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The IBM RlSC  System/6000*  processor  is  a 
second-generation RlSC processor  which 
reduces the execution pipeline penalties 
caused by branch instructions and also 
provides high floating-point performance. It 
employs multiple functional units which 
operate concurrently to maximize the 
instruction execution rate.  By employing these 
advanced machine-organization techniques, it 
can execute up to four instructions 
simultaneously. Approximately 11 MFLOPS 
are achieved on the LINPACK benchmarks. 

Introduction 
This paper describes the machine organization of the 
IBM RISC System/6000* (RS/6000) processor. 
Companion papers in this issue  describe the instruction- 
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set architecture [ 11 and  the organization of the floating- 
point dataflow [ 2 ] .  The next section describes the 
motivation for the original design  work. The third section 
describes the problems inherent in  a highly overlapped 
multiple-execution-unit design, and the solutions which 
were  developed  for them. The fourth section describes 
modifications to the original design point introduced 
during the implementation. 

Motivation  for  the  design 

Evolution of 801-based machine organizations 
In the early  1980s various projects at the IBM Thomas J. 
Watson Research Center examined aspects of  high- 
performance Reduced Instruction-Set Computer (RISC) 
designs. From earlier work  [3]  based on the experimental 
80 1 computer, it was clear that RISC  processors  offered 
many advantages over conventional CISC (Complex 
Instruction-Set Computer) designs such as the IBM 
System/370. First, the amount of  logic required to 
implement the architecture naturally led to a compact, 
efficient  design  which could potentially be brought to 
market in  a short period of time. A fast  cycle time could 
be supported, since control could be hard-wired, and  a 
simple dataflow  effectively supported the instruction set. 
Ignoring finite cache effects, the 80 1 inherently executed 
nearly one instruction per clock  cycle. 

John Cocke believed that  a suitably augmented scalar 
RISC  processor could effectively compete with larger and 
more expensive vector processors by using multiple 
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execution units and by dispatching  several instructions 
per cycle. 

The notion of  using multiple functional units which 
operate concurrently to improve performance was 
examined in early computer designs,  notably the IBM 
System/360  Model 9 I [4] and the CDC  6600 [ 5 ] .  One 
basic  question was  how far a RISC machine organization 
could  be  pushed:  Could a sustained rate of  less than one 
cycle  per instruction be  achieved? How much hardware 
would  be  required?  Would the cycle time be  lengthened 
enough to offset any gain in cycles per instruction? What 
architecture changes  would  be  required to effectively 
support a multiple-execution-unit  80 1 design? 

This so-called  superscalar approach was studied in the 
Cheetah  project at the Watson  Research Center in 1982- 
1983.+ The Cheetah machine organization  used separate 
branch, fixed-point, and floating-point  execution units to 
speed instruction processing.  Significant  changes  were 
made to the 801 architecture to facilitate the 
implementation of a multiple-execution-unit design and 
to expose this design to the compiler. The RS/6000 
machine organization owes much to  that of the Cheetah 
machine; important differences  between the two  will  be 
discussed  where appropriate. 

The target  technology of the superscalar  studies was 
bipolar ECL. By 1984 it became  clear that CMOS was 
achieving a level  of integration, chip size, and circuit 
performance which  allowed  high-performance  RISC 
processors to be  packaged on a few chips. The resulting 
cost and cost/performance advantages of this design 
point were dramatic. 

The AMERICA  project  was undertaken to study 
further the implementation of a multiple-execution-unit 
801  design  in  CMOS. The author, working  with John 
Cocke and Gregory Chaitin, wrote a cycle-by-cycle 
simulator of the machine  organization  (called a “timer” 
in IBM parlance) to demonstrate clearly the processing 
power  of the machine organization, to validate the 
organizational  concepts, and possibly to be  used  as 
the initial logic  specification  for a prototype.  Some  areas 
of the machine organization,  such as the interrupt 
synchronization  mechanism, were  developed during the 
following  year. 

The end  result of this  work  was a combination of 
machine  organization, instruction-set architecture, and 
compiler techniques which  allowed a VLSI CMOS 
processing unit to perform at a level comparable to those 
of  ECL vector  processors  such  as the Cray- 1. 

AMERICA machine organization 
Figure 1 depicts the organization of the AMERICA 
processor; the organization of the RS/6000  processor  is 

’ T. K. M. Agenvala and D. Prener, “Cheetah Principles of Operation,” IBM  internal 
document, IBM Thomas J. Watson  Research  Center, Yorktown Heights, N Y ,  May 
1982. 38 
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identical.  It  consists of  several functional units,  each 
partitioned onto one chip (except  for the data cache). 
The instruction cache unit (ICU) fetches instructions and 
executes branch and LCR (Condition Register  Logic) 
instructions. It dispatches  two instructions per  cycle to 
the fixed-point unit and floating-point unit, and receives 
condition-code information from  each unit over 
dedicated  buses. A two-word instruction-reload bus refills 
an instruction cache  line  when a miss  occurs. The fixed- 
point unit (FXU) executes  fixed-point instructions, 
performs  address  calculations  for  floating-point  loads and 
stores, and contains the address translation, directories, 
and controls for the data cache. It controls the PBUS, an 
internal processor  bus  used to communicate cache-miss 
and store-back information to the memory  interface, and 
to transfer  architected  registers  between the FXU and 
ICU. The floating-point unit (FF’U)  is a high-speed chip 
which  is  capable of executing  floating-point  loads in 
parallel  with arithmetic instructions. One fixed-point, one 
floating-point, one branch, and one LCR instruction can 
be  executed  simultaneously. The system control unit 
(SCU) contains the memory and 1/0 interface and 
controls. The data-cache unit (DCU) contains 64-Kbyte 
data-cache  arrays and data-cache buffers.  More details on 
the actual implementation can be found in [6]. This 
paper  is  concerned  primarily  with the ICU, the FXU, 
and the control interface to the FF’U. 

To understand the operation of the AMERICA 
processor,  consider the following 2D graphics transform. 
The RS/6000  pipeline  is  nearly  identical,  except that 
floating-point  loads and stores work differently.  It rotates 
a list  of points (x,, y , )  through an angle 0 and displaces 
them by an  amount (xdis, ydJ to produce a new  set  of 
points (xl’, yl’), stored in the same  locations  as the 
original  set. An RS/6000  pseudoassembly  code  excerpt 
for  this routine is  given  below: 

FL FRO, sin theta  ;load rotation matrix 
FL FR1, -sin  theta  ;constants 
FL FR2, cos  theta 
FL FR3, xdis  ;load  x  and  y 
FL FR4, ydis  ;displacements 
MTCTR i ;load  Count  register 

;with loop  count 
LOOP  UFL  FR8, x(i) ;load  x(  i) 

FMA  FR10,  FR8, FR2, FR3 ;form  x(i)*cos + xdis 
UFL  FR9, y(i) ;load y(i) 
FMA F R l l ,  FR9,  FR2, FR4 ;form  y(i)*cos + ydis 
FMA FR12, FR9,  FR1, FR10 ;form  -y(i)*sin + FRlO 
FST  FR12, x(i)’ ;store  x(i)’ 
FMA  FR13,  FR8, FRO, F R l l  ;form  x(i)*sin + F R l l  
FST FR13, y(i)’ ;store y(i)’ 
BCT LOOP ;continue  for  all  points 
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UFL  is an update-form  floating-point  load that auto- 
increments the address to use for the next point. FMA  is 
a multiply-add instruction that accepts four register 
operands. The second and third operands are multiplied 
together,  added to the fourth operand, and stored in 
the first.  FST  stores a floating-point  result in memory. 
BCT  is a special  loop-closing branch instruction which 
examines a value  in the Count register; if it is  greater 
than zero, the branch  is  taken. The Count register  is 
auto-decremented. 

Following  is a description of the cycle-by-cycle 
execution of the inner loop in the AMERICA machine 
organization; a diagram is  shown  in Figure 2. (The actual 
RS/6000  pipeline is  described later in more detail.) 

IF The instruction-fetch cycle  of the processor. 
The instruction cache  is  accessed and four 
instructions are fetched  from the cache 
arrays and placed into instruction buffers. 

DispJBRE During this cycle, up to four instructions are 

examined  for  dispatching.  Branch and LCR 
instructions are executed, if they can be  removed 
from the buffer. The target  addresses  for branch 
instructions are generated.  Fixed- and floating- 
point instructions are transmitted to the fixed- 
and floating-point  units. 

FXD During this cycle the fixed-point unit decodes 
fixed-point instructions and accesses the register 
file for  operands. 

FXE The fixed-point unit executes instructions during 
this cycle. For load and store instructions, the 
address  is  generated, and the data-cache 
translation look-aside  buffers  (TLBs) and 
directories are searched. The array  address  is 
transmitted to the data-cache  arrays and latched. 

accessed.  Based upon a late-select  signal  from the 
fixed-point unit, which  chooses data from one of 
the four  sets of the data cache, data is returned to 
either the fixed- or floating-point units. 39 

C During this cycle the data-cache  arrays are 
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W B  During  this  cycle the fixed-point unit writes 
the results of instructions to the register 
file. For RR instructions, this cycle is in 
parallel  with the cache  access  cycle. Data for 
loads  is  written into the register  file during 
this cycle. 

PD This is the floating-point  pre-decode cycle. It 
is at the same  pipeline level  as FXD. During 
this cycle instructions are pre-decoded in 
preparation for  renaming. 

Remap During this  cycle the registers  of  floating- 
point instructions are mapped to physical 
registers. 

registers are read out for  floating-point 
arithmetic instructions. 

FPD This is the floating-point  decode  cycle. The 

40 FPEl The first  cycle  of the multiply-add  pipeline. 

FPE2 The second and final  cycle  of the multiply- 

FPWB During this cycle the results of floating-point 
add  pipeline. 

arithmetic instructions are written to the 
floating-point  register file. 

During  cycle 1 the first four instructions starting at 
LOOP are fetched. During cycle 2 the first  load and 
multiply are dispatched to the floating-point unit. The 
next  four instructions are also  fetched. 

dispatched to the fixed- and floating-point  units. The first 
pair  is in fixed-point decode and floating-point  pre- 
decode. The fixed-point unit will execute the floating- 
point load and discard the multiply-add. The floating- 
point unit will  send both instructions to the rename 
stage. The loop-closing BCT instruction, along  with three 

During cycle 3 the second instruction pair is 
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subsequent instructions (not shown), is  being  fetched 
from the instruction cache. 

During cycle 4 the fixed-point unit generates the 
address  for the first floating-point  load. The floating-point 
unit renames the floating-point  load and the multiply- 
add. The second instruction pair  is in fixed-point  decode 
and floating-point  pre-decode. The instruction cache 
dispatches the third instruction pair, and branch-scanning 
logic  looks  five instructions deep in the instruction buffer 
to generate the target  address of the BCT. 

During  cycle 5, the instruction cache  fetches the top of 
the loop. The fourth instruction pair  is  dispatched to the 
fixed- and floating-point  units, and the BCT  is  executed. 
The first  FMA  is in floating-point  decode; the first 
floating-point  load  is  accessing the data cache. At the end 
of this cycle, the data will return and the FMA  will enter 
the floating-point  execution  pipeline,  since  all of its 
registers are free. The fixed-point unit is  generating the 
address  for the second  floating-point  load. 

During cycle 6 the second  floating-point  load  is 
accessing the data cache. The second  floating-point 
multiply-add will decode,  since  all  required  registers are 
available. The address of the first  floating-point  store is 
being  generated; it will  be  placed in a store data address 
buffer at the end of the cycle.  When the data is  produced 
in  cycle 10 (not shown), the store will  be written to the 
data cache at the first  free  cache  cycle. 

Several points are notable. The BCT causes no pipeline 
delays, and as far as the fixed- and floating-point units are 
concerned, no branch ever  occurs. The floating-point 
pipeline is  kept 100% busy, and produces two  floating- 
point results  each  cycle (one multiply and one add). 
Ignoring  finite  cache effects, this computation proceeds at 
50 MFLOPS in the inner loop on AMERICA at a 40-11s 
clock  cycle. Due to problems encountered during the 
implementation of the floating-point unit, the RS/6000 
processor  executes this code at a 28-MFLOP  rate. The 
remainder of this paper  describes  how this processing rate 
was achieved. 

Problems of a  multiple-execution-unit design 
approach 
A RISC  design  which  uses  multiple functional units 
simultaneously  executes  several instructions per cycle; 
therefore,  several instructions must  be  fetched  each  cycle. 
The effect  of branch instructions on the pipeline  must  be 
reduced,  because it is  relatively  greater than in a machine 
which  executes  only a single instruction per cycle. The 
execution units must be synchronized  when interrupts 
occur, to maintain sequential  program  consistency and to 
ensure that arithmetic operations are performed  using the 
correct data in the correct order. 

If the effect  of branch instructions can  be  mitigated 
and the floating-point and fixed-point units can be 

supplied  with instructions and data at a high rate, a large 
increase in processor  performance is possible. The central 
requirements which  needed to be addressed were the 
following: 

1. Design a low-latency,  high-bandwidth instruction- 
fetching mechanism. 

2. Overlap the execution of branch instructions with 
fixed-point and floating-point instructions. 

3. Overlap the fixed-point and floating-point units in 
order to keep the floating-point unit supplied  with 
data. 

4. Maintain the effects of  sequential  program  execution 
while executing  several instructions in parallel. 

5. Design a high-performance  floating-point  execution 
unit. 

The solutions to the first  four requirements, developed 
during the AMERICA  project, are discussed  here. The 
design of the floating-point  dataflow  is  discussed in [2]. 

0 Instruction fetching 
The instruction-fetching mechanism must have a low 
latency so that the execution units remain busy  when the 
target of a taken branch is  being  fetched. This argues  for 
a cache  which can be  accessed in one machine cycle. 

While the processor can execute four instructions per 
machine cycle, it more commonly executes three 
instructions (a branch, a fixed-point, and a floating-point 
instruction) per machine cycle in heavy  floating-point 
code. The cache must at least match this rate. In order to 
help  overlap the execution of branch instructions with 
fixed- and floating-point instructions, the branch- 
scanning  logic, as it looks through the instruction buffers, 
must  detect a branch somewhat in advance of its 
execution. This means that the instruction-cache 
bandwidth  must  be  greater than the raw bandwidth 
required by the execution  pipelines. 

In view  of the high bandwidth required, an on-chip 
dedicated instruction cache was  designed  which  could  be 
accessed in one cycle. In order to fetch multiple 
instructions per  cycle, a new cache  organization was 
developed. 

All instructions are four bytes (one word) in length. 
The first  design  choice  was to build an instruction cache 
which,  given an arbitrary byte  address, truncated the four 
low-order bits and returned the resulting quadword 
(QW)-aligned  set of four instructions. However, this did 
not supply the processor  with the required number of 
instructions if,  for  example, an instruction branched to 
the last  word in a QW.  In this case only one instruction 
would  be  supplied to the execution  units, and this would 
seriously  degrade loop performance.  Possibly the 41 
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compiler and loader could  be  directed to QW-align  all 
branch  targets  for  loops, but this would  increase  code  size 
and could  lead to additional complications. 

Consider the instruction-cache arrays to be  composed 
of four  smaller, independent arrays,  each  fetching one 
instruction per  cycle. By controlling the address  presented 
to each  array and interleaving the instructions among the 
cache  arrays, four instructions can always  be fetched, as 
long as they  reside in the same  cache  line. Figure 3 
diagrams the organization of the cache  arrays  for a two- 

way set-associative  cache  with a line  size of 16 
instructions (64 bytes). 

Each subsequent instruction is  placed into a different 
cache array, computed modulo 4. If the actual word 
linewidth of each array is  two instructions, instruction 0 
of associativity  sets A and B occupies  row I of cache 
array 0. Row 1 of cache array 1 contains instruction 1 of 
a given  cache  line, and so on. In this case one cache  line 
is  split into four rows  of a cache  array.  Consider how four 
sequential instructions in a cache  line,  regardless of the 42 

G F GROHOSKI IBM J.  RES. DEVELOP. VOL. 34 NO, I JANUARY 1990 



address of the first instruction of the group, can  be 
fetched. 

In order to fetch instructions 0, 1, 2, and 3 of a given 
cache  line, the same row address  can  be  presented to all 
cache  arrays. This is  precisely the QW-aligned  case 
mentioned above.  In order to fetch instructions 1,  2,  3, 
and 4 of a cache  line, the row address  for  cache array 0 
must be incremented, since instruction 4 resides in the 
next  row. This is determined by address  bit 28 (bit 0 is 
the high-order  bit of a 32-bit  address). 

By considering  all 16 possibilities  of the starting 
address of a word in a cache  line, it is  seen that cache 
arrays 0, 1, and 2 need to have their row  addresses 
incremented, while array 3 does not. The T logic  of 
Figure 3 provides the row incrementation and selection 
functions. 

By interleaving the cache  arrays and providing the 
necessary  row incrementation, row-selection 
multiplexors, and row-selection  logic,  four instructions 
can  be  fetched  each  cycle as long as they are contained in 
the same  cache  line. If the group of four is  within the last 
three instructions of a cache  line, it spans two  cache  lines. 
In this case,  only  3,  2,  or 1 instructions can be  fetched. 
On the average, this organization  allows (1 3/  16) X 4 + 
(1/16) x 3 + (1/16) x 2 + (1/16) x 1 = 3.625 
instructions to be  fetched  each machine cycle. 

Branch delays 
Reducing the delays  caused by branches in a pipelined 
machine has  been  one of the classical  challenges  of 
computer design.  Consequently,  many approaches have 
been  developed. The objective,  of  course,  is to have 
branches  take  zero  execution cycles. Branches  reduce the 
effective throughput of the pipeline by causing  several 
types of  delays;  following is a description of these  delays 
and the state of the art in reducing them in 1984: 

It  takes time to fetch the target of a successful (taken) 
branch. During this time the execution  pipeline  may  be 
starved of instructions. 

target-fetch  delay.  First, the branch-target  address can 
be  calculated  while the branch is in the early  stages  of 
the execution  pipeline. This generally  requires a 
separate  branch-target  address adder. Then, the address 
can be  provided to the instruction-fetching  mechanism 
to fetch the branch target  before the outcome is 
known. If the branch is not taken, the branch-target 
instructions can be  discarded. If the target  is  fetched, a 
pipeline  delay can be introduced if too few sequential 
instructions are available to the execution  pipeline to 
cover the delay  of  re-fetching the sequential  path. 
Generally, then, the target  address  is  fetched  based 
upon some  prediction of the branch being taken. 

There are several  approaches which reduce the 
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Another technique, typically  useful  for  IBM 
System/370  processors [7], is to store the calculated 
branch-target  address  in a table which  is  indexed  using 
the address of the branch instruction. When the branch 
instruction is  fetched,  its  address  is used to access the 
table, which provides the branch-target  address. Logic 
is  provided which ensures that the table contains the 
proper  branch-target  address by invalidating the table 
entry for the branch if the register  which the branch 
uses  for its target  address  is  changed. 

To further reduce the target-fetch  delay, a branch- 
target buffer [8]  can  be  provided which stores the target 
address  of a branch and the first  several instructions 
from a branch target. Once the branch-target  address 
has  been computed, it can be  presented to the branch- 
target  buffer,  where the target  address  is compared with 
the addresses of branch targets contained in the buffer. 
If a match  is found, no request  need  be  made to the 
instruction-fetching  mechanism until the outcome of 
the branch is known. If taken, the instruction-fetching 
mechanism  is  given the address of the instruction just 
beyond the last instruction stored in the matching 
entry in the branch-target buffer. If no match is found, 
the branch target  can be fetched. It is  added to the 
buffer  by replacing a buffer entry which  has not been 
referenced  recently. The effectiveness  of a branch-target 
buffer depends on the fraction of taken branches  whose 
targets are found in the buffer. 

Yet another technique common to RISC  machines is 
to use some variant of the so-called  branch-with- 
execute instruction [3,8]. An instruction which 
originally  preceded a branch is  moved behind the 
branch by the compiler.  This  subject instruction is 
executed  whether or not the branch is taken. If the 
branch is not taken, no penalty is incurred. If the 
branch is taken, at least one instruction is  available to 
the execution  pipeline  while the branch target is being 
fetched. Variations on this technique utilize  more 
subject instructions, or can choose instructions from 
the target of the branch to be  used  as  subject 
instructions.  With this form, termed  branch-or-skip, if 
the branch is not taken the execute instructions must 
be  skipped,  possibly introducing some  delay. This form 
is  used  when the branch is unconditional or has a high 
likelihood of being taken. The Cheetah machine used 
up to four subject instructions in both branch-with- 
execute and branch-or-skip  forms. 

These  execute-form  branches  have  several 
drawbacks.  Architectural and implementation 
complications result if the subject instruction causes an 
interrupt. If the interrupt handler returns to the subject 
instruction once its interrupt has  been  serviced, the 
branch may  be taken or not taken. If it is to be taken, 
the machine must “remember” the branch target 
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address. Or the interrupt handler may examine a bit 
which denotes the interrupting instruction as the 
subject  of a branch-with-execute, reexecute the subject 
instruction, and then return either to  the target of the 
branch or to the next sequential instruction following 
the subject, depending upon the interrupt handler’s 
determination of the branch outcome. Alternatively, 
the interrupt handler may return directly to  the branch 
instruction and reexecute the subject instruction. In 
this case the branch instruction must not alter any 
registers (or the interrupt handler must undo  the effects 
of the changes).  Whichever course is  chosen, the 
situation becomes  even more complicated if multiple 
subject instructions are used. 

Nor can  subject instructions always  be found. 
Because  of dependencies in basic  blocks,  subject 
instructions can be  used to fill the execution slot only 
about 60% of the time [3]. 
Conditional branches require an execution unit 
to set a condition code. There is  typically some 
pipeline  latency  before the condition code  is  available 
and  the outcome of the branch can  be determined, 
which  stalls the execution of the branch instruction. 

In order to reduce the delays  caused by waiting  for 
the condition code to become  available,  several 
techniques can  be  employed. Branch-prediction 
techniques can  be combined with branch-target buffers 
or decode  history  tables [8, 91 to reduce branch delays. 
Smith [ 101 examined several branch-prediction 
strategies. A branch can be  guessed taken, or  not taken, 
as a function of  history (the branch history table [9] or 
its variants) or of branch type, or based on a bit placed 
in the instruction and set  by the compiler. Prediction 
simply  allows the machine to proceed  down either the 
sequential or the target path. Since the outcome of the 
branch is uncertain, the pipeline must treat the 
instructions in a conditional fashion and be able to 
undo any changes to  the architected machine state if a 
wrong prediction has  been made. Alternatively, 
machines have  been proposed which  proceed  down 
both paths [7], although this requires the duplication of 
hardware and in general  has  been too costly to 
implement. 
Branches  also  typically  proceed through the execution 
pipeline, thereby consuming at least one pipeline  slot 
and delaying subsequent fixed-point instructions. 
This is the case  with  most current RISC machines 
[ 11-14]. 

In Cheetah, a separate branch-execution unit was 
provided to eliminate this pipeline  delay. In order for 
this to be most  effective, architecture changes  were 
made to decouple the branch and fixed-point execution 
units (these are described in [ 11). 
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In a machine which can execute  several instructions 
per  cycle, the effects  of  these branch delays are 
magnified. 

following. First, a separate branch-execution unit was 
provided. This allowed  for the possibility  of  zero-cycle 
branches. Second,  logic was provided to scan through the 
instruction buffers for branches, to generate the branch- 
target  address, and  to determine the branch outcome if 
possible.  If the branch outcome was undefined, 
instructions would  be dispatched from the sequential 
path to the fixed- and floating-point execution units in a 
conditional fashion. When the branch outcome was 
determined, these instructions would either be executed, 
and  the branch-target instructions discarded, or canceled, 
and  the branch-target instructions transmitted to the 
execution units. (The notion of combining branch- 
address generation logic and instruction-cache accessing 
had also occurred to other researchers [ 151, but they did 
not consider fully integrating a separate branch- 
processing unit  and an instruction cache.) 

The justification for this simplistic strategy was the 
following. Gross branch statistics  available from 80 1 
instruction studies indicated that branches comprised 
approximately 20% of  all instructions (in fixed-point 
code). Approximately one third of the branches were 
unconditional; another third were  used to terminate do- 
loops  of the form do i = l ,  n; and the final third were 
conditional. If a separate branch-execution unit is  used, 
with proper scanning ahead to overlap branch execution 
with the execution of  fixed-point instructions, 
unconditional branches should cause no pipeline  delay 
provided the branch target is in the cache.  Using the 
loop-closing branch instruction, which  is  basically an 
unconditional branch for the first n - 1 iterations, should 
also  cause no delay.  Of the remaining conditional 
branches, about half are taken, and half are not taken. 
The branches not taken should cause no delay,  since they 
would  be  predicted not taken. The branches taken would 
cause some delay, estimated to be  two pipeline cycles. 
Thus, branches, instead of requiring one cycle  each to 
execute,  would require approximately 
(5/6) x 0 + (1/6) x 2, or about 0.33  cycles on the 
average. 

Some form of branch prediction for conditional 
branches could further reduce the delay. One strategy 
would  be to have a branch history table for conditional 
branches whose outcome is unknown when  they are first 
encountered. However, the published  effectiveness of 
most branch-prediction strategies  is  skewed  because 
unconditional branches are included in the prediction 
mechanism. This raises their apparent effectiveness 
substantially. Our feeling  was that the remaining 
conditional branches were  essentially random in nature 

The approach chosen  for  AMERICA was the 
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and that typical branch-prediction techniques would not 
be  very  effective. A branch-prediction mechanism would 
require some significant space to implement. 
Furthermore, in order to decode down the target path, 
and dispatch target instructions to the fixed- and floating- 
point units, additional logic  would  have to be added to 
the instruction-cache unit. This logic  would at most 
eliminate the 0.33-cycle  delay entirely, if both streams 
were decoded; otherwise, it might perform worse  if a 
branch were predicted to be taken but was not taken. For 
these reasons, sophisticated branch prediction, such as a 
branch history table, was not implemented. 

Branch-with-execute and branch-or-skip were not 
utilized.  Assuming that the branch-processing unit and 
branch-scanning logic run far enough ahead of the fixed- 
and floating-point execution units, the branch target can 
be fetched in  time to avoid pipeline execution delays for 
most taken branches. Not-taken branches do not benefit 
from branch-with-execute. Certain implementation 
difficulties could be avoided (80 1 implementations were 
notorious for  having problems with bugs in branch-with- 
execute), and the architecture could be simplified, if these 
branches were not architected. Branch-with-execute can 
provide one advantage: The branch is  effectively moved 
forward in  the instruction stream, allowing the branch- 
scanning logic to detect it earlier. (Referring to Figure 2, 
if the BCT  were an execute-form branch, it would be 
detected one cycle earlier, and the target could be fetched 
one cycle earlier. The branch-scanning logic  would only 
have to look four instructions deep to detect the branch.) 
This potential advantage was  offset  by simply looking 
further ahead in the instruction buffers for a branch. 

To illustrate the design,  several branch-execution 
examples are depicted in Figure 4, which illustrates the 
RS/6000 pipeline delays. Figure 4(a) shows an 
unconditional branch, and 4(b) its associated pipeline 
behavior. The pipeline cycle names are the same as in 
Figure 2. At the  end of the fixed-point execution cycle 
(FXE), condition-code results are transmitted to the 
branch unit so that conditional branches can be  resolved 
in the following  cycle. 

Figures 4(c) and 4(d) depict a conditional branch 
which  is not taken. Figures 4(e) and 4(f) depict a taken 
conditional branch whose condition is  set two fixed-point 
instructions before the branch, causing a one-cycle 
pipeline delay.  Figures  4(g) and 4(h) depict a taken 
conditional branch which causes no pipeline delay. 

pipeline delay are taken conditional branches that 
depend upon a fixed-point compare which cannot be 
scheduled with three or more instructions between it and 
the branch. Thus, the AMERICA branch-processing 
approach is robust and simple. Although sophisticated 
branch-prediction techniques are not used, branch 

Note that the only branches which  typically cause any 

instructions cause a fraction of the pipeline delay  of most 
other RISC machines. 

Overlap offixed-point and floating-point units 
Several problems needed to be  solved. One was  how to 
synchronize the fixed- and floating-point units to 
maintain precise interrupts and still  allow a high rate of 
instruction processing. The second was  how to allow 
floating-point loads to proceed when the state of the 
floating-point register  file  was unknown to the fixed-point 
unit. The  third was how,  with the fixed-point unit 
performing address calculations for floating-point loads 
and stores, to ensure that the correct data was loaded into 
or stored from the floating-point register file. 

Synchronization 
One design  goal  was to keep the fixed- and floating-point 
units overlapped sufficiently that the execution rate of 
floating-point code would depend only upon either 1) the 
rate at which data could be fetched from the data cache 
or 2) the rate at which arithmetic operations could be 
performed, considering the effects  of dependencies, by the 
floating-point arithmetic dataflow. That is, the MFLOP 
rate of the processor should not be limited by the 
instruction-processing characteristics and synchronization 
requirements of the pipeline. The synchronization 
scheme must allow the simultaneous processing  of  fixed- 
and floating-point instructions. It must also maintain 
precise interrupts for loads, stores, and  trap instructions. 
When an interrupt for one of these instructions occurs 
during the execution phase of the fixed-point pipeline, all 
prior instructions must complete, and no subsequent 
instructions may alter the machine state. A final objective 
of the synchronization scheme was that it be simple to 
debug, preferably by inspection. 

The synchronization scheme which was used in  the 
AMERICA timer is diagrammed in Figure 5. The major 
pipeline stages are depicted. In the fixed-point unit, a set 
of instruction-prefetch buffers (IPBO-IPB3) feeds two 
decode  registers, DO and D 1. The IPBs  allow the branch 
unit to get ahead of the fixed- and floating-point units. A 
mux (multiplexer, not shown) between DO and Dl  feeds 
the selected fixed-point instruction to  the register file and 
pipeline controls. This instruction is then logically  fed to 
the execute cycle,  where ALU, shift, address translation, 
and cache-directory operations are completed. 

On the floating-point side, a mirror image of the 
instruction buffers and decode registers  is provided. 
Decode registers PDO and  PD 1 feed the rename registers 
(register renaming is  discussed shortly) RO and R 1. These 
registers  feed floating-point instruction-decode buffers 
(IDB) which in turn feed the floating-point decode 
register. The IDBs are provided so that  the fixed-point 
unit is not held up waiting for floating-point arithmetic 
instructions to complete. 45 
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The fixed-point unit and  the early  stages of the 
floating-point unit are kept in  lock step by 
synchronization signals  which are passed  between the two 
units. During fixed-point decode, pipeline-hold 
conditions produce a signal  which prevents the floating- 
point unit from pre-decoding. Thus, registers DO and 
PDO and D 1 and  PD 1 always contain  the same 
instruction. Similarly, during the fixed-point execute 
phase, signals are generated and passed to the floating- 
point unit which  tell whether the instruction in execution 
completed, or caused an interrupt.  The instruction in 
fixed-point execution is  always in either register RO or 
R 1. Only floating-point loads, stores, and arithmetic 
instructions pass from registers RO and R1 to the IDB 
and decode stages. Fixed-point instructions that enter RO 
and R 1 are discarded as soon as they are executed by the 
fixed-point unit (or are interrupted). If an instruction in 
fixed-point execution causes an interrupt,  the contents of 
registers  R1, DO, Dl ,  PDO, PD1, and both sets of 
instruction buffers are purged. Additionally, the  contents 
of RO may or may not be purged, depending upon 
whether the content of RO is a floating-point load, store, 
or other fixed-point instruction. If so, it is purged, since  it 
is  precisely the instruction causing the  interrupt. If not, it 
must be a prior floating-point arithmetic instruction, and 
is  allowed to proceed. 

Similarly, a hold  signal can be produced by  logic in the 
floating-point rename stage.  If the IDB becomes full, or 
the renaming mechanism runs out of rename registers, 
the floating-point unit tells the fixed-point unit to hold 
execution. 

synchronization scheme on  one iteration of the loop of 
Example 1. In Figure 5(a), the first  two instructions have 
been dispatched to the fixed- and floating-point units. 
The fixed-point unit decodes the floating-point load and 
discards the FMA. The floating-point unit pre-decodes 
both instructions and transfers them  to  the rename stage. 

In  Figure 5(b), the next two instructions enter DO, 
PDO, Dl ,  and  PDl. The fixed-point unit is performing 
the address generation and translation for UFL FR8. 
Similarly, the floating-point unit is remapping UFL FR8 
and FMA FRlO. If the UFL should cause an interrupt, 
the fixed-point unit informs the floating-point unit via 
the cancel line to cancel all instructions in rename and 
above. Any instructions in the IDBs or floating-point 
decode are not affected. Similarly, if the floating-point 
unit runs out of IDB space or rename registers, it informs 
the fixed-point unit to hold in the execution stage. 

In Figure 5(c), the second UFL is in fixed-point 
execution, and the first FMX has entered floating-point 
decode. At the  end of this cycle, the floating-point data 
returns from the  data cache, and execution of the FMA 
starts as data is  bypassed to  the execution pipeline. 

Figures 5(a-f) illustrate the operation of this 
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Figure 5(d) continues the sequence. In Figures 5(e) and 
5(f), the instructions from the next iteration of the loop 
have entered decode and pre-decode and the process 
repeats. 

This synchronization scheme allows the floating-point 
and fixed-point units  to operate in an overlapped manner 
without inhibiting the processing rate of the pipeline, and 
it maintains precise interrupts. It is  easy to debug, since 
the  contents of  registers must correspond to one  another. 
Although it adds two stages to  the floating-point pipeline, 
this does not affect the processing  of floating-point 
arithmetic instructions that need data from the  data 
cache, since the  data does not  return until the floating- 
point decode cycle. It does, however, mean that the 
branch unit  must wait an additional two cycles  before 
resolving a conditional branch that depends on a floating- 
point compare. In the code sequences which were 
studied, this did not cause any great delay, since the 
compare typically depended upon a floating-point load 
(directly or indirectly) and  thus could not have been 
executed any sooner. 

Register renaming 
When the fixed-point unit performs address generation 
and initiates the data-cache request for a floating-point 
load, the floating-point register denoted as  the target of 
the load is overwritten with new data. The floating-point 
load can be considered to define a new value of the 
floating-point register (FPR). The  FPR  cannot be 
overwritten until all prior floating-point instructions 
which  reference the old  value of the register have 
accessed that value. 

prevented from initiating a floating-point load until the 
floating-point unit signals that all previous floating-point 
operations are complete. In a coprocessor arrangement, 
this is acceptable; however, it severely limits fixed- 
floating-point overlap, which is required for high  floating- 
point performance. With respect to Figure 5, the question 
is, when a floating-point load is in fixed-point execution, 
how  is the fixed-point unit to know that the request can 
be sent to the cache? If the data  returns  too early, it will 
overwrite a value in  the register file which may still be 
needed. 

most elegant was invented by Tomasulo for the IBM 
System/360 Model 9 1 [ 161. Floating-point data buffers 
are provided in  the floating-point unit. When the 
instruction unit executes a floating-point load, it reserves 
one of these buffers. The instruction unit can proceed as 
long as the data buffers are  not full. The load instruction 
is sent to the floating-point unit, so that  the  data can be 
placed in  the floating-point register  file at the appropriate 
point in  the program sequence. When the load is decoded 

In the simplest implementations, the fixed-point unit is 

There are several solutions to this problem. One of the 
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by the floating-point unit, the  data is transferred to the 
register file from the buffer, once it is  available. 

A second approach was examined in  the Cheetah 
machine. Two copies of the floating-point registers  were 
architected. The primary floating-point registers, 32 in 
number, were  used  by the arithmetic unit. The backup 
registers, also 32 in number, were  used  by the fixed-point 
unit  to load data from the  data cache.  Receive (RCV) 

48 instructions moved data from the backup register to  the 

primary register. The RCV operation could be coded as a 
bit in a floating-point arithmetic instruction. 

This procedure worked in the following manner. A 
floating-point load would load the backup register with 
data. The first floating-point arithmetic instruction to use 
the  data would have its RCV bit set for that register  field. 
The data would be transferred from the backup register 
to  the primary register. A valid bit would denote whether 
or not the backup register was in  use.  If it was, a 

G. F. GROHOSKI IBM J .  RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 



Fixed-point  unil 

IPB3 

IPB 1 
IPB2 

IPBO 

Floating-point  unit Fixed-point  unil 

BE: IPBO 

PDO 1-1 PDI D O m m  DIFMAFRlOl 

Decode logic 

RO-1 Rl- Execute / F S T F R 1 3 1  
Hold 

IDB3 
IDB2 
IDB I 
IDBO 

Decode 

Translate logic 
Hold, Cancel 

Floating-point  unit 

IPBO 

IDB3 
IDB2 
IDB I 
IDBO 

Decode 

Fixed-point unit  Floating-point  unit I 
IPB3 
IPB2 
IPB 1 
IPBO  IPBO 

DO-  DII-I  PDO-I  PDI- 

Execute -/ R0-1 Rl-I 

-1 Decode 

(0 

subsequent  floating-point  load to that register  could not 
proceed and would  be  held up by the fixed-point unit. 
Otherwise, the fixed-point unit could effectively pre-load 
the next  value of the FPR. This was particularly useful in 
floating-point  loops, where the fixed-point unit would 
typically  reach the top of the loop before the floating- 
point unit. Instead of  waiting  for the floating-point unit 
to catch  up, it could  proceed  with  loads and overlap them 
with the execution of prior floating-point  code. 

However, the backup registers  doubled the size  of the 
register  file, and might not be  utilized  uniformly by the 
compiler.  Receive and transmit operations were another 
chore for the compiler to get right.  In a straightforward 

implementation, 32 valid  wires  must  be  exposed to the 
fixed-point unit. 

Simple  interlocking,  as in a typical  coprocessor 
implementation, was too slow. The Cheetah approach 
was cumbersome.  Instead, a variant of the Tomasulo 
approach, called  register renaming, was developed. 

A load  of a floating-point  register  creates a new 
semantic value  for that register. If there were a pool of 
physical  registers,  greater than the number of architected 
registers, the extra  registers  could  serve  as a dynamic 
buffer to hold data for  floating-point  loads  executed by 
the fixed-point unit but not yet encountered by the 
floating-point unit. As long as there were some  free 
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physical  registers,  floating-point  loads  could  be  processed 
by the fixed-point unit without regard to the actual state 
of particular floating-point  registers. Internal floating- 
point control logic  would determine when to use the 
value  in the buffer pool  based on the decoding of 
floating-point  loads and the registers  being  used by 
instructions in execution. 

The organization that was adopted is illustrated in 
Figure 6. RO and R1 are the rename registers.  They 
contain an opcode field, a target-register  field, and three 
source-register  fields. 

The map table  is a 32-entry,  6-bit-wide  table  which 
50 maintains the correspondence of an architected  register 
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to a physical  register. For instance, if the entry for  register 
12  is  38, then physical  register  38 currently contains the 
contents of architected  register 12. 

physical  registers. In the initial state, the map table  is 
initialized to identity and the remaining registers are 
placed on the free  list.  Since there are 40 physical 
registers, the FL can contain a maximum of eight  entries. 
The FL is maintained as a circular queue and uses a head 
pointer and a tail pointer. 

those  physical  registers  which are being  used by 
instructions in the IDB or decode  phases, and will 

The free  list (FL) contains a list  of currently unassigned 

The pending-target return queue (PTRQ) contains 
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become  free  as  soon as these instructions pass  decode.  It 
also  has a maximum size  of 8. Like the FL, it is 
maintained as a circular queue with  head and tail 
pointers. It  also  has an additional pointer. The release 
pointer keeps  register  tags on the PTRQ until all prior 
arithmetic instructions which could  have  required the 
data in the corresponding  physical  register  have  decoded. 

The decode  stage contains floating-point arithmetic 
instructions. The instruction-decode  buffers  (IDB)  buffer 
instructions which  have  been renamed but which cannot 
enter decode.  They allow the fixed-point unit to run 
ahead of the floating-point arithmetic pipeline. The 
decode and IDB  registers  each contain load-count (LC) 
and store-count  (SC) fields. When an instruction decodes, 
the LC  field  is  used to increment the release pointer for 
the PTRQ, in order to release  physical  registers to the 

free  list.  In a similar way, the SC  field increments the 
release pointer of the store queue to allow  floating-point 
stores to be  performed. 

The BUSY and BYPASS  registers contain the physical 
register number of the floating-point instruction currently 
in the first and second  execution  stages. If any register 
field  of an instruction in decode compares with the 
BUSY  register, it is  prevented from decoding. If a 
source field compares with the BYPASS  register, the data 
is  read  from the execution  pipeline and not from the 
register  file. 

The outstanding load queue (OLQ) contains the 
physical  register number of the next  floating-point  load 
whose data will return from the cache.  It stops 
instructions from decoding if they  require data which  has 
not returned from the data cache. 51 
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When  floating-point stores are renamed, they are 
placed on the pending-store queue (PSQ). This eliminates 
the need  for them to go through the floating-point  decode 
phase.  They remain on the queue until they are released 
by an arithmetic instruction decoding. Once released, 
they  may be performed  if their data is  available. 

RO and R I), what happens next depends upon the 
instruction type. 

When an instruction enters the rename phase  (registers 

Floating-point arithmetic instructions When an 
arithmetic instruction is renamed, the contents of the 
map table are not altered.  Each  5-bit architected register 
number is  replaced by a 6-bit  physical  register  tag. The 
instruction proceeds to the decoder, or, if the decoder  is 
full, to  an IDB position. If the arithmetic instruction is in 
R1,  its LC and SC  fields are set to 0. If it is in RO, these 
fields  are  set to 1 if there is a floating-point load or store 
in R1. 

Once renamed, the arithmetic instruction enters the 
decode  stage,  if the decode  stage  is empty or is  becoming 
empty; otherwise it is  placed into an IDB.  If the IDB  is 
full, the pipeline  backs up, and  the fixed-point unit is told 
to stop executing instructions. 

Once in decode, the arithmetic instruction reads out 
the contents of its physical  registers. If the contents of 
any of its  physical  registers are not valid,  because  they are 
being  loaded from memory or are being computed in the 
pipeline, the instruction remains in decode.  These 
conditions are checked by comparing each  physical 
register  field  with the OLQ and BUSY  registers. When 
the instruction can successfully  decode, it enters the 
arithmetic pipeline. The store-count field increments the 
release pointer of the PSQ to allow subsequent floating- 
point stores to be performed. The load-count field 
increments the release pointer of the PTRQ to release 
unneeded physical  registers.  These  registers are then 
placed on the free  list, as long as there are no stores on 
the store queue using this register  which  have not been 
done. 

Floating-point stores When a floating-point store enters 
the rename stage, the target  register  is renamed to a 
physical  register. The store could have  been  placed in the 
IDB or Decode  stages,  like arithmetic instructions. 
However,  since the fixed-point unit executes  fixed-point 
instructions and throws away  floating-point arithmetic 
instructions, the floating-point unit must process loads or 
stores and arithmetic instructions in parallel.  Otherwise, 
it will  slow down the fixed-point unit. Thus, if the store 
were  placed into the decoder, the decoder would  have to 
inspect  two instructions per  cycle. 

Instead, it is  placed on the pending-store queue 
52 (PSQ). It remains there until the value of the physical 
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register it is trying to store is available.  Before  leaving 
rename, the store causes the store-count field  of the most 
recent prior arithmetic instruction to be incremented. 
This is  because the last instruction which could have 
produced the result is that arithmetic instruction 
(or a load). The store count keeps the store from being 
performed until all prior arithmetic instructions have 
decoded. 

point unit is  notified that  data is  available),  several 
conditions must be met. First, the store must be at the 
head  of the PSQ,  since stores are done  in order. The 
physical  register  tag  of the store at  the head  of the queue 
must not be coming from the pipeline, or be  busy from 
memory. These conditions are checked  by comparing the 
physical  register  tag  with the contents of the BUSY tag 
and  the OLQ. Once the  data is valid, the store is 
performed. If the give-back bit is  set  (see  below), the tag 
is returned to the free  list. 

A few more words about floating-point stores are in 
order. While the fixed-point unit generates the address for 
a floating-point store, it must know  when the  data will  be 
available.  Again, in many coprocessor  schemes, it would 
simply  wait  for the floating-point unit to produce the 
data  and stop executing subsequent instructions. The 
RISC System/6000 uses a store-data buffer similar to that 
of the System/360 Model 9 1 [ 161 to allow the fixed-point 
unit to proceed to execute subsequent instructions. It 
works in  the following  way. 

After generating the address for a floating-point store, 
the fixed-point unit places the address in a pending-store 
queue. When the floating-point unit removes the store 
from the store queue, it places the data in a data buffer 
on the floating-point chip, and informs the fixed-point 
unit that the  data is  available. Now that  the  data  and 
address are available, the fixed-point unit  can perform 
the store on any subsequent cycle. 

Floating-point loads A floating-point load, since it 
defines a new semantic value  for the architected register, 
causes the  map table to be updated. When a load enters 
the rename stage, the  map table is  accessed  for the target 
register. The tag  stored there is placed on the PTRQ. It 
cannot be returned immediately to the free  list  since 
there may  be pending floating-point arithmetic and store 
instructions which  still  need the value in that physical 
register. The tag at  the head of the free  list  is written into 
the map-table entry. If there are  no free  tags, the fixed- 
point unit is informed to stop executing instructions. 

The new physical  register  tag  is then placed on the 
OLQ, and the LC  field  of the most recent prior 
arithmetic instruction is incremented. 

Tags are returned to the free  list from the PTRQ in the 
following  way. The contents of a physical  register  become 

Before the store is actually performed (before the fixed- 
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unused  (free) when the last arithmetic instruction or store 
referencing that physical  register  has  been  performed. For 
arithmetic instructions, this occurs when they  complete 
decode. For stores,  this  occurs when they are removed 
from the store queue. When a load  causes a new  logical- 
to-physical  mapping,  the  last instruction which could 
have  used that physical  register  was the most  recent 
arithmetic instruction, or  floating-point  store. (It may 
actually  never  have  been used for  many,  many 
instructions.) Thus, when the most  recent prior 
arithmetic instruction has  decoded or store has  been 
performed, that physical  register can be returned to the 
free  list. 

Several  mechanisms  could  have  been used to 
determine this. The most  straightforward  would  have 
been to compare the old  physical  register  tag to all 
outstanding register  fields  of instructions in an IDB or the 
decoder, and to stores on the store queue. The last 
instruction to have  matched  would then be told to return 
the tag to the free  list  when it decoded or was  removed 
from the store queue. This would  have  required up to 20 
comparators, and 20 latch  bits to ensure that the 
instruction returned the register. 

An alternate method was developed.  First, it is 
sufficient to let  only arithmetic instructions return tags to 
the free  list,  if,  before  doing so, they  check  (via 
comparators) the contents of the store queue to ensure 
that there are no pending  stores of this physical  register. 
Then, each time a load  renames a register, the old  register 
tag  is  placed on the PTRQ. A counter, the load count 
(LCT) associated  with  each arithmetic instruction, is 
incremented. When the load  decodes, the LCT  field  is 
used  by the PTRQ controls to release that number of tags 
to the free  list. This method  eliminates the need  for 
comparators with the IDB and decode  stages.  However, 
comparators and a bit are required  for  each  store-queue 
entry. Table 1 illustrates the procedure. 

The operation of this example  is  shown in Figure  6.  In 
Figure 6(a), the map table  is  initialized to identity, and all 
physical  registers are free. The decoder,  IDB, arithmetic 
pipeline,  OLQ, and PSQ are empty. A floating-point add 
and a store are in  registers RO and R 1. They are 
renamed, and pass to the decoder and the PSQ. The 
store-count field  of the add is  set to 1. 

In  Figure 6(b) the floating-point  add  has  passed  from 
rename into decode,  since  all  required  physical  registers 
are  free.  Its store count increments the release pointer of 
the PSQ to release the store. A floating-point  load and a 
multiply  are in rename. The load  causes a new mapping 
for  architected  register 3. It places the old  mapping  for 
register 3 on the PTRQ, and replaces it with  register 32 
from the free  list. The release pointer for the PTRQ will 
automatically  be incremented, since the add in decode 
(the most  recent arithmetic instruction) will  read out the 
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Table 1 Register renaming for floating-point load instructions. 

Original stream Rename table Free Renamed PTRQ 
head stream 

FST R3 
FADD R3, R2, R1 (1, 1); (2, 2); (3,  3) 32 R3, R2, R1 

FLD R3 (3, 3) 32 PR32 3 
FMUL R6, R3, R1 (1, 1); (3, 32); (6,  6) 33 R6, R32, R1 
FSUB R2, R6, R2 (2, 2); (6, 6); (2, 2) 33 R2, R6, R2 
FLD R3  (3,321 33 PR33 32 

(3, 3) 32 R3 

old  value. The load will  be  placed  on the OLQ. The 
multiply will  be renamed, after which it passes into 
decode,  with its LC and SC  fields  set to 0. 

During the next  cycle  [Figure  6(c)], the floating-point 
add is  in execution. Its target  register  is in the BUSY 
register. The store of  register  3,  while  released, cannot be 
performed  since the data is  being  produced by the add 
and is not yet available. The load  is on the OLQ, and the 
data will return from the data cache during this cycle. 
The PTRQ controls will try to place  physical  register 3 
on the free  list.  However, the store still  needs the old 
value. The give-back  bit  for the store will  be set. The 
multiply  is in decode and will decode during this cycle, 
since  there are no register  interlocks. The last  two 
instructions, the subtract and the final  load, are in 
rename and will  proceed into the decoder and the OLQ 
during the next cycle. The load count field  of the subtract 
is  set to 1. 

During the next  cycle  [Figure 6(d)], the store can  be 
removed,  since the data is  available  from the add. Since 
its  give-back  bit  is  set, it will also return the tag to the 
free  list. The last  load  is on the OLQ. The subtract must 
wait  for the multiply to execute and will remain in 
decode. 

During the next cycle [Figure  6(e)], the subtract can 
decode,  releasing  register  tag  32 on the PTRQ. It  is 
returned during the next  cycle. One cycle later [Figures 
6(f) and 6(g)], the subtract completes  execution. 

control mechanism, it elegantly  allows  fixed- and 
floating-point instructions to be overlapped to take 
maximum advantage of  each  execution unit. In 
conjunction with the fixed-floating-point synchronization 
scheme,  precise interrupts are maintained between  fixed- 
and floating-point  operations. 

0 Maintaining  the consistency of the instruction stream 
In a highly overlapped  machine, interrupts may be 
precise or imprecise. An interrupt is  precise  if,  when it is 
processed, no subsequent instructions have  begun 
execution and all prior instructions have  completed. 
Precise interrupts force the machine to preserve the view 
of a machine which  executes one instruction at a time, 

While  register renaming appears to be a fairly  complex 
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finishing it before  processing the next one. Imprecise 
interrupts, on the other hand, allow the processor to leave 
the instruction stream in the neighborhood of the 
interrupt in a fragmented, but recoverable,  state. For 
instance, all prior instructions may  have  executed, and 
some  subsequent instructions may  have  begun  execution 
and updated  architected  registers.  In this case, it may not 
be  possible to re-execute them. Imprecise interrupts 
therefore require the architecture to provide a means for 
reconstructing the instruction stream around the point of 
the interrupt, so that post-interrupt processing  software 
can  recreate the sequential state of the machine. 

Due to the pipeline  complexity of the AMERICA 
machine organization, it would  have  been  difficult to 
architect a facility  for  handling interrupts in an imprecise 
fashion,  which  would  have accounted for the many 
possibilities  for instruction execution  past the point of an 
interrupt. Therefore,  precise interrupts were  specified for 
all  program-generated interrupts. 

In  order to guarantee precise interrupts, each interrupt 
type was analyzed, and a means of handling each in a 
precise  fashion  was  developed.  External, asynchronous 
intcrrupts were handled by stopping instruction dispatch 
and waiting  for the pipeline to drain. If an instruction in 
the pipeline  caused an interrupt, that interrupt was taken. 
Other interrupt conditions, such as invalid instructions, 
were detected in the ICU during the dispatch cycle, 
causing a wait  for the pipeline to drain in a similar 
fashion. 

interrupts resulting from the execution of load,  store, or 
trap instructions by the fixed-point unit were  precise. 
These  three  types of instructions are termed interrupt- 
causing (IC) instructions, although they are not the only 
instructions which  can  cause interrupts. 

The fixed-floating-point synchronization scheme 
ensures that precise interrupts are maintained between 
the fixed- and floating-point units. Since no floating-point 
instructions could  cause interrupts in AMERICA, the 
remaining  need was to synchronize the branch-processing 
unit with the fixed-point unit. 

From the pipeline structure it is apparent that branches 
and LCR operations executed by the branch unit change 
the count, link, and condition registers  before the branch 
unit is informed that a prior IC instruction has  caused an 
interrupt. Therefore,  any  changes to these  registers must 
be undone to reflect their state at the time of the 
interrupt. In addition, the address of the IC instruction 
must  be  saved in SRRO so that interrupt-handling 
software can process it. 

The program counter stack  (PCS)  mechanism was 
developed to handle  this.  Each  cycle, as instructions are 
dispatched to the execution units, logic-records the 
relationship of branches and LCR instructions which 

The following  mechanism  was  developed to ensure that 
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modify the count, link, and condition registers to IC 
instructions. The addresses of IC instructions are also 
recorded on a stack. If a branch or LCR instruction is 
executed  before a prior IC instruction has  been  executed, 
the old  value of the count, link, or condition register is 
saved on a backup stack  for that register. 

As IC instructions are executed by the fixed-point unit, 
entries are removed from the PCS; old entries for the 
count, link, or condition registers are removed from their 
backup  stacks,  since no interrupt has  occurred.  When an 
IC instruction causes an interrupt, the head entry on  the 
backup stacks is written to  that register, and the address 
of the IC instruction saved on the PCS is saved in SRRO. 
Consider the following  example: 

1000 L  ;Load  which  will  cause  an  interrupt 
1004 CRAND ;LCR instruction  which  modifies CR 
1008 BL ;Branch  and  Link  changing  LR 

Assume that these  three  instructions  are  dispatched  during 
one  cycle.  The  address  of the  load, 1000, is  recorded  on the 
PCS, and  the  load  is  sent to the  fixed-point unit. The  old 
value of the  condition-register field  modified  by the CRAND 
instruction is  recorded  on  the  CR  backup  stack.  The  branch- 
and-link  updates  the  value  of  the  link  register to lOOC  hex, 
and  causes  the  old  value  of  the  link  register to be  placed  on 
the  link-register  backup  queue.  Status  bits  are  set  which 
reflect  the  fact that changes to  the CR and LR  were  made 
after an  interrupt-causing  instruction.  When  the  load 
interrupts  several  cycles  later,  the  PCS  is  accessed.  The 
address  stored  there  is  placed  in SRRO. The  status  bits  cause 
the values  for  the  link  register  and  condition  register to be 
restored,  erasing  any  changes to  the  machine  state. 

Design of the IBM RlSC System/6000 processor 
During the implementation of the RS/6000  processor, 
several notable changes were made to the processor 
specification.  Additionally,  several areas of the machine 
were developed in greater  detail. 

Instruction cache 
As originally  specified, the instruction-fetching 
mechanism  could  fetch four instructions per cycle  as  long 
as  they  were  within the first 13 instructions of a cache 
line (out of a total of  16).  While implementing the array 
access  logic, it was noted that the same interleaving 
principle  could  be  applied to the cache  directories. By 
splitting the cache  directories into even and odd 
components and supplying a “row-incrementation 
feature” to the even  directory, four instructions could  be 
fetched  even if two  cache lines were  crossed.  If the first 
instruction of the group was in  an even  cache  line, the 
odd directory  could  be  accessed  with the same row 
address to search  for the remaining instructions in the 
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successor  cache  line.  Similarly, if the first instruction was 
in an odd cache  line, the next  cache  line  would be 
contained in the next  congruence  class in the even 
directory,  requiring that the row address  be incremented. 
This feature complicated the hit  logic and replicated 
some comparators, but was introduced at no cycle-time 
penalty. As a result,  assuming that both lines are present 
in a cache, four instructions can always  be  fetched  as 
long  as the lines are in the same 4-Kbyte virtual page. 
This case could  also  have  been  handled by interleaving 
the instruction TLB into even and odd pages, but this 
was not worth the implementation cost. 

way set-associative  cache,  which  has a 64-byte (16- 
instruction) line size. The size of the instruction cache 
was limited by that which could fit on the 12.7-mm- 
square  chip used for implementing the RS/6000 
processors.  With an 8-Kbyte instruction cache, a miss 
ratio of  less than 2% is expected. A 64-byte  line size  was 
chosen  for three reasons. Simulation of  IBM System/370 
processors  with this line  size  indicated that larger  lines 
tended to increase  miss ratios at this cache  size. The 
package  available dictated that the reload bus from 
memory be  two instructions wide.  With a 64-byte  line 
size,  eight  cycles  over  this bus are required to reload a 
cache  line  when a miss  occurs. A 128-byte  line  would 
require 16  cycles, and would  tie up the instruction cache 
for too long. A cache with 32-byte  lines  requires  twice the 
directory  space of a cache  with  64-byte  lines. A two-way 
set-associative  cache was used,  since the behavior of a 
direct-mapped  cache  is  worse, and the performance gain 
of a four-way  set-associative  cache  is  marginally superior 
to that of a two-way set-associative  cache. Also, properly 
designed, the two-way  set-associative  cache  would not 
lengthen the machine cycle,  since  there are many other 
paths in other pipeline cycles  which  could  equally  well 
determine the cycle time. 

Branch processing 
One path that was known to be critical in AMERICA 
was the condition-code-setting path from the fixed-point 
unit to the branch unit. In one cycle the fixed-point unit 
was to execute a compare-type instruction and transmit 
the resulting condition code to the ICU  chip,  where the 
branch-resolution logic  would determine the outcome in 
time to switch the instruction stream. The time taken to 
resolve the branch and perform the stream  switch  took 
longer than originally anticipated, so it was  delayed until 
the next  cycle.  As a result, the compare-branch penalty 
was  increased to three cycles from two  cycles, as 
illustrated  in  Figure 4.  Nevertheless,  in the Dhrystone 1.1 
benchmark [ 171,  of 64  branches in the inner loop,  only 
20  cause  any  delay. The total delay  is  46  cycles, so that 
branches are executed at the rate of 46/64 = 0.72  cycles 
per instruction. This is a considerable improvement over 

The instruction cache  is  organized as an 8-Kbyte,  two- 
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the 1 + cycles per branch instruction typical of most 
current RISC  processors. 

Condition register 
One of the prime examples of  how the 80 1 architecture 
was changed to support concurrent execution of many 
instructions is embodied in the condition register (CR) 
[ 11. It contains eight  fields,  each of which can be 
designated to hold the results of a compare-type 
operation. It is  located in the instruction cache and 
branch-processing unit. By having one interlock bit per 
field,  eight outstanding operations can be maintained. 
When an instruction is  dispatched to the fixed- or 
floating-point units, which sets CR field 0, the 
corresponding  interlock bit is  set. Subsequent instructions 
which  try to read or to set that field remain in the 
instruction buffers. Eventually the fixed-point or floating- 
point unit executes the instruction, and the ICU is 
informed via the condition-register bus from that unit. 
Then, the interlock bit  is  reset.  Since instructions which 
set the condition register can be  dispatched conditionally, 
and canceled, any corresponding  condition-register 
interlock bits which  were  set must be  reset. A similar 
reset occurs  for compares which are dispatched after IC 
instructions that interrupt. This is  performed and 
maintained by the PCS. 

dedicated to resolving  condition-register interlocks in the 
dispatch and PCS  logic became too large. Four interlock 
bits were introduced, so that four outstanding operations 
to the condition register  could  be maintained. 

During the implementation, the amount of  space 

0 Synchronization ofjixed-point and  floating-point  units 
The design  of the fixed-point unit was such that 
instructions were  held  off in the execution  phase rather 
than in the decode  phase. As a result, the decode  hold 
line shown in Figure 5 was not necessary.  Also, the 
hold/cancel  signal  generated by the fixed-point unit was 
too late to make a chip crossing to the floating-point unit 
in one cycle.  Therefore, instructions were permitted to 
enter floating-point  decode,  where  they  would  be  held off 
and canceled. This meant that, potentially, one rename 
cycle  would  have to be undone. Furthermore, many bugs 
were found in the synchronization scheme, so a counter 
was added to the fixed-point unit. Each time the floating- 
point unit shifted instructions out of rename, the shift 
amount was transmitted to the fixed-point unit. The 
fixed-point unit subtracted the number of instructions il 
shifted the value of the difference  specified the buffer 
position in the fixed-point unit of the instruction which 
was in RO in the floating-point unit. 

Register renaming and floating-point control 
Originally both floating-point arithmetic instructions and 
floating-point  loads  caused new  logical-to-physical 
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register mappings for their targets. Remapping  arithmetic 
instructions complicates the  renaming logic, since more 
ports are required on  the PTRQ and  the free list. It is 
only useful  if arithmetic  instructions  can be executed out 
of order.  In a sequence such as 

FDlV FRO, ;FRO gets divide 
FST FRO, ;store FRO 
FADD FRO, ;FRO used for add result 

the floating-point add could proceed. Sequences like this 

would not occur frequently, since the RS/6000 processor 
has 32 floating-point registers. Since the floating-point 
unit executed floating-point arithmetic  instructions in 
sequence, there was no need to  remap floating-point 
arithmetic instructions. This simplified the remap logic 
by requiring fewer ports on  the AVRQ and  PTRQ,  as 
well as reducing the  control logic complexity. 

System/6000 uses the IEEE floating-point arithmetic 
format, while AMERICA used the IBM System/370 
format.  This necessitated several changes to  the controls. 

Another significant change was that  the RISC 
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The most  significant was that floating-point stores were 
required to proceed through the floating-point decoder, 
so that any normalizations were  performed  properly. This 
is described in more detail in [2]. This degraded  floating- 
point performance substantially in peak  floating-point 
loops.  For example, using the 2D graphics example 
described  above, the RSf6000 machine takes seven  cycles 
per loop iteration as opposed to four in AMERICA. On 
balance,  however, this degradation is  less  severe;  while 
the potential AMERICA  LINPACK performance was 
approximately 15 MFLOPS, the RISC Systemf6000 
achieves  nearly 11 MFLOPS. 

Fixed-point execution, data-cache access, and address 
translation 
The RSf6000 FXU is diagrammed in Figure 7. The basic 
80 1 fixed-point execution-unit organization was  sufficient 

to provide an instruction execution rate close to one 
cycle  per instruction. Thus, it was not a primary area of 
focus  for improvement. However, some attention was 
given to making loads and stores operate quickly by 
placing the data-cache TLBs (translation look-aside 
buffers) and  the data-cache directories on the fixed-point 
chip. Initial studies indicated that  the following  pipeline 
structure could be  utilized. Starting at  the beginning  of 
the execution cycle, the address is  generated  by the ALU. 
This requires approximately one-half  cycle. In the second 
half  cycle, the segment  registers are accessed, the virtual 
address generated, and  the TLB and directories are 
searched in parallel.  At the end of the cycle, it is known 
whether or  not  the access  resulted in a hit or miss, and 
whether or  not  the access  was permitted or caused a data 
storage interrupt. Also, during the last  half  cycle, the 
address  is transmitted across a chip boundary to the 57 
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data-cache  arrays and latched. This is  diagrammed in 
Figure 8. 

At the beginning of the next  cycle, the late-selects are 
generated to select one of the four  sets in the four-way 
set-associative data cache, and are sent to the data-cache 
chips.  In  parallel, the data-cache arrays are accessed to 
provide  one  word  from  each of four  sets. The late-selects 
then select one word,  which  is transmitted to the fixed- 
point unit. It  is formatted (sign-extended, rotated) as 
necessary,  bypassed to the ALU and shifter, and latched 
for  writing into the register  file during the next  cycle. 

This cache  organization  therefore  provides data in  two 
execution cycles.  An instruction using a register  being 
loaded  must  wait one cycle  before  being  executed.  About 
two thirds of the time, the load can be scheduled back  by 
the compiler, and this delay can be  covered. 

Summary 
The IBM RISC System/6000 machine organization uses 
multiple  execution units to achieve  high  performance. A 
separate instruction cache  which  fetches four instructions 
per  cycle  effectively eliminates pipeline starvation. A 
robust  branch-processing unit removes the execution 
pipeline  penalties of most branch instructions without 
using a branch history  table or elaborate branch- 
prediction  mechanisms. By overlapping the execution of 
floating-point  loads and stores  with  floating-point 
arithmetic operations, high floating-point  performance  is 
achieved.  Precise interrupts are maintained to simplify 
system-interrupt  handlers. The result  is a powerful, 
robust  processing  platform  which  gives  high  system 
performance  across a wide spectrum of application 
programs. 
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