
Machine
organization
of the IBM RlSC
System/6000
processor

by G. F. Grohoski

The IBM RlSC System/6000* processor is a
second-generation RlSC processor which
reduces the execution pipeline penalties
caused by branch instructions and also
provides high floating-point performance. It
employs multiple functional units which
operate concurrently to maximize the
instruction execution rate. By employing these
advanced machine-organization techniques, it
can execute up to four instructions
simultaneously. Approximately 11 MFLOPS
are achieved on the LINPACK benchmarks.

Introduction
This paper describes the machine organization of the
IBM RISC System/6000* (RS/6000) processor.
Companion papers in this issue describe the instruction-

* RlSC System/6000 is a trademark of International Business Machmes Corporation.

“Copyright 1990 by international Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

set architecture [11 and the organization of the floating-
point dataflow [2] . The next section describes the
motivation for the original design work. The third section
describes the problems inherent in a highly overlapped
multiple-execution-unit design, and the solutions which
were developed for them. The fourth section describes
modifications to the original design point introduced
during the implementation.

Motivation for the design

Evolution of 801-based machine organizations
In the early 1980s various projects at the IBM Thomas J.
Watson Research Center examined aspects of high-
performance Reduced Instruction-Set Computer (RISC)
designs. From earlier work [3] based on the experimental
80 1 computer, it was clear that RISC processors offered
many advantages over conventional CISC (Complex
Instruction-Set Computer) designs such as the IBM
System/370. First, the amount of logic required to
implement the architecture naturally led to a compact,
efficient design which could potentially be brought to
market in a short period of time. A fast cycle time could
be supported, since control could be hard-wired, and a
simple dataflow effectively supported the instruction set.
Ignoring finite cache effects, the 80 1 inherently executed
nearly one instruction per clock cycle.

John Cocke believed that a suitably augmented scalar
RISC processor could effectively compete with larger and
more expensive vector processors by using multiple

G. F. GROHOSKI

execution units and by dispatching several instructions
per cycle.

The notion of using multiple functional units which
operate concurrently to improve performance was
examined in early computer designs, notably the IBM
System/360 Model 9 I [4] and the CDC 6600 [5] . One
basic question was how far a RISC machine organization
could be pushed: Could a sustained rate of less than one
cycle per instruction be achieved? How much hardware
would be required? Would the cycle time be lengthened
enough to offset any gain in cycles per instruction? What
architecture changes would be required to effectively
support a multiple-execution-unit 80 1 design?

This so-called superscalar approach was studied in the
Cheetah project at the Watson Research Center in 1982-
1983.+ The Cheetah machine organization used separate
branch, fixed-point, and floating-point execution units to
speed instruction processing. Significant changes were
made to the 801 architecture to facilitate the
implementation of a multiple-execution-unit design and
to expose this design to the compiler. The RS/6000
machine organization owes much to that of the Cheetah
machine; important differences between the two will be
discussed where appropriate.

The target technology of the superscalar studies was
bipolar ECL. By 1984 it became clear that CMOS was
achieving a level of integration, chip size, and circuit
performance which allowed high-performance RISC
processors to be packaged on a few chips. The resulting
cost and cost/performance advantages of this design
point were dramatic.

The AMERICA project was undertaken to study
further the implementation of a multiple-execution-unit
801 design in CMOS. The author, working with John
Cocke and Gregory Chaitin, wrote a cycle-by-cycle
simulator of the machine organization (called a “timer”
in IBM parlance) to demonstrate clearly the processing
power of the machine organization, to validate the
organizational concepts, and possibly to be used as
the initial logic specification for a prototype. Some areas
of the machine organization, such as the interrupt
synchronization mechanism, were developed during the
following year.

The end result of this work was a combination of
machine organization, instruction-set architecture, and
compiler techniques which allowed a VLSI CMOS
processing unit to perform at a level comparable to those
of ECL vector processors such as the Cray- 1.

AMERICA machine organization
Figure 1 depicts the organization of the AMERICA
processor; the organization of the RS/6000 processor is

’ T. K. M. Agenvala and D. Prener, “Cheetah Principles of Operation,” IBM internal
document, IBM Thomas J. Watson Research Center, Yorktown Heights, N Y , May
1982. 38

G. F. GROHOSKI

identical. It consists of several functional units, each
partitioned onto one chip (except for the data cache).
The instruction cache unit (ICU) fetches instructions and
executes branch and LCR (Condition Register Logic)
instructions. It dispatches two instructions per cycle to
the fixed-point unit and floating-point unit, and receives
condition-code information from each unit over
dedicated buses. A two-word instruction-reload bus refills
an instruction cache line when a miss occurs. The fixed-
point unit (FXU) executes fixed-point instructions,
performs address calculations for floating-point loads and
stores, and contains the address translation, directories,
and controls for the data cache. It controls the PBUS, an
internal processor bus used to communicate cache-miss
and store-back information to the memory interface, and
to transfer architected registers between the FXU and
ICU. The floating-point unit (FF’U) is a high-speed chip
which is capable of executing floating-point loads in
parallel with arithmetic instructions. One fixed-point, one
floating-point, one branch, and one LCR instruction can
be executed simultaneously. The system control unit
(SCU) contains the memory and 1/0 interface and
controls. The data-cache unit (DCU) contains 64-Kbyte
data-cache arrays and data-cache buffers. More details on
the actual implementation can be found in [6]. This
paper is concerned primarily with the ICU, the FXU,
and the control interface to the FF’U.

To understand the operation of the AMERICA
processor, consider the following 2D graphics transform.
The RS/6000 pipeline is nearly identical, except that
floating-point loads and stores work differently. It rotates
a list of points (x,, y ,) through an angle 0 and displaces
them by an amount (xdis, ydJ to produce a new set of
points (xl’, yl’), stored in the same locations as the
original set. An RS/6000 pseudoassembly code excerpt
for this routine is given below:

FL FRO, sin theta ;load rotation matrix
FL FR1, -sin theta ;constants
FL FR2, cos theta
FL FR3, xdis ;load x and y
FL FR4, ydis ;displacements
MTCTR i ;load Count register

;with loop count
LOOP UFL FR8, x(i) ;load x(i)

FMA FR10, FR8, FR2, FR3 ;form x(i)*cos + xdis
UFL FR9, y(i) ;load y(i)
FMA F R l l , FR9, FR2, FR4 ;form y(i)*cos + ydis
FMA FR12, FR9, FR1, FR10 ;form -y(i)*sin + FRlO
FST FR12, x(i)’ ;store x(i)’
FMA FR13, FR8, FRO, F R l l ;form x(i)*sin + F R l l
FST FR13, y(i)’ ;store y(i)’
BCT LOOP ;continue for all points

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

scu
Memory and VO
interface controls

Dcu

64-Kbyte data-cache arrays, buffers
4 chips

IRLD J ICU I
PBUS

I

buses
(2 words)

TLB. directorv.
X-Kbyte cache, L"

Address,
late-select,
controls i i Floating-point data

(2 words)

t t

FXU
sync

b FPU

Data-cache TLB, Pipelined multiply-
directory,

branch processing,
instruction dispatch point execution Floating-point

add unit, floating-
point registers

unit

I '
Instruction buses (I word each)

UFL is an update-form floating-point load that auto-
increments the address to use for the next point. FMA is
a multiply-add instruction that accepts four register
operands. The second and third operands are multiplied
together, added to the fourth operand, and stored in
the first. FST stores a floating-point result in memory.
BCT is a special loop-closing branch instruction which
examines a value in the Count register; if it is greater
than zero, the branch is taken. The Count register is
auto-decremented.

Following is a description of the cycle-by-cycle
execution of the inner loop in the AMERICA machine
organization; a diagram is shown in Figure 2. (The actual
RS/6000 pipeline is described later in more detail.)

IF The instruction-fetch cycle of the processor.
The instruction cache is accessed and four
instructions are fetched from the cache
arrays and placed into instruction buffers.

DispJBRE During this cycle, up to four instructions are

examined for dispatching. Branch and LCR
instructions are executed, if they can be removed
from the buffer. The target addresses for branch
instructions are generated. Fixed- and floating-
point instructions are transmitted to the fixed-
and floating-point units.

FXD During this cycle the fixed-point unit decodes
fixed-point instructions and accesses the register
file for operands.

FXE The fixed-point unit executes instructions during
this cycle. For load and store instructions, the
address is generated, and the data-cache
translation look-aside buffers (TLBs) and
directories are searched. The array address is
transmitted to the data-cache arrays and latched.

accessed. Based upon a late-select signal from the
fixed-point unit, which chooses data from one of
the four sets of the data cache, data is returned to
either the fixed- or floating-point units. 39

C During this cycle the data-cache arrays are

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 G. F. GROHOSKI

1 2 3 4 5 6 7 8 9

IF

FMA FMA FST FST FMA
uFL9 uFL8 FMA BCT FMA(BCT)

FMA
uFL9 U n 8

FST FST FMA FMA FST FST FMA FMA
BCT FMA FMA WL.3 UFL9 BCT FMA FMA uFL8 uFL9

D i S p l s R E

FXD

FXE

C

WB

uFL8
FMA

uFL9

m 9 uFL8 FST FST uFL9 uFL8

FMA
FST FMA FMA FST

uFL9 uFL8
FST FMA

M A FMA

uFL8 uFL8 uFL9

PD

Remap

FPD

FPEl

RE2

I I I I I I I
UFLI
FMA

uFL9
FMA

FMA
FST

FMA
FMA FMA FST
uFL9 uR8

FPWB I F M A I F M A I

W B During this cycle the fixed-point unit writes
the results of instructions to the register
file. For RR instructions, this cycle is in
parallel with the cache access cycle. Data for
loads is written into the register file during
this cycle.

PD This is the floating-point pre-decode cycle. It
is at the same pipeline level as FXD. During
this cycle instructions are pre-decoded in
preparation for renaming.

Remap During this cycle the registers of floating-
point instructions are mapped to physical
registers.

registers are read out for floating-point
arithmetic instructions.

FPD This is the floating-point decode cycle. The

40 FPEl The first cycle of the multiply-add pipeline.

FPE2 The second and final cycle of the multiply-

FPWB During this cycle the results of floating-point
add pipeline.

arithmetic instructions are written to the
floating-point register file.

During cycle 1 the first four instructions starting at
LOOP are fetched. During cycle 2 the first load and
multiply are dispatched to the floating-point unit. The
next four instructions are also fetched.

dispatched to the fixed- and floating-point units. The first
pair is in fixed-point decode and floating-point pre-
decode. The fixed-point unit will execute the floating-
point load and discard the multiply-add. The floating-
point unit will send both instructions to the rename
stage. The loop-closing BCT instruction, along with three

During cycle 3 the second instruction pair is

G. F. GROHOSKI IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

subsequent instructions (not shown), is being fetched
from the instruction cache.

During cycle 4 the fixed-point unit generates the
address for the first floating-point load. The floating-point
unit renames the floating-point load and the multiply-
add. The second instruction pair is in fixed-point decode
and floating-point pre-decode. The instruction cache
dispatches the third instruction pair, and branch-scanning
logic looks five instructions deep in the instruction buffer
to generate the target address of the BCT.

During cycle 5, the instruction cache fetches the top of
the loop. The fourth instruction pair is dispatched to the
fixed- and floating-point units, and the BCT is executed.
The first FMA is in floating-point decode; the first
floating-point load is accessing the data cache. At the end
of this cycle, the data will return and the FMA will enter
the floating-point execution pipeline, since all of its
registers are free. The fixed-point unit is generating the
address for the second floating-point load.

During cycle 6 the second floating-point load is
accessing the data cache. The second floating-point
multiply-add will decode, since all required registers are
available. The address of the first floating-point store is
being generated; it will be placed in a store data address
buffer at the end of the cycle. When the data is produced
in cycle 10 (not shown), the store will be written to the
data cache at the first free cache cycle.

Several points are notable. The BCT causes no pipeline
delays, and as far as the fixed- and floating-point units are
concerned, no branch ever occurs. The floating-point
pipeline is kept 100% busy, and produces two floating-
point results each cycle (one multiply and one add).
Ignoring finite cache effects, this computation proceeds at
50 MFLOPS in the inner loop on AMERICA at a 40-11s
clock cycle. Due to problems encountered during the
implementation of the floating-point unit, the RS/6000
processor executes this code at a 28-MFLOP rate. The
remainder of this paper describes how this processing rate
was achieved.

Problems of a multiple-execution-unit design
approach
A RISC design which uses multiple functional units
simultaneously executes several instructions per cycle;
therefore, several instructions must be fetched each cycle.
The effect of branch instructions on the pipeline must be
reduced, because it is relatively greater than in a machine
which executes only a single instruction per cycle. The
execution units must be synchronized when interrupts
occur, to maintain sequential program consistency and to
ensure that arithmetic operations are performed using the
correct data in the correct order.

If the effect of branch instructions can be mitigated
and the floating-point and fixed-point units can be

supplied with instructions and data at a high rate, a large
increase in processor performance is possible. The central
requirements which needed to be addressed were the
following:

1. Design a low-latency, high-bandwidth instruction-
fetching mechanism.

2. Overlap the execution of branch instructions with
fixed-point and floating-point instructions.

3. Overlap the fixed-point and floating-point units in
order to keep the floating-point unit supplied with
data.

4. Maintain the effects of sequential program execution
while executing several instructions in parallel.

5. Design a high-performance floating-point execution
unit.

The solutions to the first four requirements, developed
during the AMERICA project, are discussed here. The
design of the floating-point dataflow is discussed in [2].

0 Instruction fetching
The instruction-fetching mechanism must have a low
latency so that the execution units remain busy when the
target of a taken branch is being fetched. This argues for
a cache which can be accessed in one machine cycle.

While the processor can execute four instructions per
machine cycle, it more commonly executes three
instructions (a branch, a fixed-point, and a floating-point
instruction) per machine cycle in heavy floating-point
code. The cache must at least match this rate. In order to
help overlap the execution of branch instructions with
fixed- and floating-point instructions, the branch-
scanning logic, as it looks through the instruction buffers,
must detect a branch somewhat in advance of its
execution. This means that the instruction-cache
bandwidth must be greater than the raw bandwidth
required by the execution pipelines.

In view of the high bandwidth required, an on-chip
dedicated instruction cache was designed which could be
accessed in one cycle. In order to fetch multiple
instructions per cycle, a new cache organization was
developed.

All instructions are four bytes (one word) in length.
The first design choice was to build an instruction cache
which, given an arbitrary byte address, truncated the four
low-order bits and returned the resulting quadword
(QW)-aligned set of four instructions. However, this did
not supply the processor with the required number of
instructions if, for example, an instruction branched to
the last word in a QW. In this case only one instruction
would be supplied to the execution units, and this would
seriously degrade loop performance. Possibly the 41

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 G. F. GROHOSKI

Instruction buffer network

Instructionn + 1 Instruction n + 2

Interlock,
dispatch,
branch
execution
logic

I

Multiplexor network

To
FAR 4

Instruction n + 4 Branch
bus

LCR bus

1
Count register mux Unresolved branch register

I Link register

Condition
register and
logic

Branch
address,
generatlon t t Fxu mu

CR bus CR bus

1

Instruction buses
to FXU and FPU

r

J
Instruction n + 3

1

compiler and loader could be directed to QW-align all
branch targets for loops, but this would increase code size
and could lead to additional complications.

Consider the instruction-cache arrays to be composed
of four smaller, independent arrays, each fetching one
instruction per cycle. By controlling the address presented
to each array and interleaving the instructions among the
cache arrays, four instructions can always be fetched, as
long as they reside in the same cache line. Figure 3
diagrams the organization of the cache arrays for a two-

way set-associative cache with a line size of 16
instructions (64 bytes).

Each subsequent instruction is placed into a different
cache array, computed modulo 4. If the actual word
linewidth of each array is two instructions, instruction 0
of associativity sets A and B occupies row I of cache
array 0. Row 1 of cache array 1 contains instruction 1 of
a given cache line, and so on. In this case one cache line
is split into four rows of a cache array. Consider how four
sequential instructions in a cache line, regardless of the 42

G F GROHOSKI IBM J. RES. DEVELOP. VOL. 34 NO, I JANUARY 1990

address of the first instruction of the group, can be
fetched.

In order to fetch instructions 0, 1, 2, and 3 of a given
cache line, the same row address can be presented to all
cache arrays. This is precisely the QW-aligned case
mentioned above. In order to fetch instructions 1, 2, 3,
and 4 of a cache line, the row address for cache array 0
must be incremented, since instruction 4 resides in the
next row. This is determined by address bit 28 (bit 0 is
the high-order bit of a 32-bit address).

By considering all 16 possibilities of the starting
address of a word in a cache line, it is seen that cache
arrays 0, 1, and 2 need to have their row addresses
incremented, while array 3 does not. The T logic of
Figure 3 provides the row incrementation and selection
functions.

By interleaving the cache arrays and providing the
necessary row incrementation, row-selection
multiplexors, and row-selection logic, four instructions
can be fetched each cycle as long as they are contained in
the same cache line. If the group of four is within the last
three instructions of a cache line, it spans two cache lines.
In this case, only 3, 2, or 1 instructions can be fetched.
On the average, this organization allows (1 3/ 16) X 4 +
(1/16) x 3 + (1/16) x 2 + (1/16) x 1 = 3.625
instructions to be fetched each machine cycle.

Branch delays
Reducing the delays caused by branches in a pipelined
machine has been one of the classical challenges of
computer design. Consequently, many approaches have
been developed. The objective, of course, is to have
branches take zero execution cycles. Branches reduce the
effective throughput of the pipeline by causing several
types of delays; following is a description of these delays
and the state of the art in reducing them in 1984:

It takes time to fetch the target of a successful (taken)
branch. During this time the execution pipeline may be
starved of instructions.

target-fetch delay. First, the branch-target address can
be calculated while the branch is in the early stages of
the execution pipeline. This generally requires a
separate branch-target address adder. Then, the address
can be provided to the instruction-fetching mechanism
to fetch the branch target before the outcome is
known. If the branch is not taken, the branch-target
instructions can be discarded. If the target is fetched, a
pipeline delay can be introduced if too few sequential
instructions are available to the execution pipeline to
cover the delay of re-fetching the sequential path.
Generally, then, the target address is fetched based
upon some prediction of the branch being taken.

There are several approaches which reduce the

IBM J. RES, DEVELOP. VOL. 34 NO. I JANUARY 1990

Another technique, typically useful for IBM
System/370 processors [7], is to store the calculated
branch-target address in a table which is indexed using
the address of the branch instruction. When the branch
instruction is fetched, its address is used to access the
table, which provides the branch-target address. Logic
is provided which ensures that the table contains the
proper branch-target address by invalidating the table
entry for the branch if the register which the branch
uses for its target address is changed.

To further reduce the target-fetch delay, a branch-
target buffer [8] can be provided which stores the target
address of a branch and the first several instructions
from a branch target. Once the branch-target address
has been computed, it can be presented to the branch-
target buffer, where the target address is compared with
the addresses of branch targets contained in the buffer.
If a match is found, no request need be made to the
instruction-fetching mechanism until the outcome of
the branch is known. If taken, the instruction-fetching
mechanism is given the address of the instruction just
beyond the last instruction stored in the matching
entry in the branch-target buffer. If no match is found,
the branch target can be fetched. It is added to the
buffer by replacing a buffer entry which has not been
referenced recently. The effectiveness of a branch-target
buffer depends on the fraction of taken branches whose
targets are found in the buffer.

Yet another technique common to RISC machines is
to use some variant of the so-called branch-with-
execute instruction [3,8]. An instruction which
originally preceded a branch is moved behind the
branch by the compiler. This subject instruction is
executed whether or not the branch is taken. If the
branch is not taken, no penalty is incurred. If the
branch is taken, at least one instruction is available to
the execution pipeline while the branch target is being
fetched. Variations on this technique utilize more
subject instructions, or can choose instructions from
the target of the branch to be used as subject
instructions. With this form, termed branch-or-skip, if
the branch is not taken the execute instructions must
be skipped, possibly introducing some delay. This form
is used when the branch is unconditional or has a high
likelihood of being taken. The Cheetah machine used
up to four subject instructions in both branch-with-
execute and branch-or-skip forms.

These execute-form branches have several
drawbacks. Architectural and implementation
complications result if the subject instruction causes an
interrupt. If the interrupt handler returns to the subject
instruction once its interrupt has been serviced, the
branch may be taken or not taken. If it is to be taken,
the machine must “remember” the branch target

G. F. GROHOSKI

44

address. Or the interrupt handler may examine a bit
which denotes the interrupting instruction as the
subject of a branch-with-execute, reexecute the subject
instruction, and then return either to the target of the
branch or to the next sequential instruction following
the subject, depending upon the interrupt handler’s
determination of the branch outcome. Alternatively,
the interrupt handler may return directly to the branch
instruction and reexecute the subject instruction. In
this case the branch instruction must not alter any
registers (or the interrupt handler must undo the effects
of the changes). Whichever course is chosen, the
situation becomes even more complicated if multiple
subject instructions are used.

Nor can subject instructions always be found.
Because of dependencies in basic blocks, subject
instructions can be used to fill the execution slot only
about 60% of the time [3].
Conditional branches require an execution unit
to set a condition code. There is typically some
pipeline latency before the condition code is available
and the outcome of the branch can be determined,
which stalls the execution of the branch instruction.

In order to reduce the delays caused by waiting for
the condition code to become available, several
techniques can be employed. Branch-prediction
techniques can be combined with branch-target buffers
or decode history tables [8, 91 to reduce branch delays.
Smith [101 examined several branch-prediction
strategies. A branch can be guessed taken, or not taken,
as a function of history (the branch history table [9] or
its variants) or of branch type, or based on a bit placed
in the instruction and set by the compiler. Prediction
simply allows the machine to proceed down either the
sequential or the target path. Since the outcome of the
branch is uncertain, the pipeline must treat the
instructions in a conditional fashion and be able to
undo any changes to the architected machine state if a
wrong prediction has been made. Alternatively,
machines have been proposed which proceed down
both paths [7], although this requires the duplication of
hardware and in general has been too costly to
implement.
Branches also typically proceed through the execution
pipeline, thereby consuming at least one pipeline slot
and delaying subsequent fixed-point instructions.
This is the case with most current RISC machines
[11-14].

In Cheetah, a separate branch-execution unit was
provided to eliminate this pipeline delay. In order for
this to be most effective, architecture changes were
made to decouple the branch and fixed-point execution
units (these are described in [11).

G. F. GROHOSKI

In a machine which can execute several instructions
per cycle, the effects of these branch delays are
magnified.

following. First, a separate branch-execution unit was
provided. This allowed for the possibility of zero-cycle
branches. Second, logic was provided to scan through the
instruction buffers for branches, to generate the branch-
target address, and to determine the branch outcome if
possible. If the branch outcome was undefined,
instructions would be dispatched from the sequential
path to the fixed- and floating-point execution units in a
conditional fashion. When the branch outcome was
determined, these instructions would either be executed,
and the branch-target instructions discarded, or canceled,
and the branch-target instructions transmitted to the
execution units. (The notion of combining branch-
address generation logic and instruction-cache accessing
had also occurred to other researchers [151, but they did
not consider fully integrating a separate branch-
processing unit and an instruction cache.)

The justification for this simplistic strategy was the
following. Gross branch statistics available from 80 1
instruction studies indicated that branches comprised
approximately 20% of all instructions (in fixed-point
code). Approximately one third of the branches were
unconditional; another third were used to terminate do-
loops of the form do i = l , n; and the final third were
conditional. If a separate branch-execution unit is used,
with proper scanning ahead to overlap branch execution
with the execution of fixed-point instructions,
unconditional branches should cause no pipeline delay
provided the branch target is in the cache. Using the
loop-closing branch instruction, which is basically an
unconditional branch for the first n - 1 iterations, should
also cause no delay. Of the remaining conditional
branches, about half are taken, and half are not taken.
The branches not taken should cause no delay, since they
would be predicted not taken. The branches taken would
cause some delay, estimated to be two pipeline cycles.
Thus, branches, instead of requiring one cycle each to
execute, would require approximately
(5/6) x 0 + (1/6) x 2, or about 0.33 cycles on the
average.

Some form of branch prediction for conditional
branches could further reduce the delay. One strategy
would be to have a branch history table for conditional
branches whose outcome is unknown when they are first
encountered. However, the published effectiveness of
most branch-prediction strategies is skewed because
unconditional branches are included in the prediction
mechanism. This raises their apparent effectiveness
substantially. Our feeling was that the remaining
conditional branches were essentially random in nature

The approach chosen for AMERICA was the

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

and that typical branch-prediction techniques would not
be very effective. A branch-prediction mechanism would
require some significant space to implement.
Furthermore, in order to decode down the target path,
and dispatch target instructions to the fixed- and floating-
point units, additional logic would have to be added to
the instruction-cache unit. This logic would at most
eliminate the 0.33-cycle delay entirely, if both streams
were decoded; otherwise, it might perform worse if a
branch were predicted to be taken but was not taken. For
these reasons, sophisticated branch prediction, such as a
branch history table, was not implemented.

Branch-with-execute and branch-or-skip were not
utilized. Assuming that the branch-processing unit and
branch-scanning logic run far enough ahead of the fixed-
and floating-point execution units, the branch target can
be fetched in time to avoid pipeline execution delays for
most taken branches. Not-taken branches do not benefit
from branch-with-execute. Certain implementation
difficulties could be avoided (80 1 implementations were
notorious for having problems with bugs in branch-with-
execute), and the architecture could be simplified, if these
branches were not architected. Branch-with-execute can
provide one advantage: The branch is effectively moved
forward in the instruction stream, allowing the branch-
scanning logic to detect it earlier. (Referring to Figure 2,
if the BCT were an execute-form branch, it would be
detected one cycle earlier, and the target could be fetched
one cycle earlier. The branch-scanning logic would only
have to look four instructions deep to detect the branch.)
This potential advantage was offset by simply looking
further ahead in the instruction buffers for a branch.

To illustrate the design, several branch-execution
examples are depicted in Figure 4, which illustrates the
RS/6000 pipeline delays. Figure 4(a) shows an
unconditional branch, and 4(b) its associated pipeline
behavior. The pipeline cycle names are the same as in
Figure 2. At the end of the fixed-point execution cycle
(FXE), condition-code results are transmitted to the
branch unit so that conditional branches can be resolved
in the following cycle.

Figures 4(c) and 4(d) depict a conditional branch
which is not taken. Figures 4(e) and 4(f) depict a taken
conditional branch whose condition is set two fixed-point
instructions before the branch, causing a one-cycle
pipeline delay. Figures 4(g) and 4(h) depict a taken
conditional branch which causes no pipeline delay.

pipeline delay are taken conditional branches that
depend upon a fixed-point compare which cannot be
scheduled with three or more instructions between it and
the branch. Thus, the AMERICA branch-processing
approach is robust and simple. Although sophisticated
branch-prediction techniques are not used, branch

Note that the only branches which typically cause any

instructions cause a fraction of the pipeline delay of most
other RISC machines.

Overlap offixed-point and floating-point units
Several problems needed to be solved. One was how to
synchronize the fixed- and floating-point units to
maintain precise interrupts and still allow a high rate of
instruction processing. The second was how to allow
floating-point loads to proceed when the state of the
floating-point register file was unknown to the fixed-point
unit. The third was how, with the fixed-point unit
performing address calculations for floating-point loads
and stores, to ensure that the correct data was loaded into
or stored from the floating-point register file.

Synchronization
One design goal was to keep the fixed- and floating-point
units overlapped sufficiently that the execution rate of
floating-point code would depend only upon either 1) the
rate at which data could be fetched from the data cache
or 2) the rate at which arithmetic operations could be
performed, considering the effects of dependencies, by the
floating-point arithmetic dataflow. That is, the MFLOP
rate of the processor should not be limited by the
instruction-processing characteristics and synchronization
requirements of the pipeline. The synchronization
scheme must allow the simultaneous processing of fixed-
and floating-point instructions. It must also maintain
precise interrupts for loads, stores, and trap instructions.
When an interrupt for one of these instructions occurs
during the execution phase of the fixed-point pipeline, all
prior instructions must complete, and no subsequent
instructions may alter the machine state. A final objective
of the synchronization scheme was that it be simple to
debug, preferably by inspection.

The synchronization scheme which was used in the
AMERICA timer is diagrammed in Figure 5. The major
pipeline stages are depicted. In the fixed-point unit, a set
of instruction-prefetch buffers (IPBO-IPB3) feeds two
decode registers, DO and D 1. The IPBs allow the branch
unit to get ahead of the fixed- and floating-point units. A
mux (multiplexer, not shown) between DO and Dl feeds
the selected fixed-point instruction to the register file and
pipeline controls. This instruction is then logically fed to
the execute cycle, where ALU, shift, address translation,
and cache-directory operations are completed.

On the floating-point side, a mirror image of the
instruction buffers and decode registers is provided.
Decode registers PDO and PD 1 feed the rename registers
(register renaming is discussed shortly) RO and R 1. These
registers feed floating-point instruction-decode buffers
(IDB) which in turn feed the floating-point decode
register. The IDBs are provided so that the fixed-point
unit is not held up waiting for floating-point arithmetic
instructions to complete. 45

IBM J. RES, DEVELOP. VOL. 34 NO. I JANUARY 1990 G. F. GROHOSKI

46

G. F. GROHOSKI IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

XI
x 2
BRU

(;
T2
T3

single-cycle fixed-point
instructions
unconditional branch to TI

3

TI T2 T3 T4

4

T5 T6

TI T2

x 2

XI

5

T7

T3 T4

TI

x 2

6

T8

T5 T6

T2

TI

7

T3

T2

7

s 4

s 3

7

r3 T4

TI

1 2

Y I X2 BRU SI S2 S3

XI X2 BRU

IF

Disp

FXD

FXE

IF

Disp

FXD

FXE

IF

D~sp

FXD

FXE

IF

Disp

FXD

FXE

X1

target instructions

I
Branch takes no execution cycles
and causes no execution delay

(b)

I

lBRCSl S2

2

S3 S4 SS S6

CBRCSI'

3

T I T2 T3 T4

SZ'S3'

C

4

T5 T6 T7 T8

S4'SS'

SI'

5

S2'

6

S7 S8 S9 SI0
C ; fixed-point compare

I
BRC ; conditional branch

denendent on C
SI ; seiuential fixed-point

s2
instructions s 3

S2

6

T8

TI T2

x 2

s 3

T1 ;target instructions
T2

v

Branch takes no execution cycles
and cau\es no execution delay

I 2

:XIX2BRCI SISZS3S4

3

TI T? T3 T4

XZBRUSI'

C

3

X2 X3 BRC

C

C ; fixed-point compare
x1

c X I
x 2
BRC ; conditional branch

dependent on C
SI ; sequential fixed-point

instructions

Branch causes one-cycle delay (i = 2):
maximum delay is 3 - i cycles, where i
is the number of fixed-pmt operations
between C and BRC

; target instructions
T2
T3

2

BRCSI SZS?

CXI

4

TI T2 T3 T4

SI'S2'

XI

C

7

T3 T4

TI

x 3

1

CXI X2X3

6

TI T2

x 3

x 2

C ; fixed-point compare
x1 T5 T6 T7 T8

x 2

XI

x 3
x 2

BRC ;conditional branch

SI ; sequential fixed-point
dependent on C

instructions

J
Branch causes zero-cycle delay

cycles, where i is the number of
(i = 3); maximum delay is 3 - i

fixed-point operations between
C and BRC

; target instructions
T2
T3
T4

The fixed-point unit and the early stages of the
floating-point unit are kept in lock step by
synchronization signals which are passed between the two
units. During fixed-point decode, pipeline-hold
conditions produce a signal which prevents the floating-
point unit from pre-decoding. Thus, registers DO and
PDO and D 1 and PD 1 always contain the same
instruction. Similarly, during the fixed-point execute
phase, signals are generated and passed to the floating-
point unit which tell whether the instruction in execution
completed, or caused an interrupt. The instruction in
fixed-point execution is always in either register RO or
R 1. Only floating-point loads, stores, and arithmetic
instructions pass from registers RO and R1 to the IDB
and decode stages. Fixed-point instructions that enter RO
and R 1 are discarded as soon as they are executed by the
fixed-point unit (or are interrupted). If an instruction in
fixed-point execution causes an interrupt, the contents of
registers R1, DO, Dl , PDO, PD1, and both sets of
instruction buffers are purged. Additionally, the contents
of RO may or may not be purged, depending upon
whether the content of RO is a floating-point load, store,
or other fixed-point instruction. If so, it is purged, since it
is precisely the instruction causing the interrupt. If not, it
must be a prior floating-point arithmetic instruction, and
is allowed to proceed.

Similarly, a hold signal can be produced by logic in the
floating-point rename stage. If the IDB becomes full, or
the renaming mechanism runs out of rename registers,
the floating-point unit tells the fixed-point unit to hold
execution.

synchronization scheme on one iteration of the loop of
Example 1. In Figure 5(a), the first two instructions have
been dispatched to the fixed- and floating-point units.
The fixed-point unit decodes the floating-point load and
discards the FMA. The floating-point unit pre-decodes
both instructions and transfers them to the rename stage.

In Figure 5(b), the next two instructions enter DO,
PDO, Dl , and PDl. The fixed-point unit is performing
the address generation and translation for UFL FR8.
Similarly, the floating-point unit is remapping UFL FR8
and FMA FRlO. If the UFL should cause an interrupt,
the fixed-point unit informs the floating-point unit via
the cancel line to cancel all instructions in rename and
above. Any instructions in the IDBs or floating-point
decode are not affected. Similarly, if the floating-point
unit runs out of IDB space or rename registers, it informs
the fixed-point unit to hold in the execution stage.

In Figure 5(c), the second UFL is in fixed-point
execution, and the first FMX has entered floating-point
decode. At the end of this cycle, the floating-point data
returns from the data cache, and execution of the FMA
starts as data is bypassed to the execution pipeline.

Figures 5(a-f) illustrate the operation of this

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

Figure 5(d) continues the sequence. In Figures 5(e) and
5(f), the instructions from the next iteration of the loop
have entered decode and pre-decode and the process
repeats.

This synchronization scheme allows the floating-point
and fixed-point units to operate in an overlapped manner
without inhibiting the processing rate of the pipeline, and
it maintains precise interrupts. It is easy to debug, since
the contents of registers must correspond to one another.
Although it adds two stages to the floating-point pipeline,
this does not affect the processing of floating-point
arithmetic instructions that need data from the data
cache, since the data does not return until the floating-
point decode cycle. It does, however, mean that the
branch unit must wait an additional two cycles before
resolving a conditional branch that depends on a floating-
point compare. In the code sequences which were
studied, this did not cause any great delay, since the
compare typically depended upon a floating-point load
(directly or indirectly) and thus could not have been
executed any sooner.

Register renaming
When the fixed-point unit performs address generation
and initiates the data-cache request for a floating-point
load, the floating-point register denoted as the target of
the load is overwritten with new data. The floating-point
load can be considered to define a new value of the
floating-point register (FPR). The FPR cannot be
overwritten until all prior floating-point instructions
which reference the old value of the register have
accessed that value.

prevented from initiating a floating-point load until the
floating-point unit signals that all previous floating-point
operations are complete. In a coprocessor arrangement,
this is acceptable; however, it severely limits fixed-
floating-point overlap, which is required for high floating-
point performance. With respect to Figure 5, the question
is, when a floating-point load is in fixed-point execution,
how is the fixed-point unit to know that the request can
be sent to the cache? If the data returns too early, it will
overwrite a value in the register file which may still be
needed.

most elegant was invented by Tomasulo for the IBM
System/360 Model 9 1 [161. Floating-point data buffers
are provided in the floating-point unit. When the
instruction unit executes a floating-point load, it reserves
one of these buffers. The instruction unit can proceed as
long as the data buffers are not full. The load instruction
is sent to the floating-point unit, so that the data can be
placed in the floating-point register file at the appropriate
point in the program sequence. When the load is decoded

In the simplest implementations, the fixed-point unit is

There are several solutions to this problem. One of the

G. F. GROHOSKI

Fixed-point un

Execute

Fixed-point unit

PDOm-1 PDljFMAFRlOi DO'-] Dl-I

Hold

Hold
-name l o g 3

IDB3
IDB2
IDB 1
IDBO

Fixed-point unit

P B 3

DO 1-1 D 1 /T2j

Hold Decode logic
Execute 1-1

Execute -1

j P B 3

rEg Rename logic

IPB3
IPB2
P B 1
IPBO

I RO-1 Rl-1

IDB3
. IDB2

IDB 1
IDBO

by the floating-point unit, the data is transferred to the
register file from the buffer, once it is available.

A second approach was examined in the Cheetah
machine. Two copies of the floating-point registers were
architected. The primary floating-point registers, 32 in
number, were used by the arithmetic unit. The backup
registers, also 32 in number, were used by the fixed-point
unit to load data from the data cache. Receive (RCV)

48 instructions moved data from the backup register to the

primary register. The RCV operation could be coded as a
bit in a floating-point arithmetic instruction.

This procedure worked in the following manner. A
floating-point load would load the backup register with
data. The first floating-point arithmetic instruction to use
the data would have its RCV bit set for that register field.
The data would be transferred from the backup register
to the primary register. A valid bit would denote whether
or not the backup register was in use. If it was, a

G. F. GROHOSKI IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

Fixed-point unil

IPB3

IPB 1
IPB2

IPBO

Floating-point unit Fixed-point unil

BE: IPBO

PDO 1-1 PDI D O m m DIFMAFRlOl

Decode logic

RO-1 Rl- Execute / F S T F R 1 3 1
Hold

IDB3
IDB2
IDB I
IDBO

Decode

Translate logic
Hold, Cancel

Floating-point unit

IPBO

IDB3
IDB2
IDB I
IDBO

Decode

Fixed-point unit Floating-point unit I
IPB3
IPB2
IPB 1
IPBO IPBO

DO- DII-I PDO-I PDI-

Execute -/ R0-1 Rl-I

-1 Decode

(0

subsequent floating-point load to that register could not
proceed and would be held up by the fixed-point unit.
Otherwise, the fixed-point unit could effectively pre-load
the next value of the FPR. This was particularly useful in
floating-point loops, where the fixed-point unit would
typically reach the top of the loop before the floating-
point unit. Instead of waiting for the floating-point unit
to catch up, it could proceed with loads and overlap them
with the execution of prior floating-point code.

However, the backup registers doubled the size of the
register file, and might not be utilized uniformly by the
compiler. Receive and transmit operations were another
chore for the compiler to get right. In a straightforward

implementation, 32 valid wires must be exposed to the
fixed-point unit.

Simple interlocking, as in a typical coprocessor
implementation, was too slow. The Cheetah approach
was cumbersome. Instead, a variant of the Tomasulo
approach, called register renaming, was developed.

A load of a floating-point register creates a new
semantic value for that register. If there were a pool of
physical registers, greater than the number of architected
registers, the extra registers could serve as a dynamic
buffer to hold data for floating-point loads executed by
the fixed-point unit but not yet encountered by the
floating-point unit. As long as there were some free

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990 G. F. GROHOSKI

OP T SI S2 S3 OP T S1 S2 S3
/ n u 1 2 6 j 2 / ~ 0 l n 6 1 j l I ~ l

DIU
busy bypass

rnB
busy bypass

physical registers, floating-point loads could be processed
by the fixed-point unit without regard to the actual state
of particular floating-point registers. Internal floating-
point control logic would determine when to use the
value in the buffer pool based on the decoding of
floating-point loads and the registers being used by
instructions in execution.

The organization that was adopted is illustrated in
Figure 6. RO and R1 are the rename registers. They
contain an opcode field, a target-register field, and three
source-register fields.

The map table is a 32-entry, 6-bit-wide table which
50 maintains the correspondence of an architected register

G. F. GROHOSKI

to a physical register. For instance, if the entry for register
12 is 38, then physical register 38 currently contains the
contents of architected register 12.

physical registers. In the initial state, the map table is
initialized to identity and the remaining registers are
placed on the free list. Since there are 40 physical
registers, the FL can contain a maximum of eight entries.
The FL is maintained as a circular queue and uses a head
pointer and a tail pointer.

those physical registers which are being used by
instructions in the IDB or decode phases, and will

The free list (FL) contains a list of currently unassigned

The pending-target return queue (PTRQ) contains

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

O P T S l S 2 S 3 O P T S I S 2 S 3

o m
busy bypass

om
busy bypass

OP T S1 S2 S3 OP T SI S2 S3
- R O ~ RI
1 1 1 1 I , 4 mi head FREELIST

4 3 1 134135!36!37138139
Map table

3 2 x 6
~

O P T S1 S2S3LCSC DBm
Decode

El0
busy bypass

become free as soon as these instructions pass decode. It
also has a maximum size of 8. Like the FL, it is
maintained as a circular queue with head and tail
pointers. It also has an additional pointer. The release
pointer keeps register tags on the PTRQ until all prior
arithmetic instructions which could have required the
data in the corresponding physical register have decoded.

The decode stage contains floating-point arithmetic
instructions. The instruction-decode buffers (IDB) buffer
instructions which have been renamed but which cannot
enter decode. They allow the fixed-point unit to run
ahead of the floating-point arithmetic pipeline. The
decode and IDB registers each contain load-count (LC)
and store-count (SC) fields. When an instruction decodes,
the LC field is used to increment the release pointer for
the PTRQ, in order to release physical registers to the

free list. In a similar way, the SC field increments the
release pointer of the store queue to allow floating-point
stores to be performed.

The BUSY and BYPASS registers contain the physical
register number of the floating-point instruction currently
in the first and second execution stages. If any register
field of an instruction in decode compares with the
BUSY register, it is prevented from decoding. If a
source field compares with the BYPASS register, the data
is read from the execution pipeline and not from the
register file.

The outstanding load queue (OLQ) contains the
physical register number of the next floating-point load
whose data will return from the cache. It stops
instructions from decoding if they require data which has
not returned from the data cache. 51

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 G. F. GROHOSKI

When floating-point stores are renamed, they are
placed on the pending-store queue (PSQ). This eliminates
the need for them to go through the floating-point decode
phase. They remain on the queue until they are released
by an arithmetic instruction decoding. Once released,
they may be performed if their data is available.

RO and R I), what happens next depends upon the
instruction type.

When an instruction enters the rename phase (registers

Floating-point arithmetic instructions When an
arithmetic instruction is renamed, the contents of the
map table are not altered. Each 5-bit architected register
number is replaced by a 6-bit physical register tag. The
instruction proceeds to the decoder, or, if the decoder is
full, to an IDB position. If the arithmetic instruction is in
R1, its LC and SC fields are set to 0. If it is in RO, these
fields are set to 1 if there is a floating-point load or store
in R1.

Once renamed, the arithmetic instruction enters the
decode stage, if the decode stage is empty or is becoming
empty; otherwise it is placed into an IDB. If the IDB is
full, the pipeline backs up, and the fixed-point unit is told
to stop executing instructions.

Once in decode, the arithmetic instruction reads out
the contents of its physical registers. If the contents of
any of its physical registers are not valid, because they are
being loaded from memory or are being computed in the
pipeline, the instruction remains in decode. These
conditions are checked by comparing each physical
register field with the OLQ and BUSY registers. When
the instruction can successfully decode, it enters the
arithmetic pipeline. The store-count field increments the
release pointer of the PSQ to allow subsequent floating-
point stores to be performed. The load-count field
increments the release pointer of the PTRQ to release
unneeded physical registers. These registers are then
placed on the free list, as long as there are no stores on
the store queue using this register which have not been
done.

Floating-point stores When a floating-point store enters
the rename stage, the target register is renamed to a
physical register. The store could have been placed in the
IDB or Decode stages, like arithmetic instructions.
However, since the fixed-point unit executes fixed-point
instructions and throws away floating-point arithmetic
instructions, the floating-point unit must process loads or
stores and arithmetic instructions in parallel. Otherwise,
it will slow down the fixed-point unit. Thus, if the store
were placed into the decoder, the decoder would have to
inspect two instructions per cycle.

Instead, it is placed on the pending-store queue
52 (PSQ). It remains there until the value of the physical

G. F. GROHOSKI

register it is trying to store is available. Before leaving
rename, the store causes the store-count field of the most
recent prior arithmetic instruction to be incremented.
This is because the last instruction which could have
produced the result is that arithmetic instruction
(or a load). The store count keeps the store from being
performed until all prior arithmetic instructions have
decoded.

point unit is notified that data is available), several
conditions must be met. First, the store must be at the
head of the PSQ, since stores are done in order. The
physical register tag of the store at the head of the queue
must not be coming from the pipeline, or be busy from
memory. These conditions are checked by comparing the
physical register tag with the contents of the BUSY tag
and the OLQ. Once the data is valid, the store is
performed. If the give-back bit is set (see below), the tag
is returned to the free list.

A few more words about floating-point stores are in
order. While the fixed-point unit generates the address for
a floating-point store, it must know when the data will be
available. Again, in many coprocessor schemes, it would
simply wait for the floating-point unit to produce the
data and stop executing subsequent instructions. The
RISC System/6000 uses a store-data buffer similar to that
of the System/360 Model 9 1 [161 to allow the fixed-point
unit to proceed to execute subsequent instructions. It
works in the following way.

After generating the address for a floating-point store,
the fixed-point unit places the address in a pending-store
queue. When the floating-point unit removes the store
from the store queue, it places the data in a data buffer
on the floating-point chip, and informs the fixed-point
unit that the data is available. Now that the data and
address are available, the fixed-point unit can perform
the store on any subsequent cycle.

Floating-point loads A floating-point load, since it
defines a new semantic value for the architected register,
causes the map table to be updated. When a load enters
the rename stage, the map table is accessed for the target
register. The tag stored there is placed on the PTRQ. It
cannot be returned immediately to the free list since
there may be pending floating-point arithmetic and store
instructions which still need the value in that physical
register. The tag at the head of the free list is written into
the map-table entry. If there are no free tags, the fixed-
point unit is informed to stop executing instructions.

The new physical register tag is then placed on the
OLQ, and the LC field of the most recent prior
arithmetic instruction is incremented.

Tags are returned to the free list from the PTRQ in the
following way. The contents of a physical register become

Before the store is actually performed (before the fixed-

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

unused (free) when the last arithmetic instruction or store
referencing that physical register has been performed. For
arithmetic instructions, this occurs when they complete
decode. For stores, this occurs when they are removed
from the store queue. When a load causes a new logical-
to-physical mapping, the last instruction which could
have used that physical register was the most recent
arithmetic instruction, or floating-point store. (It may
actually never have been used for many, many
instructions.) Thus, when the most recent prior
arithmetic instruction has decoded or store has been
performed, that physical register can be returned to the
free list.

Several mechanisms could have been used to
determine this. The most straightforward would have
been to compare the old physical register tag to all
outstanding register fields of instructions in an IDB or the
decoder, and to stores on the store queue. The last
instruction to have matched would then be told to return
the tag to the free list when it decoded or was removed
from the store queue. This would have required up to 20
comparators, and 20 latch bits to ensure that the
instruction returned the register.

An alternate method was developed. First, it is
sufficient to let only arithmetic instructions return tags to
the free list, if, before doing so, they check (via
comparators) the contents of the store queue to ensure
that there are no pending stores of this physical register.
Then, each time a load renames a register, the old register
tag is placed on the PTRQ. A counter, the load count
(LCT) associated with each arithmetic instruction, is
incremented. When the load decodes, the LCT field is
used by the PTRQ controls to release that number of tags
to the free list. This method eliminates the need for
comparators with the IDB and decode stages. However,
comparators and a bit are required for each store-queue
entry. Table 1 illustrates the procedure.

The operation of this example is shown in Figure 6. In
Figure 6(a), the map table is initialized to identity, and all
physical registers are free. The decoder, IDB, arithmetic
pipeline, OLQ, and PSQ are empty. A floating-point add
and a store are in registers RO and R 1. They are
renamed, and pass to the decoder and the PSQ. The
store-count field of the add is set to 1.

In Figure 6(b) the floating-point add has passed from
rename into decode, since all required physical registers
are free. Its store count increments the release pointer of
the PSQ to release the store. A floating-point load and a
multiply are in rename. The load causes a new mapping
for architected register 3. It places the old mapping for
register 3 on the PTRQ, and replaces it with register 32
from the free list. The release pointer for the PTRQ will
automatically be incremented, since the add in decode
(the most recent arithmetic instruction) will read out the

IBM J . RES. DEVELOP. VOL. 34 NO, I JANUARY 1990

Table 1 Register renaming for floating-point load instructions.

Original stream Rename table Free Renamed PTRQ
head stream

FST R3
FADD R3, R2, R1 (1, 1); (2, 2); (3, 3) 32 R3, R2, R1

FLD R3 (3, 3) 32 PR32 3
FMUL R6, R3, R1 (1, 1); (3, 32); (6, 6) 33 R6, R32, R1
FSUB R2, R6, R2 (2, 2); (6, 6); (2, 2) 33 R2, R6, R2
FLD R3 (3,321 33 PR33 32

(3, 3) 32 R3

old value. The load will be placed on the OLQ. The
multiply will be renamed, after which it passes into
decode, with its LC and SC fields set to 0.

During the next cycle [Figure 6(c)], the floating-point
add is in execution. Its target register is in the BUSY
register. The store of register 3, while released, cannot be
performed since the data is being produced by the add
and is not yet available. The load is on the OLQ, and the
data will return from the data cache during this cycle.
The PTRQ controls will try to place physical register 3
on the free list. However, the store still needs the old
value. The give-back bit for the store will be set. The
multiply is in decode and will decode during this cycle,
since there are no register interlocks. The last two
instructions, the subtract and the final load, are in
rename and will proceed into the decoder and the OLQ
during the next cycle. The load count field of the subtract
is set to 1.

During the next cycle [Figure 6(d)], the store can be
removed, since the data is available from the add. Since
its give-back bit is set, it will also return the tag to the
free list. The last load is on the OLQ. The subtract must
wait for the multiply to execute and will remain in
decode.

During the next cycle [Figure 6(e)], the subtract can
decode, releasing register tag 32 on the PTRQ. It is
returned during the next cycle. One cycle later [Figures
6(f) and 6(g)], the subtract completes execution.

control mechanism, it elegantly allows fixed- and
floating-point instructions to be overlapped to take
maximum advantage of each execution unit. In
conjunction with the fixed-floating-point synchronization
scheme, precise interrupts are maintained between fixed-
and floating-point operations.

0 Maintaining the consistency of the instruction stream
In a highly overlapped machine, interrupts may be
precise or imprecise. An interrupt is precise if, when it is
processed, no subsequent instructions have begun
execution and all prior instructions have completed.
Precise interrupts force the machine to preserve the view
of a machine which executes one instruction at a time,

While register renaming appears to be a fairly complex

G. F. GROHOSKI

53

54

finishing it before processing the next one. Imprecise
interrupts, on the other hand, allow the processor to leave
the instruction stream in the neighborhood of the
interrupt in a fragmented, but recoverable, state. For
instance, all prior instructions may have executed, and
some subsequent instructions may have begun execution
and updated architected registers. In this case, it may not
be possible to re-execute them. Imprecise interrupts
therefore require the architecture to provide a means for
reconstructing the instruction stream around the point of
the interrupt, so that post-interrupt processing software
can recreate the sequential state of the machine.

Due to the pipeline complexity of the AMERICA
machine organization, it would have been difficult to
architect a facility for handling interrupts in an imprecise
fashion, which would have accounted for the many
possibilities for instruction execution past the point of an
interrupt. Therefore, precise interrupts were specified for
all program-generated interrupts.

In order to guarantee precise interrupts, each interrupt
type was analyzed, and a means of handling each in a
precise fashion was developed. External, asynchronous
intcrrupts were handled by stopping instruction dispatch
and waiting for the pipeline to drain. If an instruction in
the pipeline caused an interrupt, that interrupt was taken.
Other interrupt conditions, such as invalid instructions,
were detected in the ICU during the dispatch cycle,
causing a wait for the pipeline to drain in a similar
fashion.

interrupts resulting from the execution of load, store, or
trap instructions by the fixed-point unit were precise.
These three types of instructions are termed interrupt-
causing (IC) instructions, although they are not the only
instructions which can cause interrupts.

The fixed-floating-point synchronization scheme
ensures that precise interrupts are maintained between
the fixed- and floating-point units. Since no floating-point
instructions could cause interrupts in AMERICA, the
remaining need was to synchronize the branch-processing
unit with the fixed-point unit.

From the pipeline structure it is apparent that branches
and LCR operations executed by the branch unit change
the count, link, and condition registers before the branch
unit is informed that a prior IC instruction has caused an
interrupt. Therefore, any changes to these registers must
be undone to reflect their state at the time of the
interrupt. In addition, the address of the IC instruction
must be saved in SRRO so that interrupt-handling
software can process it.

The program counter stack (PCS) mechanism was
developed to handle this. Each cycle, as instructions are
dispatched to the execution units, logic-records the
relationship of branches and LCR instructions which

The following mechanism was developed to ensure that

G. F GROHOSKI

modify the count, link, and condition registers to IC
instructions. The addresses of IC instructions are also
recorded on a stack. If a branch or LCR instruction is
executed before a prior IC instruction has been executed,
the old value of the count, link, or condition register is
saved on a backup stack for that register.

As IC instructions are executed by the fixed-point unit,
entries are removed from the PCS; old entries for the
count, link, or condition registers are removed from their
backup stacks, since no interrupt has occurred. When an
IC instruction causes an interrupt, the head entry on the
backup stacks is written to that register, and the address
of the IC instruction saved on the PCS is saved in SRRO.
Consider the following example:

1000 L ;Load which will cause an interrupt
1004 CRAND ;LCR instruction which modifies CR
1008 BL ;Branch and Link changing LR

Assume that these three instructions are dispatched during
one cycle. The address of the load, 1000, is recorded on the
PCS, and the load is sent to the fixed-point unit. The old
value of the condition-register field modified by the CRAND
instruction is recorded on the CR backup stack. The branch-
and-link updates the value of the link register to lOOC hex,
and causes the old value of the link register to be placed on
the link-register backup queue. Status bits are set which
reflect the fact that changes to the CR and LR were made
after an interrupt-causing instruction. When the load
interrupts several cycles later, the PCS is accessed. The
address stored there is placed in SRRO. The status bits cause
the values for the link register and condition register to be
restored, erasing any changes to the machine state.

Design of the IBM RlSC System/6000 processor
During the implementation of the RS/6000 processor,
several notable changes were made to the processor
specification. Additionally, several areas of the machine
were developed in greater detail.

Instruction cache
As originally specified, the instruction-fetching
mechanism could fetch four instructions per cycle as long
as they were within the first 13 instructions of a cache
line (out of a total of 16). While implementing the array
access logic, it was noted that the same interleaving
principle could be applied to the cache directories. By
splitting the cache directories into even and odd
components and supplying a “row-incrementation
feature” to the even directory, four instructions could be
fetched even if two cache lines were crossed. If the first
instruction of the group was in an even cache line, the
odd directory could be accessed with the same row
address to search for the remaining instructions in the

IBM 1. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

successor cache line. Similarly, if the first instruction was
in an odd cache line, the next cache line would be
contained in the next congruence class in the even
directory, requiring that the row address be incremented.
This feature complicated the hit logic and replicated
some comparators, but was introduced at no cycle-time
penalty. As a result, assuming that both lines are present
in a cache, four instructions can always be fetched as
long as the lines are in the same 4-Kbyte virtual page.
This case could also have been handled by interleaving
the instruction TLB into even and odd pages, but this
was not worth the implementation cost.

way set-associative cache, which has a 64-byte (16-
instruction) line size. The size of the instruction cache
was limited by that which could fit on the 12.7-mm-
square chip used for implementing the RS/6000
processors. With an 8-Kbyte instruction cache, a miss
ratio of less than 2% is expected. A 64-byte line size was
chosen for three reasons. Simulation of IBM System/370
processors with this line size indicated that larger lines
tended to increase miss ratios at this cache size. The
package available dictated that the reload bus from
memory be two instructions wide. With a 64-byte line
size, eight cycles over this bus are required to reload a
cache line when a miss occurs. A 128-byte line would
require 16 cycles, and would tie up the instruction cache
for too long. A cache with 32-byte lines requires twice the
directory space of a cache with 64-byte lines. A two-way
set-associative cache was used, since the behavior of a
direct-mapped cache is worse, and the performance gain
of a four-way set-associative cache is marginally superior
to that of a two-way set-associative cache. Also, properly
designed, the two-way set-associative cache would not
lengthen the machine cycle, since there are many other
paths in other pipeline cycles which could equally well
determine the cycle time.

Branch processing
One path that was known to be critical in AMERICA
was the condition-code-setting path from the fixed-point
unit to the branch unit. In one cycle the fixed-point unit
was to execute a compare-type instruction and transmit
the resulting condition code to the ICU chip, where the
branch-resolution logic would determine the outcome in
time to switch the instruction stream. The time taken to
resolve the branch and perform the stream switch took
longer than originally anticipated, so it was delayed until
the next cycle. As a result, the compare-branch penalty
was increased to three cycles from two cycles, as
illustrated in Figure 4. Nevertheless, in the Dhrystone 1.1
benchmark [171, of 64 branches in the inner loop, only
20 cause any delay. The total delay is 46 cycles, so that
branches are executed at the rate of 46/64 = 0.72 cycles
per instruction. This is a considerable improvement over

The instruction cache is organized as an 8-Kbyte, two-

IBM J . RES, DEVELOP. VOL. 34 NO, I JANUARY 1990

the 1 + cycles per branch instruction typical of most
current RISC processors.

Condition register
One of the prime examples of how the 80 1 architecture
was changed to support concurrent execution of many
instructions is embodied in the condition register (CR)
[11. It contains eight fields, each of which can be
designated to hold the results of a compare-type
operation. It is located in the instruction cache and
branch-processing unit. By having one interlock bit per
field, eight outstanding operations can be maintained.
When an instruction is dispatched to the fixed- or
floating-point units, which sets CR field 0, the
corresponding interlock bit is set. Subsequent instructions
which try to read or to set that field remain in the
instruction buffers. Eventually the fixed-point or floating-
point unit executes the instruction, and the ICU is
informed via the condition-register bus from that unit.
Then, the interlock bit is reset. Since instructions which
set the condition register can be dispatched conditionally,
and canceled, any corresponding condition-register
interlock bits which were set must be reset. A similar
reset occurs for compares which are dispatched after IC
instructions that interrupt. This is performed and
maintained by the PCS.

dedicated to resolving condition-register interlocks in the
dispatch and PCS logic became too large. Four interlock
bits were introduced, so that four outstanding operations
to the condition register could be maintained.

During the implementation, the amount of space

0 Synchronization ofjixed-point and floating-point units
The design of the fixed-point unit was such that
instructions were held off in the execution phase rather
than in the decode phase. As a result, the decode hold
line shown in Figure 5 was not necessary. Also, the
hold/cancel signal generated by the fixed-point unit was
too late to make a chip crossing to the floating-point unit
in one cycle. Therefore, instructions were permitted to
enter floating-point decode, where they would be held off
and canceled. This meant that, potentially, one rename
cycle would have to be undone. Furthermore, many bugs
were found in the synchronization scheme, so a counter
was added to the fixed-point unit. Each time the floating-
point unit shifted instructions out of rename, the shift
amount was transmitted to the fixed-point unit. The
fixed-point unit subtracted the number of instructions il
shifted the value of the difference specified the buffer
position in the fixed-point unit of the instruction which
was in RO in the floating-point unit.

Register renaming and floating-point control
Originally both floating-point arithmetic instructions and
floating-point loads caused new logical-to-physical

G . F. GROHOSKI

56

S Instruction buse

Instruction
buffers

I
I

Read address D-in T-in

Decode
unit

I

Instruction-cache
dispatch cycle

-
Write
address
control S-out A-out B-out

Register file
b 32 x 36 5-port

I I I I

unit control 3

1

I
Cache data out 6 PBUS

address

Decode
cycle

Execute
cycle

To Figure 5
b

Data-cache
address

Cache-access
cycle

-

6 General organization and pipelining of the fixed-point unit.

. , .. _ _ . . , .. __ .." . ~ "-.l." ~ -

register mappings for their targets. Remapping arithmetic
instructions complicates the renaming logic, since more
ports are required on the PTRQ and the free list. It is
only useful if arithmetic instructions can be executed out
of order. In a sequence such as

FDlV FRO, ;FRO gets divide
FST FRO, ;store FRO
FADD FRO, ;FRO used for add result

the floating-point add could proceed. Sequences like this

would not occur frequently, since the RS/6000 processor
has 32 floating-point registers. Since the floating-point
unit executed floating-point arithmetic instructions in
sequence, there was no need to remap floating-point
arithmetic instructions. This simplified the remap logic
by requiring fewer ports on the AVRQ and PTRQ, as
well as reducing the control logic complexity.

System/6000 uses the IEEE floating-point arithmetic
format, while AMERICA used the IBM System/370
format. This necessitated several changes to the controls.

Another significant change was that the RISC

G. F. CROHOSKI IBM I. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

f Effective address
Adder output (Figure 4)

I

I

-m

6

Data TLBs

Address
tag

I
J

Data-cache
status array

bits
Valid

Change
bits

Data-cache
directory m y s

Address

121

I

1

Execute
cycle

0 I General organization and pipelining of the data TLB and data-cache directoryistatus arrays.

The most significant was that floating-point stores were
required to proceed through the floating-point decoder,
so that any normalizations were performed properly. This
is described in more detail in [2]. This degraded floating-
point performance substantially in peak floating-point
loops. For example, using the 2D graphics example
described above, the RSf6000 machine takes seven cycles
per loop iteration as opposed to four in AMERICA. On
balance, however, this degradation is less severe; while
the potential AMERICA LINPACK performance was
approximately 15 MFLOPS, the RISC Systemf6000
achieves nearly 11 MFLOPS.

Fixed-point execution, data-cache access, and address
translation
The RSf6000 FXU is diagrammed in Figure 7. The basic
80 1 fixed-point execution-unit organization was sufficient

to provide an instruction execution rate close to one
cycle per instruction. Thus, it was not a primary area of
focus for improvement. However, some attention was
given to making loads and stores operate quickly by
placing the data-cache TLBs (translation look-aside
buffers) and the data-cache directories on the fixed-point
chip. Initial studies indicated that the following pipeline
structure could be utilized. Starting at the beginning of
the execution cycle, the address is generated by the ALU.
This requires approximately one-half cycle. In the second
half cycle, the segment registers are accessed, the virtual
address generated, and the TLB and directories are
searched in parallel. At the end of the cycle, it is known
whether or not the access resulted in a hit or miss, and
whether or not the access was permitted or caused a data
storage interrupt. Also, during the last half cycle, the
address is transmitted across a chip boundary to the 57

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 G. F. GROHOSKI

58

G. F. GROHOSKI IBM J. RES. DEVELOP. VOL. 34 NO, I JANUARY 1990

data-cache arrays and latched. This is diagrammed in
Figure 8.

At the beginning of the next cycle, the late-selects are
generated to select one of the four sets in the four-way
set-associative data cache, and are sent to the data-cache
chips. In parallel, the data-cache arrays are accessed to
provide one word from each of four sets. The late-selects
then select one word, which is transmitted to the fixed-
point unit. It is formatted (sign-extended, rotated) as
necessary, bypassed to the ALU and shifter, and latched
for writing into the register file during the next cycle.

This cache organization therefore provides data in two
execution cycles. An instruction using a register being
loaded must wait one cycle before being executed. About
two thirds of the time, the load can be scheduled back by
the compiler, and this delay can be covered.

Summary
The IBM RISC System/6000 machine organization uses
multiple execution units to achieve high performance. A
separate instruction cache which fetches four instructions
per cycle effectively eliminates pipeline starvation. A
robust branch-processing unit removes the execution
pipeline penalties of most branch instructions without
using a branch history table or elaborate branch-
prediction mechanisms. By overlapping the execution of
floating-point loads and stores with floating-point
arithmetic operations, high floating-point performance is
achieved. Precise interrupts are maintained to simplify
system-interrupt handlers. The result is a powerful,
robust processing platform which gives high system
performance across a wide spectrum of application
programs.

Acknowledgments
The author would like to thank the many people of IBM
Austin without whom the processor could not have been
designed. Although too many contributed to be listed
here, the contributions of several people are notable.
Chuck Moore, Ed Boufarah, and C. C. Lee helped
implement the instruction cache and branch-processing
unit. Jim Kahle, Larry Thatcher, Dennis Gregoire, Paul
Harvey, and Brian Bakoglu worked on the fixed-point
unit. Myhong Nguyenphu, Daniel Cocanougher, Richard
Fry, Pat Mills, Oscar Mitchell, and Troy Hicks worked
on the floating-point unit. Brett Olsson analyzed the
branch performance of the RISC System/6000 on the
Dhrystone 1.1 benchmark.

References
1. R. R. Oehler and R. D. Groves, “IBM RISC System/6000

Processor Architecture,” IBM J. Res. Develop. 34,23-36 (1990,
this issue).

2. R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the
IBM RISC System/6000 Floating-point Execution Unit,” ZBM
J. Res. Develop. 34, 59-70 (1990, this issue).

3.

4.

5.

6.

7.

8.

9.

10.

1 I .

12.

13.

14.

15.

16.

17.

G . Radin, “The 801 Minicomputer,” Proceedings of the
Symposium on Architectural Support for Programming
Languages and Operating Systems, in ACM SIGARCH
Computer Architecture News 10, No. 2, 39-47 (1982).
D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The
IBM System/360 Model 9 1: Machine Philosophy and
Instruction-Handling,” IBM J. Res. Develop. 11, 8-24 (1967).
J. E. Thornton, Design of a Computer-The Control Data 6600,
Scott, Foresman, & Co., Glenview, IL, 1970.
IBM RISC System/6000 Technology, Order Number SA23-
26 19, 1990; available through IBM branch offices.
J. F. Hughes et al., “Decode Branch History Table,” IBM Tech.
Disclosure Bull. 25, 2396-2398 (1982).
J. K. Lee and A. J. Smith, “Branch Prediction Strategies and
Branch Target Buffer Designs,” IEEE Computer Magazine 17,
6-22 (1984).
J. J. Losq, “Generalized History Table for Branch Prediction,”
IBM Tech. Disclosure Bull. 25, 99-101 (1982).
J. E. Smith, “A Study of Branch Prediction Strategies,”
Proceedings of the 8th Symposium on Computer Architecture,
Institute of Electrical and Electronics Engineers, May 198 1, pp.
135-148.
R. B. Garner et al., “The Scalable Processor Architecture
(SPARC),” Proceedings of COMPCON ’88, Institute of
Electrical and Electronics Engineers, 1988, pp. 278-293.
C. Rowen et al., “RISC VLSI Design for System Level
Performance,” VLSI Systems Design, pp. 81-88 (March 1988).
M. Johnson, “System Considerations in the Design of the AMD
29000,” IEEE Micro, pp. 28-41 (August 1987).
Tom Manuel, “Taking a Close Look at the Motorola 88000,”
Electronics, pp. 75-78 (April 28, 1988).
D. A. Patterson et al., “Architecture of a VLSI Instruction Cache
for a RISC,” Proceedings ofthe 10th Annual Symposium on
Computer Architecture, Institute of Electrical and Electronics
Engineers, 1983, pp. 108-1 16.
R. M. Tomasulo, “An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,” IBM J. Res. Develop. 11, 25-33
(1967).
R. P. Weicker, “Dhrystone: A Synthetic Systems Programming
Benchmark,” Commun. ACM 27, 1013-1030 (October 1984).

Received February 28, 1989; accepted for publication
January 17, 1990

Gregory F. Grohoski IBM Advanced Workstations Division,
11400 Burnet Road, Austin, Texas 78758. Mr. Grohoski received a
B.S. with distinction in electrical engineering from Cornell
University in 1980 and an MS. in electrical engineering from the
University of Illinois at Urbana-Champaign in 198 1. That same year
he joined the IBM Research Division at the Thomas J. Watson
Research Center in Yorktown Heights, New York, where he worked
on high-performance RISC machine designs. In 1986 he transferred
to IBM Austin to work on the RISC System/6000 project. Mr.
Grohoski holds two IBM Invention Achievement Awards and an
IBM Outstanding Technical Achievement Award; he has applied for
five patents. He is currently an Advisory Engineer in the hardware
architecture group.

