

STORAGE

MAIN
STORAGE

AND

CAPACITY
LARGE

STORAGE

ARITHMETIC AND LOGIC

- PROCESSING UNIT

INPUT/OUTPUT

CHANNELS CONTROL UNITS DEVICES

LOW-SPEED
(MULTIPLE

SUBCHANNELS)
P? ""9
00 Q

Figure 2 Schematic of basic registers and data paths

4 STORAGE ADDRESS MAIN STORAGE

,""L"" I I

I 'k INSTRUCTIONS
I I I

-I FIXED-WINT
OPERATIONS FIELD-LENGTH

VARIABLE

OPERATIONS
FLOATING-WINT

OPERATIONS

I t

GENERAL
REGISTERS

I t

The processing unit has sixteen general purpose 32-bit registers
used for addressing, indexing, and accumulating. Four 64-bit
floating-point accumulators are optionally available. The inclu-
sion of multiple registers permits effective use t o be made of
small high-speed memories. Four distinct types of processing are
provided: logical manipulation of individual bits, character strings
and fixed words; decimal arithmetic on digit strings; fixed-point
binary arithmetic; and floating-point arithmetic. The processing
unit, together with the central control function, will be referred
to as the central processing unit (CPU). The basic registers and
data paths of the CPU are shown in Figure 2.

The CPU'S of the various models yield a substantial range in
performance. Relative to the smallest model (MODEL 30), the in-
ternal performance of the largest (MODEL 70) is approximately
50 : 1 for scientific computation and 15 : 1 for commercial data
processing.

Because of the extensive instruction set, SYSTEM/~BO control is
more elaborate than in conventional computers. Control func-
tions include internal sequencing of each operation; sequencing
from instruction to instruction (with branching and interruption);
governing of many I/O transfers; and the monitoring, signaling,
timing, and storage protection essential to total system operation.
The control equipment is combined with a programmed super-
visor, which coordinates and issues all I/O instructions, handles
exceptional conditions, loads and relocates programs and data,
manages storage, and supervises scheduling and execution of
multiple programs. To a problem programmer, the supervisory
program and the control equipment are indistinguishable.

The functional structure of SYSTEM/^^^, like that of most com-
puters, is most concisely described by considering the data for-
mats, the types of manipulations performed on them, and the
instruction formats by which these manipulations are specified.

OUTLINE OF THE LOGICAL STRUCTURE

control

121

The several SYSTEM/~BO data formats are shown in Figure 3.
information An 8-bit unit of information is fundamental to most of the for-
formats mats. A consecutive group of n such units constitutes a Jield of

length n. Fixed-length fields of length one, two, four, and eight
are termed bytes, halfwords, words, and double words, respectively.
In many instructions, the operation code implies one of these
four fields as the length of the operands. On the other hand, the
length is explicit in an instruction that refers to operands of vari-
able length.

The location of a stored field is specified by the address of the
leftmost byte of the field. Variable-length fields may start on
any byte location, but a fixed-length field of two, four, or eight
bytes must have an address that is a multiple of 2, 4, or 8, re-
spectively. Some of the various alignment possibilities are ap-
parent from Figure 3.

Storage addresses are represented by binary integers in the
system. Storage capacities are always expressed as numbers of
bytes.

I 1 FULLWORD FIXED-POINT NUMBER

S 31 INTEGER

I I I

1 LONG FLOATING-POINT NUMBER 1 I
..

-

I S 1 CHARA~ERISTIC 1 56
FRACTION

7 1 l

i PACKED DECIMAL NUMBER
I I

~""""""""""""""""""""

ZONED DECIMAL NUMBER ' ""_""! """"""""""""""""""""

""""" 1 """""""""""""""""""" 4 4 4
ZONE DIGIT ZONE DIGIT I

I FIXED.LENGTH LOGICAL INFORMATION

LOGICAL DATA

' VARIABLE-LENGTH LOGICAL INFORMATION
8 8 8

CHARACTER CHARACTER CHARACTER

1 ""_ """"""""""""""""""

"""""""""~~

122 G. A. BLAAUW A N D F. P. BROOKS, JR.

Processing operations
The S Y S T E M / ~ ~ O operations fall into four classes: fixed-point arith-
metic, floating-point arithmetic, logical operations, and decimal
arithmetic. These classes differ in the data formats used, the regis-
ters involved, the operations provided, and the way the field length
is stated.

The basic arithmetic operand is the 32-bit fixed-point binary
word. Halfword operands may be specified in most operations for
the sake of improved speed or storage utilization. Some products
and all dividends are 64 bits long, using an even-odd register pair.

Because the 32-bit words accommodate the 24-bit address,
the entire fixed-point instruction set, including multiplication,
division, shifting, and several logical operations, can be used in
address computation. A two’s complement notation is used for
fixed-point operands.

Additions, subtractions, multiplications, divisions, and com-
parisons take one operand from a register and another from either
a register or storage. Multiple-precision arithmetic is made con-
venient by the two’s complement notation and by recognition
of the carry from one word to another. A pair of conversion in-
structions, CONVERT TO BINARY and CONVERT TO DECIMAL,
provide transition between decimal and binary radices without
the use of tables. Multiple-register loading and storing instructions
facilitate subroutine switching.

Floating-point numbers may occur in either of two fixed-
length formats-short or long. These formats differ only in the
length of the fractions, as indicated in Figure 3. The fraction of
a floating-point number is expressed in 4-bit hexadecimal (base 16)
digits. In the short format, the fraction has six hexadecimal digits;
in the long format, the fraction has 14 hexadecimal digits. The
short length is equivalent to seven decimal places of precision.
The long length gives up to 17 decimal places of precision, thus
eliminating most requirements for double-precision arithmetic.

The radix point of the fraction is assumed to be immediately
to the left of the high-order fraction digit. To provide the proper
magnitude for the floating-point number, the fraction is con-
sidered to be multiplied by a power of 16. The characteristic
portion, bits 1 through 7 of both formats, is used to indicate this
power. The characteristic is treated as an excess 64 number with
a range from -64 through +63, and permits representation of
decimal numbers with magnitudes in the range of to

Bit position 0 in either format is the fraction sign, S. The
fraction of negative numbers is carried in true form.

Floating-point operations are performed with one operand from
a register and another from either a register or storage. The
result, placed in n register, is generally of the same length as
the operands.

Operations for comparison, translation, editing, bit testing,
and bit setting are provided for processing logical fields of fixed
and variable lengths. Fixed-length logical operands, which con-

OUTLINE OF THE LOGICAL STRUCTURE

sist of one, four, or eight bytes, are processed from the general
registers. Logical operations can also be performed on fields of
up to 256 bytes, in which case the fields are processed from left
to right, one byte at a time. Moreover, two powerful scanning
instructions permit byte-by-byte translation and testing via
tables. An important special case of variable-length logical oper-
ations is the one-byte field, whose individual bits can be tested,
set, reset, and inverted as specified by an 8-bit mask in the in-
struction.

Any 8-bit character set can be processed, although certain re-
character strictions are assumed in the decimal arithmetic and editing oper-
codes ations. However, all character-set-sensitive I/O equipment assumes

either the Extended Binary-Coded-Decimal Interchange Code
(EBCDIC) of Figure 4 or the code of Figure 5, which is an eight-bit
extension of a seven-bit code proposed by the International
Standards Organization.

Decimal arithmetic can improve performance for processes
decimal requiring few computational steps per datum between the source
arithmetic input and the output. In these cases, where radix conversion from

decimal to binary and back to decimal is not justified, the use of
registers for intermediate results usually yields no advantage over
storage-to-storage processing. Hence, decimal arithmetic is pro-
vided in S Y S T E M / ~ ~ O with operands as well as results located in
storage, as in the IBM MOO series. Decimal arithmetic includes

Figure 4 Extended Binary-Coded-Decimal Interchange Code

BIT POSITIONS- 01

I I 2 2 3
00-, ,-Ol-, ,-lo-, -11-

4 4567

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00 01

NULL

PF RES

HT NL

LC BS

DEL I L

10 11

PF Punchoff BS Bachspacc SM Set mode
HT Hor#rontaltab IL Idle PN Punchon

DEL Delete LF Llnefeed uc uppercase
RS Reader stop

RES Restore LOB End of block LOT End of tran5mislion
NL Newilns PRE Preflr SP space

LC LOH.,C.IB BYP Bypar*

124 G. A. BLAAUW AND F. P. BROOKS, JR.

Figure 5 Eight-bit representation for proposed international code*

BIT POSITIONS- 76
I I 00
I 1 ' * x5
4 4 3 2 1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

I l l 1

01 10 11 00 01 10 I 1 00 01 10 11 00 01 10 11

addition, subtraction, multiplication, division, and comparison.
The decimal digits 0 through 9 are represented in the 4-bit

binary-coded-decimal form by 0000 through 1001, respectively.
The patterns 1010 through 1111 are not valid as digits and are
interpreted as sign codes: 1011 and 1101 represent a minus, the
other four a plus. The sign patterns generated in decimal arith-
metic depend upon the character set preferred. For EBCDIC, the
patterns are 1100 and 1101; for the code of Figure 5 , they are 1010
and 1011. The choice between the two codes is determined by a
mode bit.

Decimal digits, packed two to a byte, appear in fields of vari-
able length (from 1 to 16 bytes) and are accompanied by a sign
in the rightmost four bits of the low-order byte. Operand fields
can be located on any byte boundary, and can have lengths up to
31 digits and sign. Operands participating in an operation have
independent lengths. Negative numbers are carried in true form.
Instructions are provided for packing and unpacking decimal
numbers. Packing of digits leads to efficient use of storage, in-
creased arithmetic performance, and improved rates of data trans-
mission. For purely decimal fields, for example, a 90,000-byte/sec-
ond tape drive reads and writes 180,000 digits/second.

OUTLINE OF THE LOGICAL STRUCTURE 125

Figure 6 Five basic instruction formats

FIRST HALFWORD SECOND HALFWORD

I I I
OPERANDS
REGISTER 1 I I

I I I
RR FORMAT1 OP CODE I

RX FORMAT OP CODE R X B 0
7 8 11 12 15116 19 20

I L
A J

RS FORMAT OP CODE R R B D

SI FORMAT OPCODE I D

7 8 15/16 1920

THIRD HALFWORD

SS FORMAT OF' CODE L L B 0 B 0

0 7 8 11 12 15 15 n m 31 47

Instruction formats contain one, two, or three halfwords,
instruction depending upon the number of storage addresses necessary for
formats the operation. If no storage address is required of an instruction,

one halfword suffices. A two-halfword instruction specifies one
address; a three-halfword instruction specifies two addresses. All
instructions must be aligned on halfword boundaries.

The five basic instruction formats, denoted by the format mne-
monics RR, RX, IXS, SI, and ss are shown in Figure 6. RR denotes
a register-to-register operation, RX a register and indexed-storage
operation, RS a register and storage operation, SI a storage and im-
mediate-operand operation, and ss a storage-to-storage operation.

In each format, the first instruction halfword consists of two
parts. The first byte contains the operation code. The length and
format of an instruction are indicated by the first two bits of the
operation code.

The second byte is used either as two 4-bit fields or as a single
8-bit field. This byte is specified from among the following:

Four-bit operand register designator (R)
Four-bit index register designator (X)
Four-bit mask (M)
Four-bit field length specification (L)
Eight-bit field length specification
Eight-bit byte of immediate data (I)

The second and third halfwords each specify a 4-bit base

126 G . A. BLAAUW AND F. P. BROOKS, JR.

register designator (B), followed by a 12-bit displacement (D).
An effective storage address E is a 24-bit binary integer given,

in the typical case, by

E = B + X + D

where B and X are 24-bit integers from general registers identified
by fields B and X, respectively, and the displacement D is a
12-bit integer contained in every instruction that references
storage.

The base B can be used for static relocation of programs and
data. In record processing, the base can ident,ify a record; in array
calculations, it can specify the location of an array. The index X
can provide the relative address of an element within an array.
Together, B and X permit double indexing in array processing.

The displacement provides for relative addressing of up to
4095 bytes beyond the element or base address. In array calcu-
lations, the displacement can identify one of many items associ-
ated with an element. Thus, multiple arrays whose indices move
together are best stored in an interleaved manner. In the pro-
cessing of records, the displacement can identify items within a
record.

In forming an effective address, the base and index are treated
as unsigned 24-bit positive binary integers and the displacement
as a 12-bit positive binary integer. The three are added as 24-bit
binary numbers, ignoring overflow. Since every address is formed
with the aid of a base, programs can be readily and generally re-
located by changing the contents of base registers.

A zero base or index designator implies that a zero quantity
must be used in forming the address, regardless of the contents of
general register 0. A displacement of zero has no special signifi-
cance. Initialization, modification, and testing of bases and indices
can be carried out by fixed-point instructions, or by BRANCH AND
LINK, BRANCH ON COUNT, or BRANCH O N INDEX instructions.
LOAD EFFECTIVE ADDRESS provides not only a convenient
housekeeping operation, but also, when the same register is
specified for result and operand, an immediate register-incre-
menting operation.

Sequencing

Normally, the CPU takes instructions in sequence. After an in-
struction is fetched from a location specified by the instruction
counter, the instruction counter is increased by the number of
bytes in the instruction.

Conceptually, all halfwords of an instruction are fetched from
storage after the preceding operation is completed and before
execution of the current operation, even though physical storage
word size and overlap of instruction execution with storage access
may cause the actual instruction fetching to be different. Thus,
an instruction can be modified by the instruction that immedi-

OUTLINE OF THE LOGICAL STRUCTURE

I Figure 7 Program status word format
8 4 4 16

SYS MASK KEY CMWP INTERRUPT CODE

2 2 4 24

I
ILC I cc I I INSTRUCTION ADDRESS

SYSTEM MASK- MPX channel
SELchannelsl-6
External

ILC- lnrtructmn length code

CC- Condltlon code

KEY- Storage protection key
PROGRAM MASK- Flrcd oolnt overflow

ately precedes it in the instruction stream, and cannot effectively
modify itself during execution.

Most branching is accomplished by a single BRANCH ON
branching CONDITION operation that inspects a 2-bit condition register.

Many of the arithmetic, logical, and I/O operations indicate an
outcome by setting the condition register to one of its four pos-
sible states. Subsequently a conditional branch can select one of
the states as a criterion for branching. For example, the condition
code reflects such conditions as non-zero result, first operand high,
operands equal, overflow, channel busy, zero, etc. Once set, the
condition register remains unchanged until modified by an in-
struction execution that reflects a different condition code.

The outcome of address arithmetic and counting operations
can be tested by a conditional branch to effect loop control. Two
instructions, BRANCH ON COUNT and BRANCH ON INDEX,
provide for one-instruction execution of the most common arith-
metic-test combinations.

A program status word (PSW), a double word having the for-
program mat shown in Figure 7, contains information required for proper
status execution of a given program. A PSW includes an instruction ad-
word dress, condition code, and several mask and mode fields. The

active or controlling PSW is called the current PSW. By storing the
current PSW during an int.erruption, the status of the interrupted
program is preserved.

Five classes of interruption conditions are distinguished: input/
interruption output, program, supervisor call, external, and machine check.

For each class, two PSW’S, called old and new, are maintained
in the main-storage locations shown in Table 1. An interruption
in a given class stores the current PSW as an old PSW and then
takes the corresponding new PSW as the current PSW. If, at the con-
clusion of the interruption routine, old and current PSW’S are
interchanged, the system can be restored to its prior state and
the interrupted routine can be continued.

The system mask, program mask, and machine-check mask
bits in the PSW may be used to control certain interruptions. When
masked off, some interruptions remain pending while others are
merely ignored. The system mask can keep I/O and external
interruptions pending, the program mask can cause four of the 15
program interruptions to be ignored, and the machine-check

128 G . A. BLAAUW AND F. P. BROOKS, JR.

Figure 8 Channel status word format

KEY 0 0 0 0 COMMAND ADDRESS

0 3 4 7 8 31

STATUS COUNT

32 41 48 63

Bat9 0 through 3 contarn the storage PrOtectlOn key usad in the operallon.
Bll~4through7contalnleror
Bltr8lhrovgh32rpecliytheIacatlonoffhelartCCWured.
Bltl32 through 47 contain an IIO-devlce IUtuI byte and a channel status

Ingcheck. confml-un~tend. L C .
byte The status bytes p,ov,de such lnforrnatlon as data check. chang-

I

Bltr48through63confa,nther~rldualcounlofthelartCCWurcd.

electrical, logical, and buffering capabilities necessary for I/O

device operation. From the programming point of view, most
control-unit and I/O device functions are indistinguishable. Some-
times the control unit is housed with an I/O device, as in the case
of the printer.

A control unit functions only with those I/O devices for which
it is designed, but all control units respond to a standard set of
signals from the channel. This control-unit-to-channel connection,
called the I/O interface, enables the CPU to handle all I/O operations
with only four instructions.

Input/output instructions can be executed only while the CPU

' / O is in the supervisor state. The four I/O instructions are START
instructions I/O, HALT I/O, TEST CHANNEL, and TEST I/O.

START 1/0 initiates an I/O operation; its address field specifies
a channel and an I/O device. If the channel facilities are free, the
instruction is accepted and the CPU continues its program. The
channel independently selects the specified I/O device. HALT I/O
terminates a channel operation. TEST CHANNEL sets the condi-
tion code in the PSW to indicate the state of the channel addressed
by the instruction. The code then indicates one of the following
conditions : channel available, interruption condition in channel,
channel working, or channel not operational. TEST 1/0 sets the
PSW condition code to indicate the state of the addressed channel,
subchannel, and I/O device.

Channels provide the data path and control for I/O devices
channels as they communicate with main storage. In the multiplexor chan-

nel, the single data path can be time-shared by several low-speed
devices (card readers, punches, printers, terminals, etc.) and the
channel has the functional character of many subchannels, each
of which services one I/O device at a time. On the other hand, the
selector channel, which is designed for high-speed devices, has
the functional character of a single subchannel. All subchannels
respond to the same I/O instructions. Each can fetch its own con-
trol word sequence, govern the transfer of data and control signals,
count record lengths, and interrupt the CPU on exceptions.

Two modes of operation, burst and multiplex, are provided for
multiplexor channels. In burst mode, the channel facilities are
monopolized for the duration of data transfer to or from a par-
ticular I/O device. The selector channel functions only in the
burst mode. In multiplex mode, the multiplexor channel sustains
several simultaneous I/O operations: bytes of data are interleaved

132 G . A. BLAAUW AND F. P. BROOKS, JR.

Figure 9 Channel command word formal

~

COMMAND CODE DATA ADDRESS

0 7 8 31

FLAGS 0 0 0 COUNT

32 36 37 39 40 47 48 63

and then routed between selected I/O devices and desired locations
in main storage.

At the conclusion of an operation launched by START I/O or
TEST I/O, an I/O interruption occurs. At this time a channel status
word (csw) is stored in location 64. Figure 8 shows the csw for-
mat. The csw provides information about the termination of the
I/O operation.

Successful execution of START 1/0 causes the channel to fetch
a channel address word from main-storage location 72. This word
specifies the storage-protection key that governs the I/O oper-
ation, as well as the location of the first eight bytes of information
that the channel fetches from main storage. These 64 bits comprise
a channel command word (ccw). Figure 9 shows the ccw format.

One or more ccw's make up the channel program that directs
channel operations. Each ccw points to the next one to be fetched,
except for the last in the chain which so identifies itself.

Six channel commands are provided: read, write, read back-
ward, sense, transfer in channel, and control. The read command
defines an area in main storage and causes a read operation from
the selected I/O device. The write command causes data to be
written by the selected device. The read-backward command is
akin to the read command, but the external medium is moved in
the opposite direction and bytes read backward are placed in
descending main storage locations.

The control command contains information, called an order,
that is used to control the selected I/O device. Orders, peculiar
to the particular I/O device in use, can specify such functions as
rewinding a tape unit, searching for a particular track in disk
storage, or line skipping on a printer. In a functional sense, the
CPU executes I/O instructions, the channels execute commands,
and the control units and devices execute orders.

The sense command specifies a main storage location and
transfers one or more bytes of status information from the selected
control unit. It provides details concerning the selected I/O device,
such as a stacker-full condition of a card reader or a file-protected
condition of a magnetic-tape reel.

A channel program normally obtains ccw's from a consecutive
string of storage locations. The string can be broken by a transfer-
in-channel command that specifies the location of the next ccw
to be used by the channel. External documents, such as punched
cards or magnetic tape, may carry ccw's that can be used by the

OUTLINE OF THE LOGICAL STRUCTURE

Table 2 System/BM) Insfructions

RR Format

FIXED-POINT FULLWORD
AND LOGICAL

0001xxxx

FLOATING-POINT
LONG

FLOATING-POINT
SHORT

0011xxxx

STATUS SWITCHING
BRANCHING AND

ooooxxxx xxxx

0001
0000

0010
0011
0100
0101
0110
0111

1001
1000

1010
1011

1101
1100

1110
1111

00lOxxxx
LPDR LOAD POSITIVE
LNDR LOAD NEGATIVE
LTDR LOAD AND TEST
LCDR LOdD COMPLEMENT
HDR HALVE

LPR LOAD POSITIVE

LTR LOAD AND TEST
LNR LOAD NEGATIVE

NR AND
JXR LOAD COMPLEMEN’I

CLR COMPARE LOGICAL
OR OR

LNER LOAD NEGATIVE
LPER LOAD POSITIVE

LTER LOAD AND TEST
LCER J,OAD COMPLEMENT
HER HALVE SPA1 SET PROGRAhI MASh

BCTR BRANCH ON COUNT
BALR BRANCH AND LINK

BCR BRANCH/CONDITION
SSK SET KEY
ISK INSERT KEY

XR EXCLUSIVE OR
LR LOAD
CR COMPARE
AR ADD
SR SUBTRACT
MR .MULTIPLY
DR DIVIDE
ALR ADD LOGICAL
9LR SUBTRACT LOGICAL

LDR LOAD
CDR COMPARE

LER LOAD
CER COMPARE
ALR ADD N
9ER SUBTRACT N
MER MULTIPLY
DER DIVIDE
AUR ADD U

svc SUPERVI~CR CALL ADR ADD N
SDR SUBTRACT N

DDR DIVIDE
MDR MULTIPLY

AWR ADD U
SWR SUBTRACT U 3UR SUBTRACT U

RX Format

FIXED-POINT HALFWORD FIXED-POINT FULLWORD
AND BRANCHING AND LOGICAL

FLOATING-POINT
LONG

0l10xxxx
STD STORE

FLOATING-POINT
SHORT

Olllxxxx
STE STORE

-
STH
J,A
STC
IC
E X
BBL
BCT

LH
BC

AH
CH

hl H
SH

xxxx
0000
0001
0010
0011
0100
0101

0111
0110

1001
1000

1010
1011
1100
1101
1110
1111

OlOOxxxx
STORE
LOAD ADDRESS
STORE CHARACTER
INSERT CHAR.4CTER
EXECUTE N
BRANCH AND LINK CL

BRANCH/CONDITION X
BRANCH ON COUNT 0

LOAD J,
COMPARE c
ADD 1
SUBTRACT S
MULTIPLY nl

ST
0l01xxxx

STORE

AND
COMPARE LOGICAL

EXCLUSIVE OR
OR

LOAD
COMPARE

LD LOAD LE LOAD

AE ADD N
CE COMPARE

SE SUBTRACT N
ME MULTIPLY

AU ADD U
DE DIVIDE

CD COMPARE
AD ADD N
SD SUBTRACT N
MD MULTIPLY
DD DIVIDE
AW ADD U
9W SUBTRACT U

ADD
SUBTRACT
MULTIPLY

ADD LOGICAL
DIVIDE

SUBTRACT LOGICAL
CVD CONVERT-DECIhfBL
CVB CONVERT-BINARY SU SUBTRACT U

RS. SI Format

LOGICAL AND
FIXED-POINT

INPUT/OUTPUT

BRANCHING
STATUS SWITCHING

AND SHIFTING

l0Wxxxx

SSM SET SYSTEM NASB

LPSW LOAD PSW

WRD WRITE DIRECT
DIAGNOSE

RDD READ DIRECT
BXH BRANCHIHIGH

xxxx
0000
0001
0010
0011
0100
0101
0110
0111
1wo
1001
1010
1011
1100
1101

1111
1110

lOOlxxxr l0llxxxx
ST11 STORE MULTIPLE
Thl TEST UNDER MASK
JlVI MOVE
TS TEST AND SET
NI AND
CLI COMPARE LOGICAL
01 OR
XI EXCLUSIVE OR
J i l l L04D MULTIPLE

BXLE
SRL
SLL
SRA
SLA

SLDL
SRDL

SLDA
SRDA

BRANCH/LOWIEQL

SHIFT LEFT SI,
SHIFT RIGHT SL

SHIFT RIGHT S
SHIFT LEFT S
SHIFT RIGHT DL
SHIFT LEFT DL

SHIFT LEFT D
SHIFT RIGHT D

S I 0 START I/O

H I 0 HALT I/O
T I 0 TEST 110

TCH TEST CHANNEL

LOGIC.AL

llOlrxxr

DECIMAJ,

llllxxxx

SS Format

xxxx ll00xxxx lllOxrxx

3fVN MOVE NUMERIC
MVC MOVE
MVZ MOVE ZONE
NC AND
CLC COMPARE LOGICAL
OC OR
XC EXCLUSIVE OR

nwo
PACK
UNPR

MOVE WITH
PACK
UNPACK

OFFSET 0001
0010

0100
001 1

0101
0110
0111
1000
1001
1010
1011
11w
1101
1110
1111 I Z A P ZERO AND AD11

A P ADD
CP COMPARE

SP SUBTRACT

DP DIVIDE
n w MULTIPLY TR TRANSLATE

TRT TRANSLATE AND TESl
ED EDIT
EDMK EDIT AND NARK

134 G. A. BLAAUW AND F. P. BROOKS, JR.

The input/output interruptions caused by termination of an
I/O operation, or by operator intervention at the I/O device, enable
the CPU to provide appropriate programmed response to con-
ditions as they occur in I /O devices or channels. Conditions re-
sponsible for I/O interruption requests are preserved in the I/O

devices or channels until recognized by the CPU.

During execution of STAl tT I/O, a command can be rejected
by a busy condition, program check, etc. Rejection is indicated
in the condition code of the PSW, and additional detail on the
conditions that precluded initiation of the I/O operation is pro-
vided in a csw.

The need for manual control is minimal because of the design manual
of the system and supervisory program. A control panel provides control
the ability to reset the system; store and display information in
main storage, in registers, and in the PSW; and load initial program
information. After an input device is selected with the load unit
switches, depressing a load key causes a read from the selected
input device. The six words of information that are read into
main storage provide the PSW and thc ccw’s required for sub-
sequent operation.

are displayed in Table 2. Operation codes and mnemonic abbrevi- set
ations are also shown. With the previously described formats in
mind, much of the generality provided by the system is apparent
in this listing.

The SYSTEM/3GO instructions, classified by format and function, instruction

Summary
In the SYSTEM/~GO logical structure, processing efficiency and
versatility are served by multiple accumulators, binary addressing,
bit-manipulation operations, automatic indexing, fixed and vari-
able field lengths, decimal and hexadecimal radices, and floating-
point as well as fixed-point arithmetic. The provisions for pro-
gram interruption, storage protection, and flexible CPU states
contribute to effective operation. Base-register addressing, the
standard interface between channels and input/output control
units, and the machine-language compatibility among models
contribute to flexible configurations and to orderly system ex-
pansion.

FOOTNOTE

model does not provide decimal data handling and has a few minor differ-
ences arising from its highly voncurrent, speed-oriented organization. A
paper on Model 92 is planned for future publication in the IBM S y s t e m
Journal.

