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Abstract: The  System/360  Model 91 central processing  unit  provides internal  computational  performance  one to two orders  of magni- 
tude  greater than that of the IBM 7090 Data Processing  System through a combination  of  advancements  in  machine organization,  circuit 
design, and hardware  packaging.  The  circuits  employed  will  switch at speeds  of  less than 3 nsec,  and the circuit  environment  is  such 
that delay  is  approximately 5 nsec  per  circuit  level.  Organizationally,  primary  emphasis  is placed on (1) alleviating  the  disparity  between 
storage  time  and  circuit speed, and (2) the development  of  high  speed  floating-point  arithmetic  algorithms. 

This  paper  deals  mainly  with  item (1) of the organization. A design  is  described  which  improves the ratio of storage  bandwidth and 
access  time to cycle  time through the use of storage  interleaving and CPU buffer registers. It is shown that history  recording  (the  reten- 
tion of complete  instruction  loops  in the CPU) reduces the need to exercise storage, and that sophisticated employment  of buffering 
techniques  has  reduced the effective access time.  The  system  is  organized so that execution  hardware  is  separated  from the instruction 
unit; the  resulting  smaller,  semiautonomous  “packages”  improve  intra-area  communication. 

Introduction 

This  paper presents the organizational philosophy utilized 
in IBM’s highest performance  computer, the System/3601 
Model 91. The first section of the paper deals with the 
development of the assembly-line processing approach 
adopted  for  the Model 91. The organizational techniques 
of storage interleaving, buffering, and arithmetic execution 
concurrency  required to support  the  approach  are dis- 
cussed. The final  topic of this section deals with design 
refinements which have been added  to  the basic organiza- 
tion. Special attention is given to minimizing the time  lost 

Figure 1 Typical  instruction  function  time  sequence. 
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due to conditional branches, and  the basic interrupt prob- 
lem is covered. 

The second section is comprised of a treatment of the 
instruction unit of the Model 91. It is in this  unit  that 
the basic control is exercised which leads to  attainment 
of the performance objectives. The first topic is  the fetching 
of instructions from storage. Branching and interrupting 
are discussed next. Special handling of branching, such 
that storage accessing by instructions is sometimes elimi- 
nated, is also treated. The final section discusses the inter- 
locks required among instructions as they are issued to 
the execution units, the initiation of operand fetches from 
storage, status switching operations, and 1/0 handling. 

CPU organization 

The objective of the Model 91 is to attain a performance 
greater  by one to two  orders of magnitude than  that of 

I the  IBM 7090. Technology (that is, circuitry and hardware) m m  advances* alone provide  only a fourfold  performance 
, ,  increase, so it is necessary to  turn to organizational tech- 
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an  in-environment  switching  time  in  the 5 nsec  range. 
Circuits employed are from the IBM ASLT family  and provide 
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Figure 2 Illustration of concurrency  among  successive  instructions. 

selection of existing techniques and  the development of 
new organizational  approaches were the objectives of the 
Model 91 CPU design. 

The primary  organizational objective for a high per- 
formance CPU  is concurrency-the parallel execution of 
different instructions. A consideration of the sequence of 
functions involved in  handling a typical processor in- 
struction  makes the need for this approach evident. This 
sequence-instruction fetching, instruction decoding, oper- 
and address generating, operand fetching, and instruction 
execution-is illustrated  in Fig. 1. Clearly, a primary 
goal of the organization  must be to avoid the conventional 
concatenation of the illustrated  functions for successive 
instructions. Parallelism accomplishes this, and,  short of 
simultaneously performing  identical  tasks for adjacent 
instructions, it is desired to “overlay” the separate in- 
struction  functions to  the greatest possible degree. Doing 
this requires separation of the  CPU  into loosely coupled 
sets of hardware, much like an assembly line, so that 
each  hardware set, similar to its assembly line station 
counterpart, performs a single specific task. It then 
becomes possible to enter  instructions into  the hardware 
sets at shortly  spaced  time intervals. Then, following the 
delay caused by the initial filling of the line, the execution 
results will begin emerging at a rate of one  for each  time 
interval. Figure 2 illustrates the objective of the technique. 

Defining the time  interval (basic CPU clock rate) around 
which the hardware sets will be designed requires the 
resolution of a number of conflicting requirements. At 
first glance it might appear that the shorter  the time  interval 
(i.e., the time  allocated to successive assembly line sta- 
tions), the faster the execution rate will be for a series of 
instructions. Upon investigation, however, several param- 
eters become apparent which frustrate this seemingly 
simple pattern  for high performance design. The param- 
eters of most  importance are: 

1. An assembly-line station  platform  (hardware “trigger”) 
is necessary within each  time  interval, and  it generally adds 
a circuit level to  the time interval. The platform “overhead” 
can add appreciably to the  total execution time of any 
one instruction since a shorter interval implies more 
stations for any pre-specified function. A longer instruction 
time is significant when sequential  instructions are logically 
dependent. That is, instruction n cannot proceed until 
instruction n f 1 is completed. The dependency factor, 
therefore, indicates that  the execution time of any indi- 
vidual instruction  should not be penalized unnecessarily 
by overhead  time delay. 

2. The  amount of control hardware-and control com- 
plexity-required to handle  architectural and machine 
organization  interlocks increases enormously as the 
number of assembly line stations  is increased. This can 
lead to a situation for which the  control  paths determining 
the gating between stations contain  more  circuit levels 
than  the  data  paths being controlled. 

Parameters of less importance which influence the 
determination of the basic clock rate include: 

1. The number of levels needed to implement certain 
basic data paths, e.g., address  adders,  instruction decoders, 
etc. 

2.  Effective storage access time, especially when this  time 
is relatively short. Unless the station-to-station timeinterval 
of the  CPU is a sub-multiple of storage access time the 
synchronization of storage and  CPU functions will involve 
overhead time. 

Judgment, rather  than algorithms, gave the  method by 
which the relative weights of the above  parameters were 
evaluated to determine the basic station-to-station  time 9 
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Figure 3 CPU "assembly-line stations required to accommodate a typical  floating-point  storage-to-register instruction. 

interval.* The interval selected led to a splitting of the 
instruction  handling  functions  as  illustrated  in Fig. 3.+ 

It can be seen in Fig. 3 that  the basic time  interval 
accommodates the assembly line handling of most of the 
basic hardware functions. However, the storage and many 
execution operations  require a number of basic intervals. 
In  order to exploit the assembly line processing approach 
despite these time disparities, the organizational  techniques 
of storage interleaving,' arithmetic execution concurrency, 
and buffering are utilized. 

Storage interleaving increases the storage  bandwidth 
by enabling  multiple accesses to proceed concurrently, 
which in  turn enhances the assembly line handling of the 
storage  function. Briefly, interleaving involves the splitting 
of storage into independent  modules (each containing 
address decoding, core driving, data read-out sense hard- 
ware, and a data register) and  arranging  the address 
structure so that adjacent words-or small  groups of 
adjacent words-reside in different modules. Figure 4 
illustrates the technique. 

the CPU storage request rate,  and  the desired effective 
access time. The effective access time is defined as  the sum 
of the  actual storage access time, the average time  spent 
waiting for  an available storage, and  the communication 
time between the processor and storage.* 

Execution concurrency is facilitated first by the division 
of this  function into separate  units  for fixed-point execu- 
tion  and floating-point execution. This permits instructions 
of the  two classes to be executed in  parallel; in fact, as 
long as  no cross-unit dependencies exist, the execution 
does not necessarily follow the sequence in which the 
instructions are programmed. 

Within the fixed-point unit, processing proceeds serially, 
one instruction at a time. However, many of the operations 
_____- 

* Effective  access  times  ranging  from 180-600 nsec  are  anticipated, 
although  the  design of the Model 91 is optimized around 360 nsec. 

the 360 nsec effective access design poiut. 
Interleaving 400 nsec/cycle  storage modules to a depth of 16 satisfies 

The  depth of interleaving required to  support a desired 
concurrency level is a function of the storage cycle time, 

Figure 4 Arrangement of addresses in n storage  modules 
of m words  per  module. 

* T h e  design  objective  calls  for a 60 nsec basic machine clock in- 
terval.  The  judgment  exercised  in  this  selection  was  tempered by a 

wiring  lengths  required to perform some of the basic data  path  and 
careful  analysis of the  number of circuit levels, fan  in,  fan  out, and 

control  functions.  The  analysis  indicated  that 11 or  12 circuit levels of 
5-6 nsec  delay  per level were  required  for  the  worst-case  situations. 

larger  units-instruction  unit,  main  storage  control  element,  fixed-point 
t Figure  3  also  illustrates  that  the  hardware  sets  are  grouped  into 

execution  unit,  floating-point  execution  unit.  The  grouping  is  primarily 

vide  separately  designable  entities  having  minimum  interfacing.  The 
caused by packaging  restrictions,  but  a  secondary  objective  is to pro- 

total  hardware  required  to  implement  the  required CPU functions  de- 
mands  three  physical  frames, each having  dimensions 66" L X 15" D X 
78" H. The  units  are allocated to  the  frames  in  such a way as to 
minimize  the effects of interframe  transmission  delays. 
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Figure 5 Buffer allocation and function separation. 

require only one basic time  interval to execute, and special 
emphasis is placed on  the storage-to-storage instructions to 
speed up their execution. These instructions (storage-to- 
storage) enable  the  Model 91 to achieve a performance 
rate of up  to 7 times that of the System/360 Model 75 
for  the "translate-and-test" instruction. A number of  new 
concepts and sequences3 were developed to achieve this 
performance for normally storage access-dependent in- 
structions. 

The floating-point unit is given particular emphasis to 
provide additional concurrency. Multiple arithmetic execu- 
tion units, employing fast algorithms for  the multiply and 
divide operations and carry look-ahead adders, are  uti- 
l i ~ e d . ~  An  internal bus has been designed5 to link the 
multiple floating-point execution units. The bus  control 
correctly sequences dependent "strings" of instructions, 
but permits those which are independent to be executed 
out of order. 

The organizational techniques described above provide 
balance between the number of instructions that can be 
prepared  for arithmetic execution and those that can 
actually be executed in a given period, thereby preventing 
the arithmetic execution function from creating a "bottle- 
neck" in  the assembly line process. 

Buffering  of various types plays a major  role in the 
Model 91 organization. Some types are required to imple- 
ment the assembly line concept, while others  are, in light 
of the performance objectives, architecturally imposed. 
In all cases the buffers provide queueing which smooths 
the total instruction flow by allowing the initiating assem- 

bly line stations to proceed despite unpredictable delays 
down the line. Instruction fetch, operand fetch, operand 
store,  operation, and address buffering are utilized among 
the major CPU units  as illustrated in Fig. 5." 

Instruction fetch buffering provides return data "sinks" 
for previously initiated instruction  storage requests. This 
prefetching hides the instruction access time for straight- 
line (no branching) programs, thereby providing a steady 
flow  of instructions to  the decoding hardware. The 
buffering is expanded beyond this need to provide the 
capacity to hold  program  loops of meaningful size. Upon 
encountering a loop which fits, the buffer locks onto the 
loop and subsequent branching requires less time, since 
it is to the buffers rather  than  to storage. The discussion 
of branching given later in this paper gives a detailed 
treatment of the loop action. 

Operand fetch buffers effectively provide a queue into 
which storage  can "dump" operands and  from which 
execution units  can  obtain  operands. The queue allows 
the isolation of operand fetching from  operand usage for 
the storage-to-register and storage-to-storage instruction 
types. The required  depth' of the queue is a function of 
the number of basic time intervals required for storage 

fers.  Six 32-bit operand buffers  are  provided in  the  fixed-point  execu- 
*Eight 64-bit double words comprise the array of instruction  buf- 

tion  unit, while six  64-bit  buffers  reside  in  the  floating-point  execution 
unit.  Three  64-hit  store  operand  buffers  along  with  three  store  address 
and four conflict address buffers are provided in  the  main  storage 
control  element.  Also,  there  are  six  fixed-point  and  eight  floating-point 
operand  buffers. 

7 To show precise  algorithms  defining  these  and  other  buffering  re- 
quirements  is  impractical,  since  different  program  environments  have 
different needs. The factors considered in selecting specific numbers  are 
cited  instead. 11 
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Figure 6 GPR address  interlock. 

accessing, the instruction “mix” of the operating program, 
and the relative  time and frequency of execution  bottle- 
necks. Operand store buffering  provides the same  function 
as fetch  buffering,  except that the roles of storage and 
execution are reversed. The number of store buffers  re- 
quired  is a function of the average  waiting  time  encoun- 
tered when the desired storage module  is busy and the 
time  required  for the storage, when available, to utilize 
the operand. 

Operation buffers in the fixed-point and floating-point 
execution  units  allow the instruction unit to proceed  with 
its  decoding  and  storage-initiating  functions  while the 
execution  units  wait for storage operands or execution 
hardware. The depth of the operation buffering  is  related 
to the amount of operand buffering  provided and the 
“mix” of register-to-register and storage-to-register  in- 
struction types. 

Address  buffering  is  used to queue  addresses to busy 
storage modules and to contain store addresses  during 
the interval between  decoding and execution of store 
instructions. The instruction unit is  thereby  allowed to 
proceed to subsequent instructions despite storage con- 
flicts or  the encountering of store operations.  These 
buffers  have comparators associated  with them to estab- 
lish  logical  precedence when  conflicting  program  refer- 
ences arise. The number of necessary store address  buffers 
is a function of the average  delay  between  decode and 
execution,  while the depth of the queue  caused  by  storage 
conflicts  is  related to the probable length of time a request 
will  be  held up by a busy storage module.6 

Concurrency limitations 

The assembly  line  processing approach, using the tech- 
niques of storage interleaving,  arithmetic  concurrency, 

12 and buffering,  provides a solid  high-performance base. 
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The orientation is toward smooth-flowing  instruction 
streams  for which the assembly  line  can  be kept full. That 
is,  as  long as station n need  only  communicate with 
station n + 1 of the line,  highest  performance is achieved. 
For example,  floating-point  problems which  fit  this cri- 
terion can be  executed  internally on the Model 91 at up to 
100  times the internal speed of the 7090.’ 

There are, however,  cases  where  simple  communication 
between adjacent assembly  line stations is inadequate, e.g., 
list  processing  applications,  branching, and interrupts. 
The storage access  time and the execution  time are neces- 
sarily  sequential between adjacent  instructions. The organ- 
ization cannot completely  circumvent  component  delay 
in such  instances, and the internal performance  gain  di- 
minishes to about one  order of magnitude  greater than 
that of the 7090. 

The list  processing  application  is  exemplified  by  sequen- 
tialism  in  addressing,  which  produces a major  interlock 
situation in the Model 91. The architecturally specified 
usage of the general  purpose  registers  (GPR’s) for both 
address  quantities and fixed-point data, coupled  with the 
assembly  line  delay  between  address  generation and fixed- 
point execution,  leads to the performance  slowdown. 
Figure 6 illustrates the interlock and the resulting  delay. 
Instructions n and n + 1 set up the interlock on GPR X 
since  they  will alter the contents of X. The decode  of 
n + 3 finds that the contents of X are to be  used as an 
address parameter, and since the proper contents are not 
available n + 3 must  wait until n + 1 is  executed. The inter- 
lock  technique  involves  assigning the decode area a status 
count for each GPR. A zero status count indicates  avail- 
ability. As fixed-point  instructions  pass through the decode, 
they  increment the appropriate counter(s). A decode  re- 
quiring an unavailable  (non-zero status count) GPR can- 
not be completed. As the fixed-point  execution  unit 
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Figure 7 Condition  code  interlock. 

completes instructions it decrements the  appropriate 
counter(s), thus eventually freeing the register. 

Branching leads to another sequential situation, since 
a disruption in the instruction supply is created. (Tech- 
niques employed to minimize or circumvent the  storage 
access delay involved in obtaining the new instructions 
are discussed under Znstruction supplying in the following 
section of this paper.) Conditional branching poses an 
additional delay in that the  branch decision depends on  the 
outcome of arithmetic  operations in the execution units. 
The Model 91 has a relatively lower performance in cases 
for which a large percentage of conditional  branch in- 
structions  lead to the  branch being taken. The discontinuity 
is minimized, when the branch is not taken,  through special 
handling of the condition code (CC) and the  conditional 
branch instruction (BC). The condition code is a two-bit 
indicator, set according to  the outcome of a variety of in- 
structions, and can subsequently be interrogated for 
branching through the BC instruction. Since the  code is to 
represent the outcome of the last decoded CC-affecting in- 
struction, and since execution can be out of sequence, 
interlocks must be established to ensure this. This is ac- 
complished, as  illustrated in Fig. 7, by tagging each in- 
struction at decode time if it is to set the CC. Simulta- 
neously, a signal is communicated throughout the  CPU 
to remove all tags from previously decoded but not exe- 
cuted instructions. Allowing only the execution of the 
tagged instruction to alter the code insures that the correct 
CC will be set. The decode hardware monitors the  CPU 
for  outstanding  tags; only when none exists is the  condition 
code considered valid for interrogation. 

The organization assumes that, for  a  conditional  branch, 
the CC will not be valid when the “branch-on-condition” 
(BC) is decoded (a most likely situation, considering that 

- I -  1 -  EXECUTE 
INST. n + 1 

most arithmetic and logical operations set the code). 
Rather than wait for a valid CC, fetches are initiated for 
two instruction double-words as  a hedge against a success- 
ful branch. Following this, it is assumed that  the branch 
will fail, and a “conditional mode” is established. In 
conditional mode, shown in Fig. 8, instructions are de- 
coded and conditionally forwarded to the execution units, 
and concomitant  operand fetches are initiated. The execu- 
tion  units are inhibited from completing conditional  in- 
structions. When a valid condition code appears,  the 
appropriate branching action is detected and activates 
or cancels the conditional instructions. Should the no- 
branch guess prove correct, a substantial  head start is 
provided by activating the conditionally issued and 
initiated operand fetches for a number of instructions. If 
the branch is  successful, the previously fetched target words 
are activated and provide work while the instruction 
fetching is diverted to the new stream. (Additional op- 
timizing techniques are covered under the discussion of 
branching in a subsequent section of this paper.) 

Interrupts,  as architecturally constrained, are a major 
bottleneck to performance in  the assembly line organiza- 
tion. Strict adherence to a specification which states that 
an interrupt  on instruction n should logically precede 
and inhibit any action from being taken  on instruction 
n + 1 leaves two alternatives. The first would be to force 
sequentialism between instructions which may lead to an 
interrupt.  In view  of the variety of interrupt possibilities 
defined, this course would totally thwart high performance 
and is  necessarily discarded. The second is to set aside 
sufficient information to permit recovery from any  inter- 
rupt which might arise. In view  of the pipeline and execu- 
tion concurrency which allows the  Model 91 to advance 
many instructions beyond n prior to its execution, and  to 13 

MODEL 91 MACHINE PHILOSOPHY 



-TIME 

DECODE 
INST. n 

\ .“, 
OPERAND ACCESS 

OPERAND ACCESS 

\ v 
OPERAND ACCESS 

”_“ 

\ “ 
OPERAND ACCESS 

_”” 

OPERAND ACCESS 
_”” 

Figure 8 Conditional instruction issuing: the branch-on-condition philosophy. 

execute independent instructions out of sequence (n + m 
before n), the recovery problem becomes  extremely  com- 
plex and costly. Taking this approach would entail hard- 
ware additions to the extent that  it would severely degrade 
the performance one is seeking to enhance. The impracti- 
cality of both alternatives by which the interrupt specifica- 
tions could be  met made it mandatory that the specifications 
themselves  be altered. The architecture was compromised 
by  removing the above-mentioned “precedence” and 
“inhibit” requirements. The specification change led to 
what is termed the “imprecise interrupt” philosophy of the 
Model 91 and reduced the interrupt bottleneck to  an 
instruction supply discontinuity. The imprecise interrupt, 
and  the manner in  which the instruction discontinuity 
is  minimized, are covered  in the next section of the paper. 

The bottlenecks discussed above gave  rise to the major 
interlocks among the separate CPU areas. Within each 
of the areas, however, additional considerations hold. 
These are discussed as appropriate in the next section 

14 or in  following papers. 

Instruction unit 

The central control functions for the Model 91 CPU are 
performed in the instruction unit. The objective here is 
to discuss these functions in terms of  how  they are per- 
formed and to include the reasons for selecting the present 
design.  However,  before proceeding with this discussion it 
will be useful to examine some over-all design considera- 
tions and decisions  which  directly  affect the instruction unit 
functions. In approaching the design of the instruction unit, 
many program situations were  examined, and  it was found 
that while many short instruction sequences are nicely 
ordered, the  trend is toward frequent branching. Such 
things as performing short work loops, taking new action 
based on data results, and calling subroutines are  the 
bases upon which programs are built and, in  many in- 
stances, these factors play a larger role in the use of avail- 
able time than does  execution. Consequently, emphasis 
on branch sequencing  is required. A second finding was 
that, even with sophisticated execution algorithms, very 
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few programs can cause answers actually to flow from 
the assembly line at  an average rate in excess of one every 
two cycles. Inherent inter-instruction dependencies, stor- 
age and other  hardware conflicts, and the frequency of 
operations requiring multi-cycle execution all combine to 
prevent it. 

Consideration of branching and execution times indi- 
cates that,  for overall balance, the  instruction  unit  should 
be able to surge ahead of the execution units by issuing 
instructions at a faster-than-execution rate.  Then, when a 
branch is encountered, a significant part of the  instruction 
unit slowdown will be overlapped with execution catch-up. 
With this objective in mind it becomes necessary to con- 
sider what constitutes a fast issue rate and what  “trade- 
offs” would be required to achieve it. It is  easily shown 
that issuing at a rate in excess of one instruction per cycle 
leads to a  rapid expansion of hardware and complexity. 
(Variable-length instructions, adjacent instruction inter- 
dependencies, and storage requirements are prime factors 
involved.) A one-cycle maximum rate is thereby estab- 
lished, but  it too presents difficulties. The assembly line 
process requires that both instruction fetching and instruc- 
tion issuing proceed concurrently in order to hide storage 
delays. It is found through  program analysis that slightly 
more than two instructions will  be obtained per 64-bit 
instruction fetch* and  that approximately 80% of all 
instructions require an operand reference to storage. From 
this it is concluded that issuing the average instruction 
entails approximately 1.25 storage accesses : 0.45 (instruc- 
tion fetches) + 0.80 (operand fetches). This figure, with 
the one-per-cycle issue rate goal, clearly indicates a need 
for either two address paths to storage and associated re- 
turn capabilities, or for multiple words returned per fetch. 
In considering these options,  the  initial tendency is to 
separate  instruction and operand  storage access paths. 
However, multiple paths  to storage give rise to substantial 
hardware  additions and lead to severe control problems, 
particularly in establishing storage priorities and inter- 
locks due to address dependencies. With a one-at-a-time 
approach these can be established on each new address 
as it appears, whereas simultaneous requests involve 
doing considerably more testing in a shorter time interval. 
Multiple address paths to storage were considered im- 
practical because of the unfavorable compromise between 
hardware and performance. 

The multiple-words-returned-per-fetch option was con- 
sidered in conjunction with instruction fetching since the 
instruction stream is comprised of sequential words. To 
prevent excessive storage “busying” this  approach re- 
- 

can be viewed as  macro-operations  and are  treated  as  such by  the 
* Storage-to-storage (SS) instructions are  not  considered  here.  They 

hardware.  The  macro-operations  are  equivalent  to  basic  instructions, 
and  the  number of micro-instructions  involved  in  periorming  an SS 
function  indicates  that  many  instruction  fetches  would be required to 
perform  the  same  iunction  using  other  System/360  instructions. 

quires multiple word readout at the storage unit along 
with a wider data return  path. Also, the interleaving 
factor is altered from sequential to multi-sequential, i.e., 
rather than having sequential double words in different 
storage modules, groups of sequential words reside in 
the same module. The interlock problems created by this 
technique are modest, the change in interleaving tech- 
nique has little performance effect,* and storage can be 
(is, in some cases) organized to read out multiple words, 
all of  which make this  approach feasible. However, packag- 
ing density (more hardware required for wide data paths), 
storage organization constraints, and scheduling were 
such that this  approach was also discarded. As a con- 
sequence, the single-port storage  bus, which allows se- 
quential accessing  of double words, was adopted.  This 
fact, in conjunction with the 1.25 storage accesses re- 
quired per instruction, leads to a lowering of the average 
maximum issue rate to 0.8 instructions per machine cycle. 
The instruction  unit achieves the issue rate through an 
organization which allows concurrency by separating the 
instruction supplying from the instruction issuing function. 

Instruction supplying 
Instruction supplying includes the provision of an instruc- 
tion  stream which will support  the desired issue rate  in a 
sequential (non-branch) environment, and  the ability to 
switch readily to a new instruction stream when required 
because of branching or interrupts. 

Sequential instruction  fetching 
Provision of a sequential string of instructions has  two 
fundamental aspects, an initiation or start-up  transient, 
and a steady-state function. The initial  transient entails 
filling the assembly line ahead of the decode station with 
instructions. In hardware terms, this means initiating 
sufficient instruction fetches so that, following a wait of 
one access time, a continuous flow of instruction words 
will return  from storage. Three double-word fetches are 
the minimum required to fill the assembly line, since 
approximately two instructions are contained within a 
double  word, and the design point access time is six ma- 
chine cycles. The actual design  exceeds the minimum 
for several reasons, the first being that during  start-up no 
operand requests are being generated (there are no instruc- 
tions), and consequently the single address port  to storage 
is totally available for  instruction fetching. Second, the 
start-up delay provides otherwise idle time during which to 
- ~ 

* This is  more  intuitive  than  analytical.  Certainly for  strictly  random 
addressing,  the  interleave  technique  is  irrelevant.  However,  in  real 
applications,  programs  are  generally  localized  with (1) the  instructions 

thousands o i  words. Data is more  random because,  even though it  is 
sequential and (2)  branches jumping  tens or  hundreds rather than 

often  ordered  in  arrays,  quite  frequently  many  arrays  are  utilized 
concurrently.  Also,  various  data  constants  are  used  which  tend  to 
randomize  the  total  use. A proper  analysis  must  consider  all  these  fac- 

factor  remains fixed the  interference  appears  little  affected  by  small 
tors  and so becomes complex. In  any  event,  as  long  as  the  interleave 

changes  in  the  interleaving  pattern. 15 
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Figure 9 Flow  chart of the sequential  instruction-supply 
function. 

initiate more fetches, and the eight double words of instruc- 
tion buffering provide space into which the words can 
return. A third point is that, should storage requiring 
more than six  cycles  of  access time be utilized, more 
fetching-ahead will  be required. Finally, establishing an 
excess queue of instructions during the transient time will 
allow temporary maintenance of a full assembly line with- 
out any further instruction fetching. The significance of this 
action is that  it allows the issuing of a short burst of 
instructions at a one-per-cycle rate. This follows from the 
fact that the single, normally shared storage address port 
becomes  exclusively available to the issue function. A 
start-up fetching burst of  five double instruction words 
was the design point which resulted when all of these 
factors had been  considered.* 

Steady-state instruction supplying  serves the function 
_____ 

* The  one  disadvantage to over-fetching  instructions  is  that  the  extra 
fetches  may  lead  to  storage conflicts, delaying  the  subsequently  initiated 
operand  fetches.  This  is a second-order effect, however, first because 
it  is desirable  for  the  instruction  fetches  to  win conflicts unless  these 

and  secondly because the  sixteen-deep  interleaving of storage  signifi- 
fetches  are  rendered  unnecessary by an  intervening  branch  instruction, 

cantly  lowers  the  probability of the  conflict  situation. 

of maintaining a full  assembly  line by initiating instruction 
fetches at appropriate intervals. The address port to 
storage is multiplexed  between instruction fetches and 
operand fetches,  with instructions receiving priority in 
conflict situations. An additional optimization technique 
allows the instruction fetching to re-advance to  the start- 
up level  of  five double words ahead if storage address 
time “slots” become available. A flow chart of the basic 
instruction fetch control algorithm is shown in Fig. 9,* 
while  Fig. 10 is a schematic of the data paths provided for 
the total instruction supplying function. Some of the deci- 
sion blocks contained in the flow chart result from the 
effects  of branch instructions; their function will  be clari- 
fied  in the subsequent discussion of branching. There are 
two fundamental reasons for checking  buffer availability in 
the algorithm. First,  the instruction buffer array is a 
modulo-eight map of storage that is interleaved by  sixteen. 
Second, fetches can return out of order because storage 
may  be  busy or of varying performance. For example, 
when a branch is encountered, point one above implies 
that the target may  overlay a fetch  which has not yet 
returned from storage. In view  of the second point, it is 
necessary to ensure that the unreturned fetch  is ignored, as 
it would be  possible for a new fetch to return ahead  of it. 
Proper sequencing  is  accomplished by “tagging” the buffers 
assigned to outstanding fetches, and preventing the initia- 
tion of a new fetch to a buffer so tagged. 

Branch Handling 
Branching adds to the complexity of the instruction supply- 
ing function because attempts are made to minimize  dis- 
continuities caused by the branching and the consequent 
adverse effects on  the issue rate. The discontinuities result 
because for each branch the supply of instructions is dis- 
rupted for a time roughly equivalent to  the greater of the 
storage access period (start-up transient previously  men- 
tioned), or the internal testing and “housekeeping” time 
required to make and carry out the branch decision. This 
time can severely limit the  total CPU performance in 
short program loops. It has a somewhat less pronounced 
effect in longer loops because the branch time becomes a 
smaller percentage of the total problem loop time and, 
more important,  the instruction unit has greater oppor- 
tunity to run ahead of the execution units (see  Fig. 11). 
This last makes more time available in  which to overlap 
the branch time with  execution catch-up. 

The detrimental performance effect  which stems from 
short loops led to a dual branch philosophy. The first 
aspect deals with branches which are either forward into 
the instruction stream,+ beyond the prefetched instruc- 
tions, or if backward from the branch instruction, greater 

a “wait”  state will exist  until  the  required  condition  has been satisfied. 
I n  this flow chart,  unlabeled  exits  from decision blocks imply  that 

target for this case. 
t In  the  actual program  the  branch  instruction would precede  the 
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Figure 10 Data  paths  for  the  basic  instruction supply. 

than eight  double-words  back. In these situations the 
branch  storage-delay  is  unavoidable. As a hedge  against 
such a branch being taken, the branch  sequencing  (Fig. 12) 
initiates  fetches for the first  two double words  down the 
target path. Two  branch  buffers are provided  (Fig. 10-the 
instruction  supply data flow) to receive these  words,  in 
order that the instruction buffer array will  be  unaffected 
if the result  is a no branch  decision. The branch house- 
keeping and decision  making are carried on in  parallel 
with the access  time of the target  fetches. If a branch  deci- 
sion  is  reached  before the access has been completed, 
additional optimizing hardware routes the target fetch 
around the buffer and directly to the instruction  register, 
from which it will  be  decoded.  Minor  disadvantages  of 
the technique are that the “hedge”  fetching  results  in a 
delay of the no-branch  decision and may lead to storage 
conflicts.  Consequently, a small amount of time  is  lost for a 
branch which  “falls  through.” 

The  second  aspect of the branch  philosophy treats the 
case for which the target is  backward  within  eight double 
words of the branch  instruction. A separation of eight 
double  words or less  defines a “short” loop-this number 
being  chosen  as a hardware/performance compromise. 
Part of the housekeeping  required  in the branch  sequencing 
is a “back  eight”  test. If this  test  is  satisfied the instruction 
unit enters what is termed “loop mode.”  Two  beneficial 

results  derive from loop mode. First, the complete loop 
is  fetched into the instruction buffer array, after which 
instruction fetching ceases. Consequently, the address 
port to storage is totally available for operand fetching 
and a one instruction per cycle  issue rate is possible. The 
second advantage gained by loop mode  is a reduction by a 
factor of two to three in the time  required to sequence the 
loop-establishing branch instruction. (For example, the 
“branch on index”  instruction  normally  requires  eight 

Figure 11 Schematic  representation of  execution  delays 
caused by (branch) discontinuities  in  the  instruction  issuing 
rate,  for  the  case  in  which  the  issuing  rate  is  faster  than  the 
execution  rate. 

r lME  IN CYCLES - 
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cycles for a successful branch, while  in loop mode three 
cycles are sufficient.) In many significant programs it is 
estimated that the CPU will  be  in loop mode up to 300/, of 
the time. 

Loop mode may  be established by all branch instructions 
except “branch and link.” It was judged highly improbable 
that this instruction would  be  used to establish the type 
of short repetitious program loops to which loop mode 
is oriented. A conditional branch instruction, because it is 
data dependent and therefore less predictable in its  out- 
come than  other branch instructions, requires special con- 
sideration in setting up loop mode. Initial planning was 
to prevent looping with this instruction, but consultation 
with programmers has indicated that loops are frequently 
closed conditionally, since this allows a convenient  means 
for  loop breaking when  exception conditions arise. 

18 Furthermore, in these situations the most likely out- 

r”l RECOVER INSTRUCTION 
STREAM TO SEQUENTIAL 
INSTRUCTION FOLLOWING 

THE  BRANCH  INSTRUCTION 

come  is often known and can be utilized to bias the branch 
decision  whichever  way  is desirable. For such reasons, 
the “back eight” test is made during the sequencing of a 
conditional branch instruction, and the status is  saved 
through conditional mode. Should it subsequently be deter- 
mined that the branch is to be taken, and the “saved” status 
indicates “back eight,” loop mode is established. There- 
after the role  of conditional mode is  reversed,  i.e.,  when the 
conditional branch is  next encountered, it will  be assumed 
that the branch will  be taken. The conditionally issued in- 
structions are from the target path  rather  than from the no- 
branch path as is the case  when not in loop mode. A 
cancel requires recovery from the branch guess. Figure 12 
is a flow chart of this action. In retrospect, the conditional 
philosophy and  its effects on  loop mode, although sig- 
nificant to the performance of the CPU and conceptually 
simple, were found to require numerous interlocks through- 
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out  the CPU.  The complications of conditional mode, 
coupled with the fact that it is primarily aimed at cir- 
cumventing storage access  delays, indicate that a careful 
re-examination of its usefulness  will  be  called for as the 
access time decreases. 

Interrupts 

Interrupts, like branching, are another disruption to a 
smooth instruction supply. In the  interrupt situation the 
instruction discontinuity is  worsened  because,  following 
the recognition of the interrupt, two sequential storage 
access  delays are encountered prior to receiving the next 
instruction.* Fortunately, and this is unlike branches, 
interrupts are relatively infrequent. In defining the interrupt 
function it was  decided that the architectural “imprecise” 
compromise mentioned in the previous section would be 
invoked only where  necessary to achieve the required 
performance. In terms of the assembly line concept, this 
means that interrupts associated with an instruction which 
can be uncovered during the instruction unit decode time 
interval will conform with the specifications. Consequently, 
only interrupts which result from address, storage, and 
execution functions are imprecise. 

One advantage of this dual treatment is that System/360 
compatibility is retained to a useful degree. For example, 
a programming strategy sometimes employed to call 
special subroutines involves  using a selected invalid in- 
struction code. The ensuing interrupt provides a convenient 
subroutine entry technique. Retaining the compatible 
interrupt philosophy through the decoding time interval 
in the Model 91 allows it  to operate programs employing 
such  techniques. The manifestation of this approach is 
illustrated in the flow chart of Fig. 13. In accordance with 
System/360  specifications, no further decoding is allowed 
once either a precise or  an imprecise interrupt  has been 
signalled. With the assembly  line organization, it is highly 
probable that  at the time of the  interrupt there will  be in- 
structions still in the pipeline  which should be  executed 
prior to changing the CPU status to  that of the interrupt 
routine. However, it is also desirable to minimize the effect 
of the interrupt on the instruction supply, so the new status 
word is fetched to the existing branch target buffer  in parallel 
with the execution completion. After the  return from 
storage of the new status word, if execution  is still in- 
complete, further optimizing allows the fetching of in- 
structions for the interrupt routine. Before proceeding, 
it becomes  necessary to consider an implication resulting 

This  arises  from  the  architectural  technique of indirectly  entering 
the  interrupt  subroutines. I n  System/360  the  interrupts  are  divided 
into  classes.  Each  class is assigned  a  different, fixed low storage  ad- 

an  interrupt of the  associated  class occur. Part  of this  status  is a new 
dress which contains  the  status  to which the CPU shall he set should 

program  address.  Consequently,  interrupting  requires  obtaining a new 
supply of instructions  from  storage  indirectly,  through  the  new  status 
word. 
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Figure 13 Flow chart of the interrupt sequence. 

from the  dual interrupt philosophy. Should a precise 
interrupt have initiated the action, it is possible that the 
execution “cleanup” will lead to  an imprecise condition. 
In this event, and in view of the desire to maintain com- 
patibility for precise  cases, the logically  preceding im- 
precise signal should cancel all previous  precise action. 
The flow chart (Fig. 13) illustrates this cancel-recovery 
action. Should no cancel action occur (the more likely 
situation), the completion of all execution functions re- 
sults, with one exception, in the release of the new status 
word and instruction supply. The 1/0 interrupts require 
special consideration because of certain peculiarities in 
the channel hardware (the System 360/Model 60-75 
channel hardware is  used).  Because  of them, the CPU- 
channel communication cannot be carried out in parallel 
with the execution completion. However, the relative in- 
frequency of 1/0 interrupts renders negligible the degrada- 
tion caused by this. 19 
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Figure 14 Data flow for instruction  decoding and instruc- 
tion issuing. 

0 instruction issuing 

The instruction-issuing hardware initiates and controls 
orderly concurrency  in the assembly line  process  leading 
to instruction execution. It accomplishes this by scanning 
each instruction, in the order presented by the program, 
and clearing all necessary  interlocks  before  releasing the 
instruction. In addition, should a storage reference  be 
required by the operation, the issuing  mechanism  performs 
the necessary  address  calculations,  initiates the storage 
action, and establishes the routing by  which the operand 
and operation will  ultimately  be  merged for execution. 
In addition, certain  essential  inter-instruction  dependencies 
are maintained while the issue  functions  proceed  con- 
currently. 

In terms of the assembly  line  of  Fig. 3, the moving  of 
instructions to the decode area, the decode, and the 
operand address  generation  comprise the issue stations. 
The moving  of  instructions to the decode area entails 
the taking of 64-bit  double-words, as provided by the 
instruction supply, and extracting from them the proper 
instruction half-words,  one  instruction at a time. The 
instruction register  is the area through which this is  ac- 
complished  (Fig.  14). The register  efficiently  handles 
variable-length  instructions and provides a svdble platform 
from which to decode. All available  space in this  64-bit 
register  is kept full of instructions yet to be  decoded, 

20 provided  only that the required new instruction informa- 

tion  has  returned  from  storage. The decoder  scans  across 
the instruction  register, starting at any  half-word  (16-bit) 
boundary,  with new instructions refilling any  space  vacated 
by instruction  issuing. The register  is treated conceptually 
as a cylinder;  i.e., the end of the register  is  concatenated 
with the beginning,  since the decode  scan  must  accommo- 
date instructions which  cross  double-word  boundaries. 

The decoding station is the time interval during which 
instruction  scanning and interlock  clearing take place. 
Instruction-independent  functions  (interval  timer update, 
wait state, certain interrupts and manual intervention) are 
subject to entry interlocks  during  this  interval. Instruction- 
associated  functions  also  have  interlocks which  check for 
such  things as the validity of the scanned portion of the 
instruction  register,  whether or  not the instruction starts 
on a half-word boundary, whether the instruction is a valid 
operation, whether an address  is to be  generated for the 
instruction (and if so, whether the address  adder  is  avail- 
able), and where the instruction  is to be  executed. In con- 
junction with this last point, should the fixed- or floating- 
point execution units be  involved,  availability of operation 
buffering is checked.  Inter-instruction  dependencies are the 
final  class of interlocks which  can oxur during the de- 
coding  interval.  These  arise  because of decision  predictions 
which, if proven  wrong,  require that decoding  cease  im- 
mediately so that recovery  can  be initiated with a mini- 
mum  of backup  facilities. 

Such  occurrences as the discovery of a branch  wrong 
guess or a store instruction which  may alter the prefetched 
instruction stream  generate  these  inter-instruction inter- 
locks.  Figure 15 illustrates the interlock  function. The 
placement of a store instruction  in the instruction stream, 
in particular, warrants further discussion  because it pre- 
sents a serious  time  problem in the instruction unit. The 
dilemma  stems both from the concurrency  philosophy 
and from the architectural specification that a store opera- 
tion may alter the subsequent instruction. Recall that, 
through the pipeline  concept,  decoding  can  occur  on 
successive  cycles,  with one instruction being  decoded at 
the same  time the address for the previous instruction is 
being  generated.  Therefore, for a decode  which  follows a 
store instruction, a test  between the instruction counter 
and the storage address is required to detect  whether or 
not the subsequent  decode  is  affected by the store. Unless 
rather extensive  recovery hardware is  used, the decode, 
if affected,  must  be  suppressed.  However, the assembly 
line  basic  time interval is too short to both complete the 
detection and block the decode. The simplest  solution 
would  require a null decode  time  following  each store 
issue.  However, the frequency of store instructions is high 
enough that the performance degradation would  be  ob- 
jectionable. The compromise solution which  was adopted 
reduces the number of decoding  delays by utilizing a 
truncated-address compare. The time  requirements 
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Figure 16 Decode  interlock  (established  following the issue of a store instruction). 

prohibit anything  more than a compare of the low-order 
six bits of the storage address  currently  being  generated, 
using the algorithm illustrated in  Fig.  16. 

The algorithm attaches relatively little significance to 
the low-order three adder bits (dealing  with  byte,  half- 
word and full-word  addresses)  since the primary  perform- 
ance  concern is with  stores of double-words. It is seen, 
for example, that for the full-word  case the probability 
of a carry into  the double-word  address  is  approximately 
1/4, while for double-word  handling it is negligible. The 
double-word  address three-bit compare wiU occur  with 
1/8 probability  while the word boundary crossover term 
has a probability of 1/16. (Probability that instruction 
can  cross boundary, 1/2, X probability that the cross- 
over  is into the store-affected-word, 1/8). The two  cases 
thus have the probabilities: 

Full word 1/4 + 1/8 + 1/16 = 7/16, and 

Double-word 1/8 + 1/16 = 3/16. 

These  figures  indicate the likelihood of a decode  time- 
interval delay  following the issue of a store instruction. 
When such a decode  delay is encountered, the follow- 
ing  cycle is used to complete the test, that is, to check the 
total address to determine  whether an instruction word has 
in fact been altered. To this effect, the generated storage 
address  is  compared  with the upper and lower bounds of 
the instruction array (Fig.  16). A between-the-bounds in- 
dication  results  in a decode halt, a re-fetch of the affected 
instruction double-word,  then  resumption of normal proc- 
essing. This second portion of the interlock is only  slightly 
less critical in  timing than the first. Figure 17 illustrates the 
re-fetch  timing  sequence.  One  difficulty  with the store inter- 
lock  is that in blocking the decode, it must inhibit action 
over a significant portion of the instruction unit. This im- 
plies both heavy  loading and lengthy  wire,  each of which 

22 seriously  hampers  circuit  performance. It was therefore 

important that  the unit be as small  as  possible and that the 
layout of the hardware constantly consider the interlock. 

For each instruction, following the clearing of all inter- 
locks, the decode  decision  determines  whether to issue 
the instruction to an execution unit and initiate address 
generation, or  to retain the instruction for sequencing 
within the instruction unit. The issuing to  an execution 
unit and the operand fetching for storage-to-register  (RX) 
instructions constitutes a controlled  splitting  operation ; 
sufficient information is forwarded along both paths to 
effect a proper  execution unit merge. For example,  buffer 
assignment is carried in both paths so that the main 
storage control element  will return the operand to the buf- 
fer which  will  be  accessed  by the execution unit when it 
prepares to execute the instruction. With this technique 
the execution units are isolated from storage and can be 
designed to treat all operations as involving  only  registers. 

A final  decoding  function  is  mentioned  here, to ex- 
emplify the sort of  design considerations and hardware ad- 
ditions that are caused by performance-optimizing  tech- 
niques. The branch sequencing  is  optimized so that  no 
address  generation is required when a branch which es- 
tablished the loop mode  is  re-encountered.  This  is done by 
saving the location, within the instruction array, of the 
target. It is  possible,  even  if  unlikely, that one of the in- 
structions contained in a loop may alter the parameter 
originally  used to generate the target address which  is  now 
being  assumed.  This  possibility, although rare, does require 
hardware to detect the occurrence and terminate the loop 
mode.  This hardware includes  two  4-bit  registers,  re- 
quired to preserve the addresses of the general purpose 
registers (X and B) utilized in the target address  generation, 
and comparators which  check  these  addresses against the 
sink  address (Rl) of the fixed-point instructions. Detection 
of a compare and termination of loop mode are necessary 
during the decoding interval to ensure that subsequent 
branch  sequencing  will  be  correct. 
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The address-generating  time interval provides for the 
combining of proper  address  parameters and for the for- 
warding of the associated  operation  (fetch or store) control 
to the main  storage control element through an interface 
register. A major  concern,  associated  with the address 
parameters, was to decide  where the physical location of 
the general  purpose  registers should be. This  concern 
arises  since the fixed-point  execution unit, as well as the 
instruction unit, makes  demands on the GPRs, while the 
packaging split will  cause the registers to be  relatively 
far from one of the units. It was  decided to place  them  in 
the execution unit since,  first,  execution tends to change the 
registers  while  address  generation  merely  examines their 
contents, and secondly, it was desired that a fixed-point 
execution unit be able to iteratively  use  any particular 
register  on  successive  time  intervals. In order to circumvent 
the resulting  time  delay  (long wire separation) between the 
general  purpose  registers and the address adder, each 
register is  fed  via "hot"  lines to the instruction  unit. The 
gating of a particular GPR to the adder can  thereby be 
implemented  locally  within the instruction unit, and no 
transmission delay  is incurred unless the register  contents 
have just been  changed. 

Placing the GPRs outside  the instruction unit creates 
a delay of two basic  time  intervals  before a change initiated 
by the instruction unit is  reflected at the address  param- 
eter inputs from the GPRs. This  delay  is  particularly 
evident when it is  realized that the address  generated im- 
mediately  following  such a GPR change  generally  re- 
quires the contents of the affected  register as a parameter. 
For example,  branch on index, branch on count, branch 
and link, and load address are instruction unit operations 
which  change the contents of a GPR. Further, in loop 
situations the target of the branch  frequently uses the 
changed  register as an index quantity in its address. Per- 
formance  demands  led to the incorporating of controls 
which  recognize the above situation and effect a by-pass 

Figure 17 Effect of the decode  interlock on pre-fetched 
instructions. 
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Figure 18 Data Bow for  address  generation. 

of the GPR. This  entails substituting the content of the 
adder output register (which contains the new GPR data) 
for the content of the affected GPR. One performance cycle 
was saved by this  technique. 

In addition to address  generation, the address  adder 
serves to accomplish  branch  decision  arithmetic, loop 
mode  testing, and instruction counter value  generation 
for  various situations. In order to perform all of these 
functions, it was required that  the adder  have two 32-bit 
inputs and one input of 12  bits.  One of the 32-bit inputs 
is  complementable and a variety of  fixed,  single-bit inputs 
is  provided for miscellaneous  sequences. The data path 
is illustrated in  Fig. 18. 

Status switching and inputloutput 

The philosophy  associated  with status switching  instruc- 
tions is  primarily one of  design  expediency.  Basic  existing 
hardware paths are exercised  wherever  possible, and an 
attempt is made to adhere to the architectural interrupt 
specifications.  When status switching instructions are 
encountered  in conditional mode the instruction unit is 
halted and no action is taken until the condition is cleared. 

The supervisor call (SVC) instruction is treated by the 
interrupt hardware as a precise interrupt. The same  new 
status word  pre-fetch  philosophy is utilized in the load 
program status word  (LPSW) operation. 23 

MODEL 91 MACHINE PHILOSOPHY 



One  difficulty  encountered  in  conjunction  with the 
start-up fetching of instructions following  a status switch 
(or interrupt) is that a new storage protect  key* is likely 
to obtain. Consequently,  a  period  exists during which two 
protect  keys are active, the first for previously  delayed, 
still outstanding accesses associated  with the current execu- 
tion clean-up, and the second for the fetching of instruc- 
tions. This situation is handled by sending both keys to 
the main storage control element and attaching proper 
control information to the instruction fetches. 

The set program  mask  (SPM)  implementation has a 
minor optimization: Whenever the new  mask equals the 
current mask, the instruction completes  immediately. 
Otherwise an execution  clean-up  is effected before setting 
the new  mask to make certain that outstanding opera- 
tions are executed in the proper mask  environment. 

1/0 instructions, and 1 /0  interrupts, require  a  wait 
for channel communications. The independent  channel 
and  CPU paths to storage demand that  the  CPU be 
finished setting up the 1 / 0  controls in storage before the 
channel can be  notified to proceed.  Once  notifled, the 
channel must interrogate the instruction-addressed device 
prior to setting the condition code in the CPU. This  is ___ 
(PSW). It  is  a  tag which accompanies all storage requests, and  from 

* The storage protect key is contained in the program status word 

it the storage can determine when a protect violation occurs. 

accomplished by lower-speed  circuitry and involves  units 
some  distance away; consequently, I/O initiation times are 
of the order of 5-10 microseconds. 
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