112 0.034 BR 0.162
= o EX 0.009 0.005 0.003 0005 TRAP 0.002
SvC 0.000 0.001 0.000 0.001
Taken/not taken and branch frequency by opcode. For | psw 0000 0000 0.000 0.005
cach trace, we show the overall probability of a branch ~ MC 0.000 0.000 0.000 0.005

being taken or not taken and the ratio r of branch in-

structions to all instructions in the trace (Table 1). Two ) Table 3.
features are important: first, branches are taken twice as Probabilities of branch taken by branch type
. . . . (blanks mean instruction is not in that trace).
often as not; thus by just guessing that branches are
alwavs taken. we are right 60 to 70 percent of the time. 0P 1BM I1BM IBM IBM 0P DEC OP cbe
(In Smith’s study.™ the range over six traces was 57t0 99 ~ CODE  CPL BUS  SCI SUP CODE PDP11 CODE 6400
percent, with an average of 76.7 percent.) Variation BR.B 1.000 1.000 1.000 1.000 JSR 1.000 RJ 1.000
; s wark ; . f Arl .. BAL 1.000 1.000 1.000 1.000 SOB 0448 JP 1.000
o “Or“'oidg ' mOdefra;C and for all workloads.  gyi0 ggsg 0555 0850 0531 BGET 0330 XJ  0.604
ranches are taken most ot the time. — ~ BCT 0584 0899 0857 0713 BVCS 0155 EQ  1.000
The probability that a branch is of a specific operation  BCTR  0.007 0.173 0.000 0207 BHSL 0496 NE 1.000
code is shown in Table 2 for each workload. For IBM 370 BXH 0.404 BNEQ 0495 GE 0.848

workloads, note the significant variation in the frequen- BXLE  0.865 0.994 0865 0.522 R;ASF’ 1.000 LL ?000
cies of the various operation types. BC 0.462 0571 0.342 0415 J 1000 SYS .000

. . BCR 0.539 0.348 0.647 0584 BR 1.000
Table 3 shows the probability that a branch is taken gy 1000 1000 1.000 1.000 TRAP 1000

for cach operation code. Unconditional branches are  SVC 1.000 1.000 1.000 1.000
alwavys cither taken or not taken, but BALR is sometimes ~ LPSW 1.000
used 10 set up the base registers, and so is not taken. MC 1.000
Those used for indexing are usually taken, but BCTR is
generally not taken because it is often used as a decre-
ment instruction.

Dynamic branch behavior. Not all branches are ex-
ecuted with the same frequency, so much of our ability
to predict branches relies on the fact that because some
branches are executed many times, we can make a good
guess as to what will happen next. Before examining this
approach further, we need to define static branch in-
structions and dvnamic branch instructions.

The first type refers to the individual branch instruc-
tions found in a program. For a given program, the
number of these branches is fixed and can be counted by
looking at the program. The second type refers to the
branch instructions found in the trace of a program. A
satic branch instruction can occur more than once as a
dvnamic branch instruction, and every time a static
branch instruction is executed, a new dynamic branch is
tormed.

In Figure 4, we show the probability distribution for Figure 4. Percentage of branch instructions executed N times for each
cach workload for the number of times a static branch  ©f six workloads.
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Figure 5. Percentage of branch instructions executed N times
weighted by N.

Figure 7. Distribution of the number of times that a conditional branch
has the same result.

12

occurs as a dynamic branch. Figure § shows the pro-
bability that a dynamic branch is due to a static branch
executed N times. The large bulk of dynamic branches
occur for frequently executed static branches; for exam-
ple, 23.4 percent of the static branches in the IBM 'CPL
mix get executed only once, but they account for only 0.5
percent of the dvnamic branches. On the other hand,
10.4 percent of the static branches executed over 200
times make up 48.2 percent of the dvnamic branches.

Many of our predictions as to whether a branch will be
taken are contingent on the branch’s past behavior
(taken/not taken). To illustrate such branch behavior,
Figure 6 shows some sequences of taken/not taken for a
number of branches. For many branches, there are long
sequences of either taken or not taken; it is less common
to see an alternation. We call such a sequence a run, ora
sequence of identical behavior (taken, not taken. taken
with a changed target) of a static branch as it gets ex-
ecuted many times. For example. the sequence of taken~
7 and not takens N, TTTTTNNTTTTNTNNN, consists
of run lengths of 5, 2, 4, 1, 1, etc. Figures 7 and 8 show
the distributions of run lengths for conditional branches
only and all branches, respectively. The same data are
shown weighted by the run length in Figures 9 and 10.
(That is, Figures 9 and 10 show the probability that a
given dynamic branch is an element of a run N branches
long.) As the figures show, most branches occur as part<
of long runs.

Branch clustering. We have described one method of
coping with the branch problem, called multiple instruc-
tion streams, which involved recognizing branches at the
instruction decode step of the pipeline, and then fetching
and decoding both the taken and not taken outcomes of
the branch. As noted, one difficulty with that solution
was that a large number of closely clustered branches
could occur, making it impossible to follow all 2* paths
possible from & branches. A measure of the size of & ap-
pears in Figures 11 and 12. The figures show the pro-
bability that in H sequential instructions (H =10 and
H =6, respectively), there are k& branches. If the pipeline
is long enough (and 6 and 10 are typical numbers for
high-speed machines), then there is a significant prob-
ability that more than one branch is unresolved at any
one time.

Branch prediction

A number of the solutions to the branch problem at-
tempt to predict whether or not a branch will be taken.
The general problem can be stated as what is the value of
F(x1,x2,...), where F is the probability that a branch is
taken, and x1, x2, ... are parameters on which F may be
reasonably conditioned. If F(x1,x2,...) > 0.5, then we
predict that a branch will occur; if less than 0.5 we
predict that it will not. (If the cost of commission errors
is not equal to that of omission errors, the best figure for
deciding to predict a branch may not be equal to 0.5. We
discuss this issue later.) Of particular interest is x1=
operaton code, and x2= execution history of this bran-
ch. We can continue with other factors (for x3, x4, etc.)
such as other dynamic branches that precede the current
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¢ aic branch (and their execution behavior),™ other
- e instructions that precede the current dynamic

- ..r-on, the source language of the program, and the
4 --on of the branch (e.g., forward/ back®). For ex-
- 'e. cortain instruction sequences will generally in-
1.2 a taken branch; others will almost always fall
b gh.

;- ~olution to the branch problem must be imple-
. :d in hardware, since it is part of the pipeline and
oo execute at machine cycle speeds. For that reason,
;v enplexity of practical schemes is very limited, and
a2 «.ooider only predictions that depend solely on the
<o aion vode F(x1) and those that depend only on the
ki-ior. of the branch F(x2).

The other aspect of branch prediction concerns
L oledge of the target address, since delays are en-
.o mrerad even for a correctly predicted taken branch

"..1 the target address is not immediately known.

Jrediction based on operation code. In Tables 2 and 3,
‘ow the probability that a branch was of a specific
. e, and the probability that the branch with that op
.«!vwould be taken. These two tables can be easily com-
4 (Table 4) to vield the probability of whether or not
«1ch will be taken given only the op code. Note that
o h2 IBM CPL mix, the prediction accuracy rises from
~4 - -rrent (assume all branches are taken) to 66.2 per-
- tussume that only BR, B, BAL, BALR, BCT, BX-
i+, BCR, EX, and SVC are taken; all others never
1), While this 2.2-percent improvement is helpful,
-nall see that it is considerably less than what can be
:ned by predictions based on branch history.
* it gives a range of accuracy for op-code-based
odictions of 65.7 to 99.4 percent, with a mean of 86.7
coaenty)

Prediction based on branch history. Prediction based
1 branch history uses the previous sequence of taken/
o taken for each branch to predict whether or not the
anch will be taken next time it occurs. The most
~aertul predictor, of course, uses the entire history of
2 branch to predict the next choice, but such a predic-
“or is infeasible because of the large possible number of
«L.ch past sequences. Consequently the problem becomes
‘or a given amount of history, what prediction accuracy
<an be otained, and what is the most desirable amount of
history to retain, given all cost and performance trade-
~11? The basic data for this evaluation are presented in
Tables § and 6, where we show the observed probability
ot all possible sequences of five taken/not taken events
e, v3,v4,v8) for conditional branches and all
hranches. respectively.,

Table 4.
Probability of correct branch prediction given only op
code, and assuming branch is always either taken or
not taken, based on op code.

BM 1BM 18M 1BM DEC coc
CPL BUS SCI SuUP PDP11 6400

0 662 0.692 0.710 0.552 0.798 0.778
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Figure 9. Distribution of the number of times that a conditional branch

has the same result, weighted by run length.

=

tion of the number of times that any type branch has
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Figure 10. Distribution of the number of times that any type branch
has the same result, weighted by run length.
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The data in Tables § and 6 may be used for prediction
in the following manner: whenever the probability
Fer1,v2,v3,v4,T) is greater than F(r1,v2.v3. 04, N).
the branch should be predicted as taken and when less
than. the prediction should not be 1aken (where
¥1,02,v3,v4 is the sequence of the four previous dy-
namic occurrences of this static branch). Predictions
based on the previous three events. F(32,v3,v4,T)
and F(r2.v3,v4,N), can be computed by noting that
FO22 0304 N) = (T v2,v3,v4, Ny + F(N, 2,33, v4,N).
Predictions based on the previous two, one. or zero
branches can be similarly derived. Table 7 shows the ac-
curacy of such predictions, where each is based only on
the values of F(vi) for that workload. (For one previous
branch, Smith'< success rate™ was from 76.2 10 98.9 per-
cent with a2 mean of 90.4 percent.)
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We can create a composite predictive strategy: that s,
a prediction based on F(1i), where F(1i) ic computed
over all six workloads used, rather than for just the
workload in question. This strategy is much more valid.,
since varving the predictive strategy on a real computer is
not likely to be cost-effective (depending on the program
running). In any case, as Table 8 <howd, the predictive
accuracy is almost identical 1o that shown in Table 7.

A number of interesting observations can be made
from Tables 7 and 8. First, the predictive accuracy ap-
proaches very closely to its maximum with one, 1wo. or
three preceding branches used for prediction. Increasing
the amount of history 1o four or five branches does not
seem to add accuracy.

Second. the predictive accuracy for as few as wo
preceding branches is from 83.4 10 97.5 percent. which is
much higher than the accuracy using only the branch
type, and no branch history (Table 4). Finally, the offoc-
tiveness of prediction varies significanthy amone the
workloads. Most striking is the varniation of 83.9 10 9~
percent between the IBAM SUP and the IBM BUS work-
loads. both of which are tfor the same architecture. [We
believe that the lower prediction success rate for the
IBMSUP workload is due 1o the Tow probability that a
branch is execured repeatediy (see Figure 4. This ton

Table 5.
Distribution of five consecutive executions
(conditional branches).

IBM BM Bt 1Bt DEC

HISTORY CPL BUS SC Sup  ppPs
NNNNN 0407 0414 0437 0422 2w
NNNNT 0013 0006 001 0005 00
NNNTN 0012 0004 00w 0005 002
NNNTT 0004 0003 0005 00C3 Q032
NNTNN 0013 0005 0019 000 (02
NNTNT 0003 000 0005 0003 000
NNTTN 0002 0001 0004 000 0O
NNTTT 0004 0002 0004 0O00& QOO
NTNNN 0018 0008 0019 0027 00w
NTNNT 0005 0002 0010 0005 002
NTNTN 0029 0017 0026 0005 0005
NTNTT 0008 0005 0006 0026 Q03
NTTNN 0003 0001 0004 0002 000
NTTNT 0003 0.001 0014 0003 0002
NTTTN 0004 0000 0002 0002 Q007
NTTTT 0015 0013 0020 0020 0012
TNNNN 0018 0009 0017 0034 0012
TNNNT 0003 0002 0005 0003 000«
TNNTN 0004 0002 000 0003 000
TNNTT 0.003 0005 0003 0003 000
TNTNN 0011 0006 0010 0029 0003
TNTNT 007 0010 0016 002t 0007
INTTN 0.003 000r 0014 0004 0002
TNTTY 0015 0012 0018 002 0016
TTNNN 0.003 0002 0004 0007 000!
TTNNT 0003 000t 0002 0©O0OZ 000
TINTN 0003 0000 0002 0002 0005
TINTT 0011 0009 0027 0005 (012
TTTNN 0004 0002 0002 0007 Q002
TTINT 0011 0008 0016 0003 OO7
TTTIN 001t 06009 Q001& $004 002
T 0338 0442 022 034 0320
NNNNN

+
TTTTY 0745 085 065 0763 08 Chl
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Table 6.
Distribution of five consecutive executions (all types).

IBM 1BM 1BM IBM DEC iy
HISTORY CPL BUS SCI SUP  PDP11 6400

NUNAN 0.275 0310 0.196 0378 0230 0.129
NANNT 0.008 0004 0005 0.004 0004 0007
NANTN 0.008 0003 0005 0.004 0004 0006
NANTT 0.003 0002 0002 0003 0001 0002
NNTNN 0008 0003 0008 0003 0005 0.007
NNTNT 0002 0001 0002 0004 0000 0003
NNTTN 0002 0015 0002 0002 0000 0003
NNTTT 0.003 0.002 0002 0002 0001 0.003
NTNNN 0.012 0006 0.008 0017 0005 0.005
NTNNT 0003 0.00t 0005 0.003 0.001 0.004
NTNTN 0.027 0.020 0017 0005 0005 0.048
NTNTT 0.009 0.008 0.007 003 0002 0003
NTTNN 0.001 0.000 0.002 0002 0000 0003
NTTNT 0002 0001 0012 0002 000t 0040
NTTTN 0.002 0.00t 0002 0.002 000t 0002
NTTTT 0014 0012 0030 0024 0004 0017
TANNNN 0.011 0006 0007 0.028 0004 0007
THANT 0002 000v 0002 0003 0001 0001
TANNTN 0.003 000t 0005 0003 0001 0004
TENTT 0.001 000t 0002 0003 0000 0003
TNTNN 0.007 0005 0005 0.024 0001 0003
TNTNT 0.016 0012 0013 0028 0005 0046
TNTTN 0.002 0001 0.012 0003 0001 0040
TRITT 0014 0013 0030 0029 0005 0018
TTRNN 0002 0002 0002 0.002 000t 0003
TTNAT 0001 0000 0002 0002 0001 0002
TTNTN 0.002 000t 0002 0.002 0001 0001
TINTT 0008 0007 0036 0004 0004 0055
TTINN 0002 000t 0002 0002 0001 0002
TTINT 0008 0007 0027 0003 0004 0016
TITIN 0.008 0007 0027 0003 0004 0017
TITTY 0534 0651 0521 0384 0702 0500
NAARR

IRARA 0809 0871 0717 0762 0932 0629

probability is to be expected in supervisor code, in which
loops are relatively less frequent.]

Prediction based on nonuniform history retention.
Tables 7 and 8 give the effectiveness of branch prediction
when prediction is based on exactly the n preceding ex-
ceutions of the branch in question, and whether that
branch was taken or not taken. These n preceding execu-
tions may be remembered in the branch target buffer
with n bits, those » bits representing the 27 possible sc-
quences of taken/not taken.

Given that n bits are available 1o use in predicting the
nent branch, the bits need not be allocated to show the
past # executions, but can be used to record a state that
does not map into the precise history. That is, given a
state S(7) (Yor the branch in question) at time /, we have a
function G(S(#)) that vields the prediction Tor N, and a
mapping E(S(/),T/N) = S(i + 1) that maps the current
state S(/) and whether the branch is actually taken into
the next state S(7 + 1). Thus, the prediction algorithm
can be specified by giving 7 (2" states), the function G
and the mapping £. For example, Figure 13 shows the
algorithm that uses the past two executions to predict the
nets the effectiveness of this method is shown in Table 8
in the dine labeled **2."" In Figure 13, the states are label-
od with the their history (as a name) and the prediction in
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Table 7.
Percentage of correct guesses, using n past branches
and conditional probabilities drawn from only given
trace.

1BM 'BM I1BM 1BM DEC coe
CPL BUS SCl Suyp PDP11 6400

641 64.4 70.4 54.0 738 778
919 95.2 86.6 79.7 96.5 823
933 965 90.8 83.4 97.5 90.6
93.7 96.7 91.2 835 97.7 935
945 97.0 920 837 98.1 953
94.7 97.1 92.2 83.9 98 2 957

s WwrN = O D

force, and each cdge shows the transition (mapping E)
from state to state depending on whether the branch was
taken or not taken.

We can suggest mappings E and functions G other
than those based on the last # executions of the branch.
Figure 14, for example shows an algorithm in which two
errors are required to change the prediction. That is,
when the current prediction is N and the last two

Figure 13. State diagram for branch predictor. The state
name (top line) is the history of the last two dynamic oc-
currences of this branch followed by the prediction (bot-
tom line). TT means both were taken, and T implies
predict taken. The label on each arrow is the result of the
branch.

Figure 14. State diagram for branch predictor. The name
of the state gives the prediction. For t and t?, prediction
is taken. For n and n?, prediction is not taken. The label
on the arrow is the result of the branch.
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Table 8.
Percentage of correct guesses using n past
branches and conditional probabilities drawn
from average of all traces.

IBM IBM IBM IBM DEC cobC
CPL BUS SC! SUP PDP11 6400

64.1 64 4 70.4 54.0 73.8 77.8
919 95.2 86 6 797 96.5 82.3
933 96.5 90.8 83.4 975 90.2
93.7 96.6 91.0 83.5 977 934
945 96.8 91.8 83.7 981 948
94.7 97.0 92.0 83.9 98.2 95.1

AW 2 O[:m

Figure 15. State diagram for branch predictor. The name
of the state gives the prediction. The label on the arrow is
the result of the branch.

branches were N, then two T's are required to change the
prediction to 7. The idea here is that a loop exit will not
serve to change the prediction. We note, however, that
the sequence NTNTNTNT ..., when started in the
wrong state (either n? or 17) will yield 100 percent wrong
predictions; when started in either of the other two
states, the predictions will be 50 percent wrong.

In another algorithm, proposed for the S-1,' (Figure
15), two wrong guesses are again required to change the
prediction, but two are also required to return to the
previous prediction. (In the previous algorithm we could
return to the previous prediction in one step after two er-
rors.) The sequence NNTTNNTTNNTT ... can cause
every prediction to be incorrect.

Close examination of ‘both Figures 14 and 15 shows
that the states indicated do not correspond exactly with
the previous two branches. For example, state n in Figure
14 implies a history of NN, whereas state n? implies
history of NNT or TNN.

The success of the algorithms represented in Figures 14
and 15 is shown in Table 9. Comparing the two, we see
that their results are almost identical. For further com-
parison, Table 8’s **2”’ line shows that in most cases (five
workloads), the algorithms in Figures 14 and 15 are only
slightly better. For the IBM Supervisor workload, the
earlier results are three percent better, probably because
supervisor code uses branches much less frequently for
loop control than do user programs.

We can consider all possible functions G and mappings
E for n bits of state to derive the optimal algorithm, but
we have not done so, since the results in Tables & and 9
and the comparison between them suggest that such an
exercise would vield very little, if anv, improvement.

Branch target changes. As noted earlier, the branch
target buffer contains a number of entries, each of which
consists of a branch address, state information, and a
target address. The branch target can be obtained onh
by computing it directly from the instruction or by
remembering it from the past execution and assuming
that it will be the same. Since the purpose of the BTB is
to predict the target immediately, the previous target
must be remembered. While target changes are likely to
be infrequent, they will sometimes occur, particularly if
the source (higher level language program) contains a
computed GOTO or a case statement. Execute instruc-
tions, such as those from the IBM 370 architecture. alvo
generally change targets.

Tne possibility of branch target changes implies that
when a branch is resolved and found to be taken, the
target address must be compared with the target
predicted in the BTB. If it is different, the BTB entry
must be changed. Also, if the BTB had predicted a
branch, then the pipeline must be flushed, and the cor-
rect stream of instructions fetched, just as if the BTB had
predicted that the branch would not occur. (With this re-
quirement, perhaps a branch whose target has been
found to change previously should not be used 1o predict
a branch. We believe, however, that predicting a branch
is better, if the cost of an incorrect prediction is the same
as the cost of an incorrect fall-through—primarily
because a fall-through is very unlikelv, whereas the target
need not always change.)

Table 10 shows the fraction of all dvnamic branches
executed for which a branch is taken whose target ad-
dress differs from that of its previous target. Some of

Table 9.
Prediction success of state diagrams
in Figures 14 and 15.

WORKLOAD FIGURE 14 FIGURE 15
IBM/CPL 938 938
IBM/BUS 96.2 96 2
IBM/SCI 91.3 913
IBM/SUP 802 80 2

PDP-11 97.8 97 8
CDC6400 864 89 1
Table 10.

Fraction of branch targets found to have changed from
previous execution of that branch.

PROBABILITY OF

WORKLOAD TARGET CHANGE (%)
IBM/CPL 47?2
IBM/BUS 2.1
I1BM/SCI 44
1BM/SUP 14

PDP11 12

CDC6400 2.9
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these target changes will cause predictions that were
otherwise correct (predict branch) to be incorrect. The
other cases (predict branch, but none occurs; predict no
branch, but branch occurs; and predict no branch, and
none occurs) are not affected.

WRITEs into the instruction stream. The branch
target buffer is accessed using the address of a previously
executed branch. If there has been a WRITE into the in-
struction stream, such that the bits at the given address
no longer specify a branch, then the BTB will not oper-
ate correctly. We can deal with this problem in two ways.
First, and more correct, is that the instruction in ques-
tion, identified by the BTB, can be tagged as it moves
down the pipeline with a bit specifying “branch.”” If in
the instruction-decode stage, the instruction is found not
to be a branch, then the pipeline can be flushed and re-
loaded, and the BTB can either be flushed or just that
entry can be deleted. The alternative is to ignore the
possibility of a WRITE into the instruction stream on the
basis that the machine architecture forbids modifying in-
structions, and correct operation is not guaranteed. The
latter solution is not acceptable for older architectures,
for which existing programs do modify the instruction
stream.

Extensions and alternatives. We have defined a general
mechanism for predicting branches and shown some
results for the more important cases. Some cases exist
that we have not considered, and some improvements
have been suggested.

Pomerene and Rechtschaffen® suggested that a
machine be built so that both the taken and not taken
directions can be followed (as in multiple instruction
streams). Then, if a change in locality is detected, for ex-
ample, when there are instruction misses in the CPU
cache, the multple instruction stream mechanism should
be used instead of the BTB predictions. More generally,
such a scheme can be used whenever the BTB fails to
contain the desired entry.’

Smith proposes a strategy (strategy number 3) in which
all backward branches are predicted to be taken as loop
closures and all forward branches are predicted to be not
taken,? but the performance is poor. Smith reports on
the effectiveness of a number of his other “‘strategies,”’
but in many cases, the strategies combine the prediction
algorithm with implementation issues such as the size of
the BTB or its addressing. It is thus difficult to compare
most of his results with ours. Another of his ideas is to
keep a table of recently used not taken branch instruc-
tions, but this technique, of course, fails to retain branch
tragets for successful branches, and so can be of only
limited use for 370-like architectures. For CDC and Cray
architectures,' however, the branch target address need
not be in the branch target buffer. In those machines, the
branch target address can be computed from the instruc-
tion itself well before the instruction branch condition is
resolved.

Some other ideas Smith?* has are to keep a taken/not
taken bit in the cache, to use a hashed BTB with a one;
bit predictor, and to use the same design but with a two-
bit predictor. Smith also notes that the branch target
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buffer does not actually need to hold the address of the
branch.?* The buffer could, for example, have a direct
mapping organization (using either bit selection or
hashing? with a large number of sets. Thus, if a branch
hashes into a specific set, the prediction contained
therein would be assumed to be for that branch; if
because of mapping conflicts, the branch prediction
recorded was for the wrong branch, the penalty would at
most be a wrong prediction.

An interesting use of the branch target buffer is
described by Driscoll et al.’? An address-generate in-
terlock in a pipeline is a logical dependency between the
address calculation function for operand addressing and
the register update function in the execution unit. This
AGI can delay the processing of a branch instruction
because of the need to calculate the target address. Since
the BTB predicts the target address, this interlock can be
suppressed until the branch is resolved, and the target
address can then be calculated only if necessary. An un-
necessary pipeline interlock is thus avoided most of the
time. >

An additional use of the branch target buffer or simi-
lar buffer is to speed up access to indirectly addressed
operands or addresses. Indirect addressing is a major
pipeline blocker, since indirect addressing requires a
storage delay for each indirect step. If all fetches
(operand, branch target) that could be indirect either by
tag in instruction or by tag in target are matched against
an ‘‘indirect buffer,”’ the ultimate target of an indirect
address could be fetched in one step. The BTB could
serve double duty here, or a separate buffer could be
used. We have not addressed this extension, since none
of the three architectures for which we have traces per-
mits indirect addressing.

Branch target buffer implementation

Performance costs and optimal prediction. Thus far,
we have assumed that the branch target buffer impacts
performance in the following way: A correct prediction
by the BTB incurs no lost cycles (fall-through if no
branch predicted or correct branch and target predic-
tion), and all incorrect predictions (predict branch, and
none occurs or predict fall-through, and branch occurs)
result in the same number of lost machine cycles. In a
real machine, neither of these assumptions is necessarily
true.

Specifically, a prediction of a taken branch could
always cost a small number of machine cycles because a
taken branch is out of sequence, and storage access time
(cache or main memory) may be long enough that the
target cannot be fetched before the instruction decode
stage of the pipe is ready for it. In Figure 16, we assume
that j cycles are lost for every predicted branch.

The cost of a branch predicted to be taken and then
not taken may be less than the cost of a branch not ex-
pected to be taken, but which is actuaily taken. This dif-
ference can occur because the fall-through sequence of
instructions may be already available from a sequential
fetch for more than one instruction, and thus when the
branch is resolved, the correct target (the fall-through in-
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Figure 16. Diagram showing time penalties in lost
machine cycles for correctly and incorrectly predicted
branches.

struction) may already be on hand. In Figure 16, we
assume that the cost of an incorrect positive (predict
taken) prediction is £ cycles and an incorrect negative
(not taken) prediction costs m cycles.

The four events of interest are predict no branch, and
no branch occurs; predict no branch, and branch occurs:
predict branch, and none occurs; and predict branch
correctly. (We omit the target change case here for
simplicity.) The respective costs for these events are
respectively 0, m, k, and j. Previously, we assumed that
m =k and j =0. In that case, the optimal prediction is to
maximize the probability of being right, i.e., predicting
whether the branch occurs or not. In the latter, more
complex case, the optimal prediction is the one that has
the average minimum cost. Thus, the optimal strategy
does not have to reflect the highest prediction accuracy.

Because m, k, and j are very implementation depen-
dent, we have not developed strategies for cost-based
performance predictions. Such strategies can easily (but
tediously) be generated, given the costs m, k, and j, from
Tables 5 and 6. For each sequence of preceding takens/
not takens {vi}, there is some probability p that the
branch is taken and probability 1 - p that it is not. If we
decide to predict that the branch is taken, the cost is
(1-p)+k + p=+j. If we decide to predict that the branch

Figure 17. Hit ratio of the branch target buffer as function of the
number of entries.

is not taken, the cost is p*m. The correct prediction is
the one with the lower expected cost.

Branch target buffer size and hit ratio. The branch
target buffer, like the CPU cache or the translation look-
aside buffer, is a small, high-speed memory, and because
of both cost and performance must be of limited size. In
our analysis thus far, we have always assumed that the
BTB had no boundaries and could hold all previously ex-
ecuted branches, which of course, cannot be true. Now
we will examine the effect of a BTB with a finite size.

The hit ratio of the BTB is the probability that a
branch is found to be in the BTB at the time it is fetched.
As such, the hit ratio depends on the replacement
algorithm and the BTB fetch algorithm. The former
determines which item in the BTB to replace when a new
entry is to be placed into the BTB. The latter determines
when to place entries in the BTB. In particular, it may be
better not to enter branches in the BTB if they are not
taken, given that the BTB now has a finite size.

We have used a “‘fetch-all’’ algorithm here; that is,
whenever a branch is recognized, it is entered in the BTB
if it is not already there. For replacement, we use the
global LRU algorithm, which removes the least recently
used (executed) branch in the BTB. (The replacement
algorithm could be modified to refiect the feich
algorithm. For example, if the fetch algorithm does not
fetch a not taken branch, then when a branch is already
in the BTB and is not taken, its replacement status is not
altered. That is, if replacement is LRU, then the branch
entry is not moved to the top of the LRU stack. Alter-
natively, to save space, a not taken branch could be
deleted from the buffer entirelv.)

The hit ratios for various BTB sizes, given fetch-all
and global LRU replacement algorithms are shown for
each workload in Figure 17. As the figure shows, the hit
ratio varies widely. For example, for a 256-entry BTB,
the hit ratio varies from a low of 61.5 percent (for the
IBM Supervisor workload) to a high of 99.7 percent for
the CDC 6400 programs. These results are qualitatively
similar to the relative cache hit ratios® for the various
types of programs, as we would expect. (Widdoes'?
reports that 16 to 32 entries in a BTB vield over 50 per-
cent misses for S-1 traces.)

The branch target buffer is similar in cost and perfor-
mance constraints to a translation look-aside buffer, or
TLB, and the range of feasible sizes should be similar.
Thus, the TLB sizes for the following machines are com-
parable: IBM 3033 (64), Amdah! 470V/6 (128), and Am-
dahl 470V /7 (256).

A major effect of the finite-size BTB is that it now has
fewer advantages over the other “‘branch problem’’ solu-
tions discussed earlier. For example, the taken/not taken
bit stored in the cache will be more frequently available,
if the cache is large, than the BTB entry. Although the
taken/not taken bit method is less effective in improving
performance, because the branch target address is not
immediately available, the higher hit ratio may be suffi-
cient to compensate.

Buffer addressing and organization. The branch target
buffer is accessed associatively: that is, the address of the
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instruction fetch is matched with the instruction address
fields in the BTB. If they match, the appropriate predic-
tion is made. Associative memories are slow and expen-
.ve if implemented in other than VLSI, so it is not
always feasible to make the BTB fully associative. The
two reasonable choices are t0 make it set associative® or
hashed as is done for most TLBs.? In the former case,
<ome middle bits of the instruction address are used to
select a set, and the remaining bits are used for the asso-
ciative match within the set. The replacement is within
the set. Hashing is usually combined with set associative
replacement as follows. The address of the instruction is
hashed,” and a set of elements is selected. The search is
then associative within this set (the set size may be one),
and replacement is also within the set. Since A. Smith’s
experiments’ showed the two methods to be about equal-
lv effective, we select the standard set associative mapp-
ing as simpler, cheaper, and faster. (J. Smith uses
hashing as one of his strategies.”)

Table 11 shows the effect of the set size is shown for
the IBM/CPL mix. (The effects of other mixes are
presented elsewhere.’®) A. Smith shows that set sizes of
four or eight are suf ficiently large and closely approach
the hit ratio of the fully associative design.>

The effect of multiprogramming. Multiprogramming is
important to both the design and performance of the
branch target buffer. Whenever the address space in con-
trol of the computer changes, the association between
virtual memory addresses and memory contents changes.
(Since virtual addresses are the ones generated by the
program, the BTB must pe accessed using virtual ad-
dresses. Otherwise all BTB accesses would require
(ranslation first.) Thus, the BTB should be purged when
the address space changes: otherwise incorrect matches
will occur as will incorrect predictions. Each such predic-
tion will have 1o be corrected, and since many incorrect
positive predictions will take place for non-branches, the
number of errors will be high and the performance cost
significant.

The effect of purging the BTB, or equivalently, in cor-
recting it entry by entry, is that the BTB will usually con-
tain far fewer valid entries than our previous discussions
and simulations suggest. As a worst-case example, con-
sider the data in Table 12. The table compares the frac-
tion of correct predictions using an infinite BTB with
those from an infinitely large BTB that is flushed every
1000 instructions. As the table shows, these frequent
flushes significantly impact performance. We believe,
however, that address space switches will occur at inter-
vals closer to 3000 to 25,000 instructions than to 1000.
Therefore, the BTB flushes may have less of an effect on
the miss ratio than will the finite size of the BTB.

If the BTB is to be flushed when a task switch occurs,
then the task switch must be detected. Further, some
time may be lost as the flush takes place. Smith discusses
fast methods for flushing TLBs.?

Restrictions on logic complexity. The branch target
buffer, as noted earlier, is closely associated with the
CPU pipeline and must therefore function very quickly.
Cost and size limitations combine with the speed require-
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ment to limit the feasible degree of complexity for the
BTB. We have therefore narrowed the range of alter-
natives considered to those that are sufficiently simple
and inexpensive to implement. Further, we have looked
at the effect of BTB size and organization for the same
reason. Anyone proposing either to design a BTB or to
study BTBs further should keep in mind these important
constraints.

MU-S implementation and results. The MU-5 com-
puter system uses a branch target buffer whose effec-
tiveness is discussed by Holgate and Ibbett.?* The BTB
retains up to eight previously taken branches and their
targets. Only branches with fixed (invariant) targets are
placed in the BTB.

The effectiveness of the MU-5 BTB was studied using
a hardware monitor; measurements were made for a mix
of compilations and executions for both Fortran and
Algol. Branches constitute 14 and 12.5 percent of the in-
structions from Algol and Fortran executions, respec-
tively. The BTB correctly predicts from 40 (Algol com-
pilation) to 65 percent (Algol execution) of the correct
sequences after a branch (including fall-throughs), as
compared with 15 to 25 percent without the BTB.

S-1 trace experiments. Some branch target buffer ex-
periments on S-1 traces have been reponed."’ Success
rates are from 91 to 95 percent with one- to five-bit
predictors, using the method shown in Figure 15. The ef-
fectiveness of this scheme varies from worse than the
one-bit predictor to almost as good as the four-bit
predictor. These experiments were run on two 1races of
about 100,000 instructions.

Table 11.
Branch target butfer hit ratios IBM/CPL mix).
SET SIZE
BUFFER
SIZE 1 2 3 4 8 16 32 64 128 256
1 0.031
2 0.057 0.075
4 0.084 0.124 0.185
8§ 0161 0.174 0.228 0298
16  0.258 0.267 0.271 0.333 0.369
32 0.353 0.359 0.355 0.369 0.441 0.514
64 0.407 0.470 0.475 0.499 0.513 0.570 0.634
128  0.562 0.602 0.617 0.623 0.623 0.626 0.702 0.769
o856  0.678 0.725 0.751 0.759 0.765 0.768 0.770 0.840 0.888
512 0784 0.835 0.865 0.879 0.886 0.886 0.880 0.811 0.952
1K 0.864 0.919 0.944 0.956 0.961 0.964 0.965 0.966 0.966
2K 0.917 0.961 0.974 0979 0.981 0.981 0.981 0.981 0.981
4K 0.946 0.976 0.981 0.981 0.981 0.981 0.981 0981 0.981
Table 12.
Comparative percentages of correct guesses
in a multiprogramming environment.
IBM 1BM I1BM IBM DEC coC
CPL BUS SCI Sup PDP11 6400
No Fiush 93.2 95.9 89.7 80.0 97.4 85.5
Flush Every 79.9 83.3 749 86.3 68.9
1000 instructions
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Use for tracing. In some computers, circular buffers
are maintained of the last » instructions or branches ex-
ecuted, and their contents are useful in debugging both
hardware and software. The branch target buffer can be
combined in function with the circular branch buffer.*

Overall BTB effectiveness

The reason for building a branch target buffer is to im-
prove CPU performance. Thus, the results on correct
predictions and hit ratios must be integrated with the
costs of hits and misses and correct and incorrect predic-
tions to get an overall estimate of performance impact.

For example, in the IBM/CPL mix, we can predict the
branch path with an accuracy of 93.8 percent, using the
predictor depicted in Figure 14. A hit ratio of 86.5 per-
cent is obtained with a BTB consisting of 128 sets of four
entries each. Up to 4.2 percent of our predictions will be
incorrect due to target changes, giving an overall
minimum prediction accuracy of (93.8-4.2) 0.87 = 78

percent.

Prediction accuracy can be used to estimate the per-
formance impact by considering a real machine. We used
the Amdahl 470V/6," which has a machine cycle time of
32.5 nsec and runs at about four MIPS.* Excluding
memory access delays, five MIPS is closer (and the figure

we used) and yields a mean of six cycles per instruction.
Each branch taken causes a delav of four machine cycles.
If the branches are 30 percent of the instructions, and 65
percent of the branches are taken. Excluding the branch
penalty, the mean execution time / for an instruction
would be 6~ (0.3)(0.65)(4) = 5.22 cvcles. Branch predic-
tion using the BTB would then result in a mean execution
time of 5.22 + (0.3)(1 ~0.78)(4) = 5.48 machine cycles.
Defining performance as the rate of instruction execu-
tion gives us a performance improvement of 9.5 percent.

This computation, using the same basic figures, has
been replicated, varying each parameter of interest, one
case per table, and the results appear in Figure 18. The
figure shows (left to right, top to botiom) the mean in-
struction time for different basic instruction execution
times, the mean instruction time for different time
penalties when the wrong stream is processed after an
unresolved branch, and the mean instruction time for
different hit ratios in the BTB with basic instruction
times of 5.22 and 2.2 cycles.

Figure 18a shows that the BTB is most effective when
the cost of an incorrect guess is large relative 10 the mean
instruction time. That result is confirmed in Figure 18c in
which the other parameter of that pair is varied. Figure
18b shows that the hit ratio to the BTB is important and
rises in importance, as seen in Figure 18d, when the ba«ic
instruction time is short.
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Figure 18. Mean instruction time in machine cycles as a function of variations in the basic instruction time (a). the in-
correct guess penalty (c), and the probability of a branch target bufter hit (b), (d).
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Taken branches have long been one of the major
obstacles to high efficiency in a pipelined computer
system. A great deal of effort has been invested in over-
coming this problem, either by facilitating the access to
instructions (loop buffers, target prefetch) or by directly
attacking the branch problem (muitiple instruction
streams, delayed branch, etc.). We believe that the
branch target buffer is the most effective way to
minimize branch penalties.

Our study of the BTB has been based on a close ex-
amination of instruction traces and analysis of their
behavior. We have developed a general prediction
strategy, based on branch history and op code, and have
measured the effectiveness of the important variants of
this predictor. Our results show that two bits are suffi-
cient to retain the necessary state information for effec-
tive prediction. We also found that on the order of 256
entries in the BTB are required for some workloads and
represent a good design target for a large, high-
performance machine.

We have also considered various implementation
issues, such as the design of the BTB addressing (set
associative), the effect of multiprogramming on the hit
ratio, the need to flush the BTB when the address space
changes, and the problems of branch target changes and
WRITEs into the instruction stream.

The use of six workloads, taken from three machines,
gives us reason to believe our results are representative of
the those to be generally expected, and we believe our
work has direct application to high-speed computer
system design. A number of extensions to the basic BTB
include the use of the BTB or another similar buffer to
avoid penalties from indirect addressing. Improvements
in CPU performance of from 5 to 20 percent can be ex-
pected when comparing a BTB design to a similar CPU
design without a BTB. H
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