Virtual Memory

PETER J. DENNING

Princeton University,* Princeton, New Jersey
¥ ,

The need for automatic storage alloeation arises from desires for program
modularity, machine independence, and resource sharing. Virtual memory is an
elegant way of achieving these objcctives. In a virtual memory, the addresses a
program may use to identify information are distingnished from the addresses the
memory system uses to identily physical storage sites, and program-generated
addresses are translated antomatically to the corresponding machine addresses.
Two pringipal methods for implementing virtual memory, segmentation and
paging, are compared and contrasted. Many contemporary implementaiions have
experienced one or more of these problems: poor utilization of storage, thrashing,
and high costs associated with loading information into memory. These and
subsidiary problems are studied from a theoreiic view, and are shown to be
controllable by a proper combination of hardware and memory management

policies.

Key words and phrases:

virtual memory, one-level store, memory allocation,

storage allocation, dynamie storage allocation, segmentation, paging, replacement
algorithms, storage fragmentation, thrashing, working set

CR categories: 4.3, 6.2

INTRODUCTION

From the earliest days of electronic com-
puting it has been recognized that, beeause
fast-aceess storage is so expensive, computer
memories of very large overall capacity must
be organized hierarchically, comprising at
least, two levels, “main memory” and “auxil-
iary memory.” A program’s information
(i.e. instruction code and data) can be
referenced only when it resides in main
memory ; thus, information having immedi-
ate likelihood of being referenced must
reside in main memory, and all other infor-
mation in auxiliatry memory. The storage
allocation problem is that of determining, at
each moment of time, how information shall
be distributed among the levels of memory.

During the carly years of computing,
each programmer had to incorporate storage
* Department of Eleetrical Engineering. This work

was supported in part by National Aeronautics
and Space Administration Grant NGR-31-001-170.

allocation procedures into his program
whenever the totality of its information was
expected to exeeed the size of main memory,
These procedures were relatively straight-
forward, amounting to dividing the program
into a sequence of ‘‘segments’”” which would
“overlay” (i.c. replace) one another in main -
memory. Since the programmer was inti-
mately familiar with the details of both the
machine and his algorithm, it was possible
for him to devise efficient “overlay se-
quences’” with relative ease.

The picture began to change markedly
after the introduction of higher level pro-
gramming languages in the mid-1950s. Pro-
grammers were encouraged to be more
concerned with problem-solving and less
concerned with machine details. As the
complexity of their programs grew, so grew
the magnitude of the storage overlay prob-
lem. Indeed, by the late 1950s it was clear
that program operating efficiency could
suffer greatly under poor overlay strategies,

Computing Surveys, Vol. 2, No. 3, September 1970

154 .

Peter J. Denning

CONTENTS

Iniroduction 153-157
DBasic Svstem Hardware 157
Definition of Virtual Memory 157-159

Manual Versus Autematic Memory Management 159-
160

Implamentation of Virtual Memory 160-165

Segmentation
Paging
Segmentation and Paging

Storage Utilization 165-172
Placement Policies
Qverflow and Compaction
Fragmentation
Page Size
Compression Factor

Comparison of Paged and Nonpaged Memories 172

Demand Paging 173-177
Paging Drum
Cost

Program Behavior aud Memory Management 177183
Replacement Algorithms
Optimal Paging Algorithms
The Principle of Locality and the Working Set Model
Multiprogramming and Thrashing

Program Structure 4]83—184
Hardware Support 184-186
Conclusions 186-187
References 187189

Computing Surveys, Vol. 2, No. 3, September 1970

and it was generally agreed that storage
allocation had become a problem of central
importance. But, since programmers were
shielded from machine details by program-
ming languages, it was inereasingly diffi-
cult to persuade them to expend the now
relatively large effort required o devise good
overlay sequences. This situation led to the
appeal of computers having very large main
memories [M5].

Two divergent schools of thought about
solutions emerged. These have come to be
known as the static (preplanned) and dy-
namic approaches to storage allocation.
These two approaches differ on their assump-
tions about the most fundamental aspect, of
the storage allocation problem, prediction,
both (I) of the availability of memory
regources, and (2) of certain properties of a
program’s ‘‘reference string,’”’ i.e. its se-
quence of references to information.

The static approach assumes that (1) is
either given or can be prespecified, and that
(2) ean be determined either by preprocess-
ing the program and recording its reference
string, or by examining the structure of its
text during compilation [C5, K1,01, X1, R4].
The dynamic approach assumes that (1)
cannot (or ought not) be prespecified, and
that (2) is determinable only by observing
the program during execution; the memory

" space in use by a program should grow and

shrink in aceordance with the program’s
needs [S1]. Computer and programming
systems during the 1960s have so evolved
that, in a great many cases, neither memory
availability nor program behavior are suffi-
ciently predictable that the static approach
can provide a reasonable solution. The
reasons for this can be classed as program-
ming reasons and system reasons.

To understand the programming reasons,
it is useful to distinguish two concepts:
address space, the set of identifiers that may
be used by a program to reference informa-
tion, and memory space, the set of physical
main memory locations in which information
items may be stored. In early computer sys-
tems the address and memory spaces were
taken to be identical, but in many con-
temporary systems these spaces are dis-

tinguished. This distinetion has been made
to facilitate the eventual achievement of
three objectives,

1. Machine tndependence. There is no a
priori correspondence between address
space and memory space.

The philosophy behind machine inde-
pendence is: It relieves the programmer
of the burden of resource management,
allowing him to devote his efforts fully to the
solution of his problem; it permits equip-
ment changes in the computer system with-
out forcing reprogramming; and it permits
the same program to be run at different
installations,

2. Program modularity. Programs may
be consiructed as collections of sepa-
rately compilable modules which are
not linked together to form a complete
program until execution time.

The philosophy behind program modularity
1s: It enables independent compilation, test-
ing, and documentation of the components
of a program; it makes it easier for several
programmers to work independently on
parts of the same job; and it enables the
modules constructed for one job to be used
in another, i.e. building on the work of
others [D4, D5, D1¢, D11, D12, D13,
P2 R3, W4l

3. List processing. Languages (e.g. T.1sp)
having capahbility for handling problems
involving structured data are in-
creasingly important.

As we suggested earlier, these three pro-
gramming objectives invalidate reliable pre-
dictability, upon which static storage allo-
cation is predicated. The mechanisms that
implement machine independence cannot
(by definition) cstablish a correspondence
between addresses and locations until exe-
cution time, much too late for a programmer
or a compiler to preplan memory use. Pro-
gram modularity makes it impossible for the
compiler of a module to know either what
modules will constitute the remainder of a
program or (even if it could know) what
their resource requirements might be. List
processing languages employ data strue-
tures whose sizes vary during execution and

Virtual Memory . 155
which, by their very nature, demand dy-
namie storage allocation.

The major system reasoms compelling
dynamic storage alloeation result from cer-
tain objectives arising principally in multi-
programming and time-sharing systems: (1)
the ability to load a program intoe a space of
arbitrary size; (2) the ability to run a
partially loaded program; (3) the ability to
vary the amount of space in use by a given
program; (4) the ability to “relocaie” a
program, ie. to place it in any available
part of memory or to move it around during
execution; (5) the ability to begin running a
program within certain deadlines; and (6)
the ability to change systemn equipment
without having to reprogram or recompile.
Program texts prepared under the static
approach require that the (rather inflexible)
assumptions about memory availability, on
which they are predicated, be satisfied be-
fore they ean be run. Such texts are generally
incompatible with these six objectives.

Even within the dynamic storage alloca-
tion camp there was disagreemeni. One
group held that the programmer, heing best
informed about his own algorithm’s opera-
tion, should be in complete control of storage
allocation. He would exerecise this control
by calling on system routines whieh would
“allocate’™ and ““deallocate” memory regions
on his behalf. This thinking is at least
partially responsible for the block strue-
ture and stack implementation of the
ArcoL programming language (1958) and
subsequently the Avgor-oriented Burroughs
computers. It has also influenced the imple-
mentation of list-processing languages [BS,
C4, K4].

The other group in the dynamic storage
allocation camp advocated a very different
approach: auiomatic storage allocation, Their
thinking was influenced by their belief
that c¢omplicated programs beget storage
allocation problems so complicated that
most programmers could not afford the time
to manage memory well, and most particu-
larly by their belief that multiprogram-
ming would soon be a concept of great
importance. Because the availability in
main memory of particular parts of address

Computing Surveys, Vol, 2, No, 3, September 1970

156 . Peler J. Denning

space may be unpredictable under multi-
programming, 2 programmer’s ability to
allocate and deallocate storage regions may
be seriously impaired. Realizing that the
principal source of difficulty was the small
size of programmable main memory, this
group advanced the concept of a ope-level
store. In 1961 a group at MIT [M5] pro-
posed the construetion of a computer having
several million words of main memory (an
amount then considered vast) so that the
storage allocation problem would vanish.
Economic reasons prevented this from ae-
tually being realized.

In 1961 the group at Manchester, Eng-
land, published a proposal for a one-level
store on the Atlas computer [I'3, K3, a
proposal that has had profound influence
on computer system architecture. Their
idea, known now as virtual memory, gives
the programmer the #lusion that he has a
very large main memory at his disposal,
even though the computer actually has a
relatively small main memory. At the heart
of their idea is the notien that “address”
is a concept distinet from “physical loca-
tion.” It becomes the responsibility of the
computer hardware and software auto-
matically and propitiously to move infor-
mation into main memory when and only
when it is required for processing, and to
arrange that program-generated addresses
be directed to the memory locations that
happen to contain the information addressed.
The problem of storage aliocation (for ob-
jects represented in virtual memory) thus
vanishes eompletely from the programmer’s
purview and appears in that of the com-
puter system. By basing memory use on
system-observed actual use of space, rather
than (poor) programmer estimates of space,
virtual memory is potentially more efficient
that preplanned memory allocation, for it
s a form of adaptive system.

By the mid-1960s the ideas of virtual
memory had gained widespread acceptance,
and had been applied to the internal design
of many large processors—IBM 360/85 and
195, CDC 7600, Burroughs B6500 and later
series, and GE 645, to name a few. The
fact of its acceptance testifies to its general-
ity and elegance.

Computing Surveys, Vol 2, No. 3, Septemnber 1670

The foregoing discussion has summarized
the ideas leading fo the virtual memory
concept. By distinguishing between ad-
dresses and locations, and automating stor-
age alloeation, virtual memory facilitates
certain programming and system design
objectives especially important in multipro-
gramming and time-sharing computers. The
discussion in the remainder of this paper
divides into two general areas: the mecha-
nisms for effecting virtual memory, and the
policies for using the mechanisms. The prin-
cipal mechanisms are: segmentalion, under
which the address space is organized into
variable size ‘“segments” of contiguous
addresses; and paging, under which the
address space 1s orgamized into fixed size
“pages” of contiguous addresses. We shall
compare and contrast these two mecha-
nisms and show why svstems using some
form of paging are predominant.

Although it has some very important
advantages, virtual memory has not been
without its problems. There are four of
particular interest. (1) Many programmers,
in their illusion that memory is unlimited,
are unduly addicted to the old idea that time
and space may be traded, in the sense
that a program’s running time may be re-
duced if there is more programmable
memory space available. But space in a
virtual memory may be an illusion; un-
necessarily large and carclessly organized
programs may generate excessive overhead
in the automatic storage allocation mecha-
nism, inevitably detracting {rom the effi-
ciency of program operation. Nonetheless,
as programmers and language designers
gain experience with virtual memory, this
problem should disappear. (2) Many paged
systems suffer severe loss of usable storage—
“fragmentation”—because storage requests
must be rounded up to the nearest integral
number of pages. (3) Many time-sharing
systems using “pure demand paging” (a
policy under which a page is loaded into
main memory only after an attempted
reference to it finds it missing) experience
severe costs as a program’s working pages
are loaded singly on demand at the start
of each time quantum of execution. (4)
Many svstems have shown exfreme sensi-

tivity to ‘‘thrashing,” a phenomenon of
complete performance collapse that may
occur under multiprogramming when mein-
ory is overcommitted. We shall demonstrate
that these problems may be controlled if
virtual memory mechanisms are governed
by sound strategies.

The reader should note that these four
observed inadequacies of many contem-
porary systems result not from ill-conceived
mechanisms, but from ill-conceived policies.
These difficulties have been so publicized
that an unsugpecting newcomer may be
led erroneously to the conclusion that vir-
tual memory is folly. Quite the contrary;
virtual memory iz destined to oceupy a
place of importance in compuling for many
years to come.

BASIC SYSTEM HARDWARE

As our basic computer system, we take that
shown in Figure 1. The memory system
consists of two levels, main memory and
auxiliary memory. One or more processors
have direct aceess to main memory, but not
to auxiliary memory; therefore information
may be processed only when in main mem-
ory, and information not being processed
may reside in auxiliary memory. From now
on, the term “memory” gpecifically means
“main memory.”

There are two time parameters of interest
here. The first, known as “memory reference
time,” is measured between the moments
at which references to items in memory are
initiated by a processor; it is composed of
delays resulting from memory cyele time,
from instruection execution time, from ‘‘in-
terference” by other processors attempting
to reference the same memory module
simultaneously, and possibly also [rom
switching processors among programs. We
take the average memory reference time to be
A. The second time parameter, known as
“trangport time,” is the time required fo
complete a transaction that moves infor-
mation between the two levels of memory;
it consists of delays resulting from waiting
in queues, from waiting for the requested
information transfer to finish, and possibly

Virtual Memory . 157

PROCESSORS

AUXILIARY
MEMORY

4 MaN T
. "1 meEmoRY

4

T1c. 1. Basic system hardware

also from waiting for rotating or movable
devices to be positioned (“latency time”).
We take the average transport 1ime to be T.
Since main memories are ordinarily elee-
tronically accessed and auxiliary memaries
mechanically accessed, A is typically 1
psec and T is typically at Jeast 10 msec.
Thus speed ratios (T/A) in the order of 104
Or rore arc not uneommon.

Main memory may be regarded as a
linear array of “loeations,’” each serving
as a storage site for an information item.
Fach location is identified by a unigque
“memory address.” If the memory contains
m locations, the addresses are the integers
0,1, ---, m — 1. If o is an address, the
item stored in location « is called the “‘con-
tents of ¢, and is denoted c¢(e). Under
program control, a processor generates a
gsequence of “references” to memory loea-
tions, each consisting of an address and a
command to “fetech’ from or “store’. into
the designated location.

DEFINITION OF VIRTUAL MEMORY

As mentioned earlier, virtual memory may
be used to give the programmer the iilu-
sion that memory is much larger than in
reality. To do thig, it i3 necessary to allow
the programmer to0 use a set of addresses
differentt from that provided by the memory -
and to provide & mechanism for translating
program-generated addresses into the cor-
reet memory location addresses. An address
used by the programmer ig ¢alled a “name”
or a ‘“virtual address,” and the get of such
names is called the address space, or name
space. An address used by, the memory is
called a “location” or “memory address,”

Computing Surveys, Vol 2, No. 3, Seplember 1970

158 . Peter J. Denning

N
[+]

! [l M

— P 3

}
]

pr

m-i

— MEMORY SPACE
ADDRESS SPACE

Fra. 2. Mapping from name to memory space

and the set of sueh locations is called the
memory space. For future reference we
denote the address space by N = {0, 1,
-»-, n. — 1} and the memory space by
M=10,1, ---,m — 1} and we assume
n > m unless we say otherwise.

Sinee the address space is regarded as a
collection of poleniially usable names for
information items, there is no reguirement
that every virtual address ‘“represent” or
“gontain” any information,

The priee to be paid for there heing no a
priori correspondence between virtual ad-
dresses and memoryv locations is increased
complexity in the addressing mechanism.
We must incorporate & way of associating
names with locations during execution.
To this end we define, for each moement of
time, a function f: N — M U {¢} such that

fa) = o if item a is in M at location o,
¢ il item o is missing from M.

This funetion f iz known as the address map,
or the address-translation function.

For reasons given earlier, it is to our
advantage to make » much larger than m,
but thig is not necessary. Bven if n < m,
virtual storage could help with the relscation
problem [D11], i.e. that of moving informa-
tion around in memory.

- Figure 2 gives an example of a mapping
J, where a line (e, ') for ¢ in N and &
in M indicates that item a is stored in loca-
tion @, and the absence of a line indicates
that item ¢ is not present in M. Figure 3
shows how a hardware device implementing

Computing Survevs, Vel. 2, No. 3, September 1970

f could be interposed hetween the processor
and the memory to handle the mapping
automatically. Note that, by virtue of the
mapping f, the programmer may he given
the illusion that items consecutive in N are
stored consecutively in M, even though the
items may in fact be stored in arbitrary
order. This property of address maps is
known as “‘artificial contiguity” [R3].

The mapping device, when presented with
name ¢, will generate o/ = f{a} if item a is
present in M, and a misstng-iterm fault
otherwise. The fault will interrupt the
processing of the program until the missing
item can be secured from auxiliary memory
and placed in M at some location a’ (which
takes one transport time); the address map
/ is then redefined so that f(a) = o, and
the reference may be completed. Tf M is full,
some item will have to be removed to make
way for the item entering, the particular
item being chosen at the discretion of the
replacemeni rule (if item b is entering and the
replacement rule chooses the replace item a,
where o’ = f(a), then the address map is
redefined s¢ that f(b) becomes o and
f(a) becomes ¢). Contrasted with the re-
placement rule, which decides which items
to remove, are the felch rule, which decides
when an item is to be loaded, and the
placement rule, which decides where to
place an item. If no action is taken to load
an item into M until a fault for it oceurs,
the fetch rule is known as a demand rule;
otherwise, if action is taken to load an item
before it is referenced, the fetch rule is
known as a nondemand or articipatory rule.

ADORESS TRANSLATION MECHANISM

:- T e Tame 1 j,
I |
] !
- [}

! VIRTUAL MEMORY
Pnocesson: ADORESS g ADDRESS : MEMOAY
I .

OPERATION:

« loaded into VA
il ath entry of f blank, missing-item fault
o’ loaded into MA

Fie. 3. Implementation of address map

Consider briefly the implementation of
the address map f. The simplest implemen-
tation to wvisualize, called direct mapping,
is a table containing = entries; the ath
eniry contains o' whenever f{a) = o, and
is blank (i.e. contains the symbol ¢) other-
wise. If, as would normally be the case, n
is much greater than m, this table would
contain a great many (Le. n — m) blank
entries. A much more eflicient way to repre-
sent f is to create a table containing only
the mapped addresses; the table contains
exactly the pairs (a, @’) for which f(a) = &’
and no pair (a, ¢), and thus contains at
most m entries. Such a table is more com-
plicated to use; when presented with name
a, we must search until we find (a, @) for
some o', or until we have exhausted the
table. Hardware associative memories are
normally emploved for storage of these
mapping tables, thereby making the search
operation quite efficient. (An associative, or
“content-addressable,” memory is & memory
device which stores in cach cell information
of the form (&, e),where k is a “key” and ¢
an “entry.” The remory is accessed by
presenting it with a key &, if some cell con-
tains (k, ¢) for some e, the memory refurns
e, otherwise it signals ‘“not found.” The
scarch of all the memory cells is done si-
multaneously so that access is rapid.)

MANUAL VERSUS AUTOMATIC MEMORY
MANAGEMENT

The discussion in the Introduetion reviewed
the motivation for automatic storage allo-
cation from a qualitative view. Before open-
ing the discussion of methods for imple-
menting and regulating virtual memory, we
should like to motivate automatic storage
allocation from & more quantitative view.
The question before us is: How well does
automatic storage allocation compete with
manual?

Although the literature containg sub-
stantial amounts of experimental informa-
tion about program behavior under auto-
matic storage management [B3, B%, C3,
F2,F3, 4, K5, 02,82], authors have reached
conflicting conclusions. Many of these

Virtual Memory . 159
experiments addressed the question “Fow
do programs behave under given automatic
storage allocation policies?” but not the
question at hand, “How does automatic
storage allocation compare with manual?”
Experiments for the former question are
clearly of a different nature than those for the
latter. Therefore, abtempts to make in-

‘ferences about the latier from data gathered

about the former are bound to result in
conflicting conclusions. The following dis-
cussion is based on a paper by Sayre [S2],
who has summarized and interpreted the
work of Brawn and Gustavson [B9], for
these appear to be the only published works
addressing the latter question.

If the name space N is larger than the
memory space M, it is necessary to “fold”
N so that, when folded, N will “fit”’ into M.
Let g(b, t) denote the inverse of the address

map f:

_la if f(a) = b at time ¢,
gtb, 1) = {undeﬁned otherwise.

The address space N is said to be folded if,
for some b and t; < &2, g(b, &) = g(b,).
That is, there is some memory location
which has been assigned to more than
one address during the course of a program’s
execution. Between the instants ¢ and ¢,
a sequence of commands, meve out and
move in, must have heen issued, which
caused g(b, &) to be replaced by g(b, i),
The name space N is manually folded if the
programmetr has preplanned storage alloca-
tion, and has inserted the meove out and
move in commands into the program text
where needed. The name space is auto-
matically folded if the move out and move
in commands are not in the program text,
but instead are generaied by the replace-
ment, and feteh rules, respectively, of the
virtual memory mechanism. Note that
manually folded text is intended to fit into
some specific memory space of size s,
whereas the automatically folded text may
fit into any nonempty memory space.

The question before us now is: Can auto-
matic folding compete with manual folding?
It is reasonably clear that automatic {olding
should be competitive when the speed ratio

Computing Surveys, Vol. 2, Ko. 3, Sepiember 1979

160 . Peter J. Denming

T/A between main and auxiliary memory is
small; but is it competitive when T/A is
large (say, 10* or greater)? Sayre reports
affirmatively.

Brawn and Gustavson, Sayre tells us,
considered a number of programs represent-
ing a wide range of possible behaviors, and
the following experiment in a memory gys-
tem with 7T'/A in execess of 10% For a given
program, let 7,(so) denote the total running
time {(execution and transport time) when
N is folded automatically into a memory
of gize 8y, when a demand fetch rule and a
good replacement rule are in effect. Let
Twm{se) denote the total running time when
N is folded manually for a memory of size
8y . For the programs considered,

0.8 S Ta(sﬂ}/Tm(Sﬂ) g 17:
E[To(s50)/Tm(so)] = 1.21,

where E|] denotes expected wvalue. In
other words, automatic folding was (on the
average) no more than 21 percent less
efficient than manual folding.

Now, let K,(s,) denote the number of
trangports issued while the program ran
under the automatic folding conditions, and
K.n(se) denote the number of transports
under the manual folding conditions. For
the programs considered,

- 0.6 £ Ku(s0)/Knlse) £ 1.05,
BIR (30)/K w(30)] = 0.04.

Thus the automatic folder (ie. the virtual
memory) generally produced fewer moves
than the manual folder (i.e. the program-
mer). A similar result was observed by the
Atlas designers for a more restricted class of
programs [K3], The advantage of manual
folding is that, unlike virtual memory with a
demand feteh rule, processing may be over-
lapped with transports This suggests that
anticipatory fetch rules might result in
ratios To(so)/Tn{se) consistently less than
one [P1].

The experiments show also that the aute-
matic folder is robust, ie. it continues to
give good performance for memory sizes
well below the intended sq. Specifically,
Po(8)/Tr(se) was found essentially constant

Computing Surveys, Vol, 2, No. 3, September 1979

for a wide range of s, including s much less
than s, . In other words, a given program is
compatible with many memory sizes under
automatic folding, but only one under
manual.

As we shall see in the section on Program
Behavior and Memory Management, virtual
memory management mechanisms perform
most efficiently when programs exhibit good
locality, i.c. they tend to concentrate their
references in small regions of address space.
We shall define a measure of logality, the
working set of information, which will be
the smallest sef of virtual addresses that
must be assigned to memory locations so
that the program may operate efliciently.
Sayre reports that the running time under
automatic folding, T.(s)), can be wvery
sensitive to programmers’ having paid at-
tention to endowing the programs with
small working sets, and relation (i) depends
on this having been done. Should program-
mers not pay attention to this, very large
T.(s0)/Tm(se) can oceur. Sayre reports that
the costs of producing good manually folded
text appear to exceed by 25 to 45 percent
the costs for producing nonfolded text with
good locality. Thus, one can tolerate as
much as 25 percent inefficiency in the auto-
matic folding mechanism before virtual
memory begins to be less efficient than
manual folding. Relations (i) indicates this
generally is the case,

On the basis of the experimental evidence,
therefore, we may conclude that the best
automatic folding mechanisms compete very
well (and may indeed outperform) the best
manually folded texts. Virtual memory is
thus empirically justifiable.

IMPLEMENTATION OF VIRTUAL MEMORY

The table implementation for the address
mapping f described in the section on Defi-
nition of Virtual Memory is impractical,
because it would require a second memory
of size m to store the mapping table. In the
following sections we shall examine three’
methods that result in a considerable re-
duction in the amount of mapping informa-
tion that must be stored. Each method

groups information into blocks, a block
being a set of contiguous addresses in ad-
dress space. The entries in the mapping
table will refer now to blocks, which are far
less numerous than individual addresses in
address space. The first method—segmenta-
tion—organizes address spoce into blocks
(“segments”) of arbitrary size. The second
method—paging—organizes memory space
into blocks (“pages”) of fixed size. The third
method combines both segmentation and
paging.

Both segments and pages have names,
which can be used to locate entries in the
map tables. Segment names are usually (but
not, always) assigned by the programmer and
are interpreted by the software, and page
names are usually assigned by the gystem
and interpreted by the hardware. Segmenta-
tion and paging, when combined, form an
addressing system incorporating both levels
of names. Otherwise, the only essential
difference between the two schemes is
paging’s fixed block size.

Segmentation

Programmers normally require the ability
to group their information into content-
related or function-related blocks, and the
ability to refer to these blocks by name.
Modern computer systems have four objec-
tives, each of which forces the system to
provide the programmer with means of
handling the named blocks of his address
space:

o Program modularity. Itach program
module constitutes a named block which is
subject to recompilation and change at any
time.

s Varying data structures. The size of
certain data structures (e.g. stacks) may
vary during use, and it may be necessary to
assign each such structure to its own, varia-
ble size block.

e Protection. Program modules must be
protected against unauthorized access.

» Sharing. Programmer A may wish to
borrow module S from programmer B, even
though S occupies addresses which 4 has
already reserved for other purposes.

These four objectives, together with

Virtual Memory . 161
machine independence and list processing,
are not peculiar to virtual memory systems,
They were fought for in physical storage
during the late 1950s [W5]. Dynamic storage
alloeation, linking and relocatable loaders
[M3], relocation and base registers [D11],
and now virtual memory, all result from the
fight’s having been won.

The segmented address space achieves these
objectives. Address spaee is regarded as a
collection of named segments, each being a
linear array of addresses. In a segmented
address space, the programmer references
an information item by a hwo-component
address (s, w), in which s i3 a segment name
and w a word name within s. (For example,
the address (3, 5) refers to the 5th word in
in the 3rd segment.) We shall discuss shorily
how the address map must be constructed
to implement this.

By allocating each program module to its
own segment, a module’s name and internal
addresses are unaffected by changes in other
modules; thus the first two objectives may
be satisfied. By associating with each seg-
ment certain access privileges (e.g. read,
write, or instruction-feteh), protection may
be enforced. By enabling the same segment
to be known in different address spaces under
different names, the fourth objective may be
satisfied. '

Figure 4 shows the essentials of an ad-
dress translation mechanism that imple-
ments segmentation. The memory is a
linear array of locations, and each segment
i loaded in entivety into a contiguous
region of memory. The address ¢ at which
segment s begins is its base address, and the
number b of locations occupied by s is its
limit, or bound. Bach eniry in the segment
table is called a descriptor; the sth descriptor
contains the base-limit information (a, b)
for segment s if s is present in memory, and
s blank otherwise. The steps performed in
forming a, location address ¢’ from a name
space address (s, w) are shown in Figure 4.
Note that a missing-segment fault occurs
if s 1t not present in memory, interrupting
program execution until s is placed in
memory; and an overflow fault oceurs if w
falls outside the allowable limit of s. Pro-

Computing Surveys, Vol. 2, No. 3, Scptember 1970

162 . Peter J. Denning

SEGMENT TABLE ST

SEGMENT BASE LMIT DL’
w MEMORY
ADDRESS
WORD
OPERATION:

(s, w) loaded into segment and word registers
if sth entry of ST blank, missing-segment fault
if w > b, overflow fault
{a + w) loaded into MA

Fic. 4. Address translation for segmentation

tection bits (the darkened region in the
table entry of Figure 4) can be cheecked
against the type of access being attempted
(i.e. read, write, or instruction-fetch) and a
protection fault generated if a violation is
detected.

The segment table can be stored in main
memory instead of being a component of
the address translation mechanism. Figure 5
shows the operation of the mapping mecha-
nism when the segment table is in memeory
starting at location A. The segment table
is itself a segment, known as the descriplor
segment, and the segment table base register

;

SEGMENT MEMORY
ADDRESS
SEGMENT
= TABLE [e
WORD 8ASE MEMORY
REGISTER.
OPERATION:

(g, w) loaded into segment and word registers
(A - 3) loaded into MA

¢4 -+ s) fetched into MR

if MR blank, missing-segment fault

a := base field of MR

b := limit field of MR

if w > b, overflow faulg

(2 + w) loaded into MA

Fi1s. 5. Segmentation with mapping table in mem-
ory

Computing Surveys, Vol. 2, No. 3, S8eptember 1970

is known sometimes as the descriplor base
register.

In this case, each program-generated
access would incur two memory-references,
one to the segment table, and the other to
the segment being referenced ; segmentation
would thus cause the program to run as slow
as half speed, a high price to pay. A eoramon
solution to this problem incorporates a
small high speed associative memory into
the address translation hardware. Each
associative register contains an entry (s, a, b)
and only the most recently used such entries
are retained there. If the associative memory
contains (s, a, b) at the moment (s, w) is to
be referenced, the information (e, b) is
immediately available for generating the
location address a; otherwise the additional
reference to the segment table is required.
It has been found that 8 to 16 associative
registers are sufficient to cause programs
to run at very nearly full speed [S4]. (The
exact. number depends of eourse on which
machine is under consideration.)

Historically, the four objectives diseussed
at the beginning of this section have been
provided by “file systems,” which permit
programmers to manipulate named “files”
and to control decisions that move them
between main and auxiliary memory. In
principle, there is no need for the pro-
grammer to use a file system in a wvirtual
memory computer, since auxiliary memory
is presumably hidden from him and all his
information may be permanently represented
in his address space. In practice, most
contemporary ‘“‘virtual memory systems”
provide both a virtual memory and a file
system, together with “file processing primi-
tives” that operate outside the virtual
memory, In these systems, a “segment” is a
“file” that has been moved from auxiliary
memory into address space. Multics is the
only documented exeeption to this [B7].

Among the earliest proposals for segmen-

- tation, though without the use of an address

space, was Holt’s [H2]. Addressing schemes
very similar to that given in Figure 4 were
first implemented on the Rice University
Computer [I1, 12] and on the Burroughs
B5000 computer [B10, M1]. This idea was

expanded, its implications explored, and a
strong case made in its favor by Dennis
(D10-D12]. Details of implementing seg-
mentation and of eombining segments into
programs during execution are given by
Arden et al. [A5], and again by Daley and
Dennis [D1]. Dennis and Van Horn [ID13],
Johnston [J1], and also Wiltkes [W4], place
segmentation in proper perspective among
all aspects of multiprocess computer systems.
Randell and Kuehner [R3} place segmenta-
tion in perspective among dynamic storage
allocation technigques, and provide details
for its implementation on various machines.

Paging

Paging is another method for reducing
the amount of mapping information and
making virtual memory practical. Main
memory is organized into equal size blocks
of locations, known as page frames, which
serve as sites of residence for matching size
blocks of virtuul addresses, known as pages.
The page serves as the unit both of informa-
tion storage and of transfer between main
and auxiliary memory, Each page frame will
be identified by its frame address, which 1s
the location address of the first word in the
page frame.

We suppose that each page consists of 2
words contiguous in address space, and that
the address space N econsists of n pages
{0, 1, 2, ---, n — 1} (ie. nz virtual ad-
dresses), and the memory space M consists
of m page frames {0, 2, 22, -+, (m — 1)z}
(i.e. mz locations). A virtual address a is
equivalent to a pair (p, w), in which p is a
page number and w a word number within
page p, according to the relation ¢ = pz +
w, 0 < w < z where p = [a/z], the
integer part of a/z, and w = R.(a), the
remainder obtained in dividing a by z. In
machines using binary arithmetic, the
computation that generates (p, w) from « is
trivial if z is & power of 2 [A5, D11].

Figure 6 shows the essentials of the address
translation mechanism that implements
paging. The pth eniry of the page table con-
tains frame address p’ if page g is loaded in
frame p’, and is blank otherwise. The steps
performed in forming location address o

Virtual Memory . 163

PAGE TABLE PT -

Lox >
VENORY
ADDRESS

:

VIRTUAL

ADDRESS ¥ m

OPERATION :
a loaded into VA

p = [a/z]

w = .Rz(a)

if pth entry of PT blank, missing-page {ault
(p" + w) loaded into MA

Fig. 6. Address iranslation for paging

from virtual address a are shown in Figure 6.
Note that a missing-page fault occurs if p is
not present in memory, interrupting program
execution until p has been placed in an
available frame of memory. Protection bits
(the darkened area in the page table entry)
may be compared against the type of refer-
ence being attempted, and a protection
fault generated if a violation is detected.

As in the implementation of segmentation,
the page table can be stored in memory.
The modification of the address translation
mechanism follows the 'same lines as Figure
5, and ig not shown here. As before, program
operation may be speeded up by incorporat-
ing an associative memory into the address
translation mechanism to retain the most
recently used page table entries.

Paging was first vzed in the Atlas compu-
ter (F3, (3], and is presently used by almaost
every manufacturer in at least one of his
products [R3]. As with any virtual memory
gystem, it shields. the programmer from
storage allocation problems, and is therefore
suscepiible to misuse; its performance has
generally been encouraging [A4, 02, P1, 82],
but occasionally discouraging [K6G]. Because
paging has received a great deal of attention
in the literature, and its behavior nonetheless
tends not to be widely understood, we shall

Computing Surveys, Vol. 2, No. 3, Sepiember 1970

164 . Peter J. Denning
SEGMENT PAGE
TABLE 5T TABLE PT,
L] [
ol] ,
SEGMENT Ald &
I ﬁ > L~
_w’:] MEMORY
ADDRESS
WORD ,
OPERATION :

(s, w) loaded inio segment and word registers
if sth entry of 8T blank, missing-segment fault
if w > b, overflow fanlt

p = [w/z]

w' 1= R:(w)

if pth entry of PT. blank, missing-page fauit
{p’ + w) loaded into MA

Tra. 7. Address iranslation for segmeniation and
paging '

devote most of the later sections of this paper
to it.

Segmentation and Paging

Because paging by itself does not alter the
linearity of address space, it does not achieve
the objectives that motivate segmentation.
‘Because segmentation by itself requires that
contiguous regions of various sizes be found
in memory to store segments, it does not
result in the simple uniform treatment of
main memory afforded by paging. To under-
stand what is meant by “uniform treatment’”
of memory, ecompare the problem of loading
a new segment into memory with that of
loading a new page into memory. Loading a
segment requires finding an unallocated
region large enough (o contain the new
segment, whereas loading a page requires
finding an unallocated page frame. The
latter problem is much less difficult than
the former: whereas every unallocated page
frame is exactly the right size, not every
unallocated region may be large enough,
even though the sum of several such regions
may well be enough. (The question of find-
ing or creating unallocated regions will be
considered later.)

It iz possible to combine segmentation
and paging into one implementation, thereby
accruing the advantages of both. Figure 7
shows the essentials of such an addressing
mechanism. Each segment, being a small

Computing Surveys, Vol. 2, No. 3, Septernber 1970

linear name space in its own right, may be
described by its own page table, The sth
entry of the segment table contains a pair
(A, b) where A designates which page table
deseribes segment s and b is the limit for
segment 8. The word address w is converted
to a pair {p, ') as in paging, and p is used
to index page table 4 to find the frame
address p’ containing page p. As before,
protection bits may be included in the geg-
ment table entry. As before, the segment and
page tables may be stored in memory, the
addressing mechanism being appropriately
modified. As before, associative memory may
be used to speed up address formation;
indeed, the associative memory is essential
here, since each program-generated mem-
ory reference address incurs two table
references, and the program could run at one-
third speed without the associative memory.
(If the processor has a sufficiently rich
repertoire of register-to-register operations,
speed degradation would not be as bad as
one-third.)

We mentioned earlier that segmentation
and paging combined serve to achieve the
objective of sharing or borrowing programs
(see the section on Segmentation above).
Programmer X, who owns segment s, may
allow programmer Y to borrow s, and ¥ may
choose to call s by another name s". Then
programmer X’s segment table will contain
(4, b} at entry s, and programmer ¥'s
segment table will contain (A, b) at entry ¢,
where A designates a single (shared) page
table describing the segment in question.
The details of implementation, as well as a
description of advantages and difficulties of
sharing segments, are adequately deseribed
in [A3, B7].

Most addressing mechanisms use a single
register to implement the segment and word
registers shown separately in Figure 7. Typi-
cally the leftmost ¢ bits of this register con-
tain the segment name, and the rightmost »
bits contain the word name; thus there may
be as many as 27 segments and 27 words
per segment. In these implementations the
r word-bits serve as the program counter
(PC). Now suppose the program attempts to
increment the program counter (i.e. PC 1=

PC + 1) when its contents are e(PC) =
27 — 1; the result will be ¢(PC) = 0 and a
carry from the leftmost program counter
position. Some implementations require
that a segment’s size lmit b satisfy 0 <
b < 27, whereupon this ecarry would trigger
an averflow fault. Other implementations
allow the carry to propagate into the seg-
ment field; thus if ¢(PC) = 27 — 1 in segment
s and the operation PC := PC + 1 is
performed, the result is ¢(PC) = 0 in seg-
ment s -+ 1 [R3].

STORAGE UTILIZATION

Qur previous discussion has directed atten-
tion to the mechanisms of implementing
segmentation, paging, or both. A virtual
memory system, however, is more than mere
mechanism; it necessarily Includes the
polictes whereby the mechanisms are used.
We mentioned earlier that policies fall into
three classes:

. 1. Replacement policies. Determine which
information is to be removed from memory;
i.e. ereate unallocated regions of memory.
2. Petch policies. Determine when in-
formation is to be loaded; i.e. on demand or
in advance thereof.

3. Placement policies. Determine where
mformation is to be placed; i.e. choose a
subset of some unallocated region.

Replacement and fetch policies use es-
sentially the same principles in both paged
and nonpaged systems, and present the
same degree of difficulty in either case; we
therefore defer discussion of these topics
until later, The placement policy for placing
L pages in a paging system is in principle
quite elementary ; use the replicement policy
to free k pages. Placement policies for non-
paging systems are, however, considerably
more involved. To investigate why this is
g0, we consider a very elementary model for
th= behavior of a nonpaged memory system.

Placement Policies

We suppose that a linear m-word memory
is to be used to store each segment con-
tiguously (in the manner of the gsection on
Segmentation). At certain moments in time
transactzons oceur, which change the con-

Virtual Memory .

A SEGMENT

Fra. 8. Checkerboarding of memory

figuration of the memory., A transaction is
either a request to insert 4 new segment of
given size, or to delete some segment already
present. We assume that the system is in
equilibrium; i.e. that, over a long period of
time, the number of insertions is the same as
the number of deletions for segments of each
size. (For our purposes, the fetch policy is
the source of Insertion requests and the
replacement policy the source of deletion
requests.) After a long time, the memory will
consist of segments interspaced with holes
(unalloeated regions); as suggested by Figure
8, the memory has the appearance of being
“checkerboarded.”

The placement algorithm, which imple-
ments the placement policy, makes use of
two tables: the “hole table,” which lists all
the holes, and the “segment table,” which
already exists for use by the addressing
mechanism, An insertion request for seg-
ment s, which always adds eniry s to the
segment table, may increase, leave un-
changed, or decrease the number of holes
depending respectively on whether s is
inserted 5o as to be surrounded by two holes,
a hole and a segment, or {wo segments.
The last possibility oceurs with very low
probability and may be iguored; and the
first, possibility is usually precluded because
placement policies make insertions beginning
at a boundary of the hole. A deletion request
for segment s, which always removes entry s
from the segment table, may decrease, leave
unchanged, or increase the number of holes,
depending respectively on whether s is
surrounded by two holes, by a hole and a
segment, or by two segments. Both the hole
table and the segment table must be modified
appropriately at each transaction.

We shall derive now two simple but im-
portant relationships for placement policies
having the properties deseribed above. The

Computing Surveys, Vol. 2, No. 3, September 1979

166 . Peter J. Dennang

first is the “fifty percent rule” (due to Knuth
{K4]), which states that the average number
of holes is half the average number of seg-
ments. The other iz the ‘“‘unused memory
rule,” whieh establishes a relation between
the difficulty of placing a segment and the
amount of unused memory.

Frrry Percent RUuLk [K4]. Suppose the
memory system described above is in equilib-
riwm, having an average of n segments and h
holes, where n and h are large. Then h s
approzimately n/2.

To establish this, we find the probability p
that an arbitrarily chosen segment has a hole
as right neighbor (“right” has meaning
according to Figuwre 8). Over a segment’s
lifetime in memory, half the transactions
applving to the memory region on its im-
mediate right are insertions, half are dele-
tions; thus p = %. Therefore, the number of
segments with holes as right neighbors is
np = n/2, i.e. the number of holes iz ap-
proximately n/2.

UnvsEr MeEMorRY RULE. Suppose the
memory system descrebed above 1s in equilib-
rium, and let [be the fraction of memory
occupted by holes. Suppose further that the
average segment size is 8o and that the average
hole size is at least kso for some k > 0. Then
f2k/(&+ 2).

To establish this result for an m-word
memory we note that, by the fifty percent
rule, there are n/2 holes in memory; since
each segment otcupies an average space of
size 8y, the amount of space occupied by
holes is m — nsy , and the average space per
hole ¢hole size) is 2 = (m — ns)/b =
2(m — mnsy)/n. But we assume z > ks,
which implies

(n/m)se < 2/(k + 2).
Then
J = (m—nsg)/m = 1~ (n/m)sy
>1—2/k+2) =k/(k+ 2).

In other words, if we wish to limit place-
ment algorithm overhead by maintaining
large holes, we must be prepared to “pay”’
for this limitation by “wasting” a fraction f
of memory. Thig ig not quite as serious as it

Computing Surveys, Vol. 2, No. 3, September 1970

might seem, for simulation experiments
{K4] show that there is a large variance in
hole sizes, and it is often possible to make f
as small as 10 percent (i.e. k approximately
1. Even so, it i3 not possible to reduce f to
ZET0,

Of the many placement algorithms having
the properties described above, there are two
of special interest. The first is appealing
because it makes best use of holes, and the
second is appealing because it is simple to
implement. Assume there are % holes of sizes

®1, L2, -, s, and an ingertion request of
size s arrives.
1. Best fit. The hole table lists holes in

order of increasing size (ie. 1, < @ < -+
< #p). Find the smallest ¢ such that s < x;.

2. First fit. The hole table lists holes in
order of increasing initial address. Find the
smallest ¢ such that ¢ < z;. (After a long
time, small holes would tend to accumulate
at the head of the hole list, thereby increas-
ing the search time. To prevent this, the
hole table is implemented as a circular list
with a “start pointer”; each search advances
the pointer and begins searching with the
designated hole.)

Knuth [E4] reports detailed simulation
experiments on these and other placement
policies. e finds that the first-fit algorithm
is the most efficient of a large class of al-
gorithms, including the best-fit. He finds also
that the memory size must be at least ten
times the average segment size for efficient
operation. Similar conelusions are also
reported by Collins [C6].

Knuth reports alse on another algorithm
which he found slightly better than first-fit
but which, being not in the ciass of placement
policies deseribed above, does not follow the
fifty percent rule and the unused memory
rule. This poliey is called the “buddy sys-
tem.” Its dynamie properties have not yet
been completely deduced [1{4].

3. Buddy system. Assume that the re-
quest size is s = 2¢ for some 7 < k. This
policy maintains k& hole-lists, one for each
size hole, 2, 22 ... 2% A hole may be re-
moved from the (7 + 1)-list by splitting it in
half, thereby creating a pair of “buddies”™ of

sizes 2!, which are entered in the <-list;
conversely, a pair of buddies may be removed
from the 4-list, coalesced, and the new hole
entered in the (z 4 1)-list. To find a hole of
size 2°, we apply this procedure recursively:

procedure gethole(s)
bhegin if ¢ = k + 1 then report failure;
if 4-list empty then
begin hole := gethole(z + 1);
split hole into buddies;
place buddies in i-list;
end
gethale := first hole in z-list;
end

Overflow and Compaction

The unused-memory rule tells us that, in
equilibrium, we must tolerate a significant
loss of memory. In terms of Figure 8, the
memory has become so checkerboarded that
there are many small holes, eollectively
representing a substantial space. Indeed, it
is possible that, when we scan the hole sizes
2y, &, -+, Th for a request of size s, we find
8>z, 1 £ 7 < h (ie. the request can-
not be satisfied) even though s < 22,1 T
(i.e. there is enough space distributed among
the holes). What ean be done about this?

The solution usually proposed calls for
‘“compacting memory,” i.e. moving seg-
ments around until several holes have been
coalesced into a single hole large enough to
accommodate the given request. nuth [K4]
reports that simulation experiments showed
that, when the first-fit algorithm began to
encounter overflow, memory was nearly full
anyway; thus compacting it would provide
at best marginal benefit. In other words, a
good placement policy tends to obviate the
need for a compacting policy.

A somewhat different point of view can be
adopted regarding the role of memory com-
paction. Instead of using a sophisticated hole
selection policy and no eompaction, we may
use a sophisticated compaction policy and
no hole selection. Just as overhead in main-
taming the hole list previousiy limited our
ability to use memory fully, so the overhead
in running a compaction policy limits our
ability to use memory fully. To show this,
we consider the compaction scheme sug-

Virtual Memory . 167

\ SEGMENTS

N \\)

Fic. 9. Configuration of memory after compaction

HOLE

LS

r

gested in Figure 9. At certain moments in
time-—“compaction initiations”—eomputer
operation is suspended and all segments are
moved together at the low end of memory,
creating one large hole at the high end of
memory. Each insertion request is placed at
the low end of the hole, thereby moving the
boundary rightward; when the boundary
reaches the high end of memory, the next
compaetion initiation oceurs,

Comracrion Resvrr. Suppose the mem-
ory system described above is tn equilibrium,
a fraction f of the memory being wnwused;
suppose that each seqment is referenced an
average 1 limes before being delefed, and that
the average segment size is sq . Then the fraction
F of the time system expends on compaction
satisfies B 2 (1 — H/1 — F 4+ (F/2)(r/s0)].
To establish this result, observe that a refer-
ence oceurs to some segment in memory each
time unit, and that one segment is deleted
everyv r references. Because the system is in
equilibrium, a new segment must be inserted
every r references; therefore the rate of the
boundary’s movement is so/r words per unit
time. The system’s operation time f, is then
the time required for the boundary to cross
the hole, i.e. ty = fmr/so. The compaction
operation requires two memory references—
a fetch and a store—plus overhead for each
of the (1 — f)m words to be moved, i.e. the
compaction time . is at leagt 2(1 — fim,
The fraction F of the time spent compacting
i F =1 — to/{te + 1), which reduees to the
expression given.

Figure 10 shows a plot of F versus f, from
which it is evident that, if we are to avoid
expending significant amounts of time com-

Computing Surveys, Vol, 2, No. 3, Septeinber 1970

Peter J. Denning

4] 82 0.4 0.6 08 1.0

Fre. 10. TInefficiency of compaction

pacting, we must, tolerate a significant waste
of memory, Because of the relative slowness
of compaction compared to searching a well-
organized hole list, the former tends to be
less efficient than the latter, and compaction
is not often dsed.

In summary, nonpaged memory requires
an “investment,” i.e. a certain amount of
unused memory and overhead in placement
policies, for efficient operation. Some sys-
tems, notably the Burroughs B5000 series
[R3] and certain CDC 6600 installations
[B1], have chosen to make this investment;
but most have elected to uze paged memory,
which can be fully utilized by pages at all
times. Many of the techniques discussed n
this section have been used with great suc-
cess in applications of a less general purpose
nature, particularly in list-processing sys-
tems B8, C4, K4|.

Els)

[s] 3

F1a. 11. Probability of external fragmentation

Computing Surveys, Vol. 2, Ne. 3, September 1970

Fragmentation

Qur discussion in the previous section
unveiled a problem of some importance in
virtual memory systems; storage fragmenia-
tion, the Inability to assign physical locations
to virtual addresses that contain informa-
{ion.

There are three major types of storage
fragmentation. The first is external frag-
mentation [R2], which oceurs in nonpaged
memories when checkerboarding becomes so
pronounced that every hole is too small to
be used. (More precisely, external frag-
mentation oceurs for segments of size s with
probability FE(s), the probability that
s > max{z;}, where {z;} are the hole sizes.
E(s) follows the curve suggested in Figure
11,) The second is iniernal fragmentaiion
[R2], which results in paged memories be-
cause storage requests must be rounded up
to an integral number of pages, the last part
of the last page being wasted (Figure 12).
(More precisely, if z is the page size and s a
segment sige, then s is assigned to & pages,
where (k — 1)z < § £ kz,; then iz — s
words are wasted inside the last page.) The
third is Zable fragmentaiion, which oceurs in
both paged and nonpaged memories because
physieal locations are occupied by mapping
tables and are therefore unavailable for
assignment to virtual addresses.

Randell [R2]| reports simulation experi-
ments showing that fragmentation may be
serious, and that internal fragmentation is
more troublesome than external. His experi-
ments rely on three assumptions: (1) each
segment is entirely present or entirely
missing from memory, (2) each segment
begins at a new puge boundary, and (3)
segments are inserted or deleted one at a
time. Many systems viclate (1), there being
some nongzero probability that a segment’s
final page is missing. Many systems violate
(2) and (3) by providing facilities that allow

T ;§§-mﬁ

Fic. 12. Internal fragmentation

many small segments to be combined into
one large contiguous region of address space
(e.g. a “relocatable loader” {or virtual
memory, or a file system separate from
virtual memory). Thus fragmentation is not
as serious in practice as it could be, but then
agalin it cannot be ignored.

Page Size

Two factors primarily influence the choice
of page size: fragmentation, and efficiency
of page-trangport operations.

There is a page size optimal in the sense
that storage losses are mimmized. As the
page size inereases, so increases the likeli-
hood of waste within a segment’s last page.
As the page size decreases, so increases the
size of a segment’s page table. Somewhere
between the extremes of too large and too
small is 2 page size that minimizes the total
space lost both to internal fragmentation
and to table fragmentation.

OpriMaL Pace Size Resurt. Let 2z be
the page stze and so the average segment size;
suppose ¢, is the cost of losing a memory word
to table fragmentation and e, the cost of losing
a memory word to internal fragmentation,
and let ¢ = /ey . If 2 &K so , the optimal page
size zo 15 approximately (2cse)k.

To establish this result, suppose segment
size ¢ is a random variable with expectation
Efs] = sp. A segmeni may be expected to
occupy approximately so/z pages, each being
deseribed by one page table word; the page
table cost for this segment is therefore ap-
proximately ¢;s¢/z. If 2 << 50, the expected
loss inside the last page is approximately
2/2; the internal fragmentation cost for this
segment, is therefore approximately es2/2.
The total expected cost for fragmentation is
then

EiC | 2] = (sv/2)er + (2/2)cs .

1f we set dE[C | 2]/dz = 0 and solve for z,
we obtaln the expression given for z,.
These results presume that each segment
begins on & page boundary (as suggested by
Figure 12), and that both the segment, and
its page table are entirely present in memory.
Many virtual memory computers provide
mechanisms for loading or relocating a eol-
lection of segments contiguously in address

Virtual Memory . 169
space, in which the internal fragmentation
will aceur only in the last page of the last
segment in a such collection. If there are k
segments in such a collection on the average,
then the foregoing results are modified by
replacing sy by ksy, whenee 2o = (2¢kso)d.

These results are by no means new. In
fact, the problem of choosing page size to
minimize fragmentation is identical to that
of ehoosing block size in variable length
buffers to minimize space lost to internal
fragmentation and to chaining information.
Wolman [W7] has studied this issue in some
detail; he gives a detailed account of the
accuracy of the approximation z, = (2so)%

What might be a typical value for z?
The available data on segment size [B2]
stiggests that so < 1000 words in most cases;
taking this and ¢ = 1, we find 24 £ 45 woxrds.
Thig is rather startling when we consider
that pages of 500-1000 words are commonly
used.

When we consider the other factor—
efficiency of page-transport operations—we
discover the motivation for using a large
page size. Fach page-transport operation
takes one transport time T (see the section
on Basgic Systemn Hardware above) to be
completed. The following expressions for T
on typical devices are lower bounds because
in deriving them, we have ignored queueing
delays and processor overhead expended on
name conversion and auxiliary memory
control.

L. Drums. To obtain a page from a
drum, one must walt an average of half a
drum revolution time ¢, for the initial word
of the desired page to rotate into position.
If there are w words on the circumference
of the drum, the page transfer time ¢, is
t,z/w. Therefore

T = /2 4+ &, = t,(1/2 + z/w).

Typieally, t, = 16 mseec and w = 4000

wordas.

2. Disks (moving arm). A disk access is
just like a drum access except there is an
additional “seek time’ i, required to move
the arms into position. Therefore

T =t + /2 + &, =& + (/2 + z/w).

Computing Swrveys, Vel 2, Wo. 3, Septomber 1970

R

170 . Peter J. Denning
T (pe)
'
DISK —
10* 1
o DRUM
10"
10t
Lcs
o
ECS
'
4- — T
i o 100 1000

Fi6. 13. Lower bound transport times

4
£+ -‘ Lcs
ECS
[+1. T
]
DRUM
0.6
0.4
DISK
024
v} e Ll 4

' 10 100 1000
Fiz. 14. Upper bound transporl efficiencies

Typically, t, = 100 msee, {, = 30 msec,
and w = 4000 words.

3. Large capacity storage (LCS). This is
nothing more than a slow-speed core mem-
ory. If its eyele time is ¢ , then

T = tg = tcz.

Typically, {, = 10 psec.

4. Extended core storage (BCS). Thisis a
form of core memory with special transmis-
slon facilities; after an initial “access time”

Computing Surveys, Vol. 2, No. 3, September 1970

t., it delivers » words per main memory
cvele. Therefore

T =ity 4 te= t, + (2/0)0,.

Typically, t; = 3 psee, f, = 1 psee, and v =
10 words.

Figure 13 shows these four lower bound
transport time expressions plotted for various
values of z. Note the several orders of magni-
tude differences at small page sizes. Figure
14 shows the corresponding upper bound
efficiencies ¢ = {,/T plotted for wvarious
values of z. It is immediately apparent from
these figures that moving-arm disks should
never be used, neither for paging applications
nor for any other heavy-traffic auxiliary
memory applications [D3]. 1t is also apparent
that drums should be used with eare [C2,
D3]; and that if drums are used, a page size
of at least 500 words is desirable. This is
why most paging systems use drums instead
of moving-arm disks for auxiliary storage,
why page sizes of 500-1000 wordg are com-
mon in these systems, and why some systems
have been experimenting with LCS [I'1],
ECS [F5], and other [L2] auxiliary stores.

It is equally apparent that there is a great
diserepancy between the page size for maxi-
mizing storage utilization and the page size
for maximizing page-transport efficiency—
about, two orders of magnitude diserepancy.
It is easy to see that the poor performance of
some of these systems [K6] is at least par-
tially attributable to this factor.

It is sometimes argued that another factor
inhibiting small page sizes is the additional
hardware cost to accommodate the larger
number of pages. Whereas this hardware cost
is an initial one-shot investment, the in-
creased storage utilization provides a con-
tinuing long-term payoff, and the extra
hardware is probably worthwhile. The
cache store on the IBM 360/85 is an ex-
ample of a system where this Investment
has been made, with apparently good effect.

One approach to constructing a system in
which a page size 2, is feasible would be to
use a much faster device, such as L.CS or
ECS, to handle the traffic of pages in and
out. of main memory, Some systems have
adopted this approach [F1, F5 L2].

Another approach—*“partitioned segmen-
tation”-—has been suggested by Randell
{R2]. 1t effects a compromise hetween the
large page size required for transport effi-
ciency from rotating auxiliary devices and
the small page size required for good storage
utilization. We shall describe a slight variant
to Randell’s scheme. The memory system
uses two page sizes: a “major page” whose
size is chosen to make transports efficient,
and a “minor page” whose size is chosen
close to 2o . Suppose the major page size is
Z and the minor page size 2z, where Z is a
multiple of z. A segment of size s 18 assigned
a “head” consisting of K major pages such
that ZK < s < Z(K + 1), and a “tail”
consisting of & minor pages such that
ek <s—ZK < z2(k + 1),and K -+ k > 1.
Internal fragmentation thus oceurs only
within the last minor page. An address
translation mechanism that implements
partitioned segmentation is shown in Figure
15. A major drawback to this scheme is
that, to operate effectively, segments must
be large enough so that they consist mostly
of major pages. Available data [B2] suggests
that this need not be the case.

Compression Factor

During any given run, certain sections of
a program’s code will never be referenced
because conditional branch instructions wibl
have unfavorable outeomes. In other words,
an n-word program will, on a given run,
have oceasion to reference only n' < n of
it words, and n' — m addresses will have
been unreferenced. These n” — n unrefer-
enced words are said to be superfluous [K5].
Storage losses due to loading superfluous
words into main memory are less serious in
paged memories using small page sizes
because, for small page size, unreferenced
blocks of code will tend to be isolated on
their own pages, which need never be
brought into memory. Belady’s simulations
[B3] and (FNeill’s data [02] confirm this.

The more are superfluous words isolated
on their own pages, the less space will a
program require, and the more “compres-
sible” will it be. For page size z and a given
run of the program, define the compression
factor ¢(z) to be the ratio of the number of

Virtual Memory . 171

SEGMENT PAGE
TABLE ST TABLE PT,
:] T
= 1. > «
SEGMENT -
g St
" MEMORY
% P | & ADDRESS
WORD 31
OPERATION:

(¢, w) loaded into segment and word registers
if sth entry of ST blank, missing-segment fault
if w > b, overflow fault
p = [w/Z]
2" =0
if pth entry of PT1 marked by *,
p” = [lw ~ ZK)/z}
if {p + p")-th entry of PT. blank, missing-page
fault
w = R.(w— ZK)
(p" + w') loaded into MA

F16. 15. Partitioned segmentation

referenced pages to the total number of
pages. That ¢(z) = z implies that at least a
fraction 1 — z of a program’s words are
superfluous, or conversely that » is the
maximuin relative amount of mermory space
& program nieeds on & given run. Note that
¢(n) = 1 and ¢(1) = »'/n. According to the
data presented by Belady {B3] and O’Neill
[02], the compression faetor is approximated
by the expression

e(z) = a + blog:z, B L2

where @ > 0 and & > 0. The data suggests
the following properties of e(2):

1. Halving the page size tends to decrease
the compression factor by 10 to 15 percent;
thus 0.10 € b < 0.15 [B3].

2. Forsmall 2, | < z < 25, the expression
a + b log: 2 is a lower bound on ¢(z), and in
particular ¢(1) = n'/n = a. Extrapolating
the data, ¢ in the range 0.1 < a £ 04
appear typical.

3. For page sizes 2 = 2° e(z) > 0.8
appear typical.

These results are significant. They reveal
a frequently overlooked potential advantage
of virtual memory: small page sizes permit o
great deal of compression without loss of
efficiency. Small page sizes will yield signifi-
cant improvements in storage utilization,

Computing Surveys, Vol. 2, No. 3, September 1070
i
P

R T PP ¥

172 . Peter J. Denning

TABLE 1. ComparisoN oF PageEp aNp NonNpageEp MEMORY

Paged Nonpaged

Factor
Segmented name space Feasible
Number of memory accesses per pro- -
gram reference: .
1. With paging 2
2. With segmentation —
3. With both 3

4. With associative memory mapping =1
Replacement policy
Fetch poliey
Placement policy
Memory compaction

External fragmentation None

Internal fragmentation

Required
Usually demand
Required, but simple

Not required

Yes, but can be controlled by

Feasible

| v

=

.

Required
Usually demand
Required, but complicated

Optional; of marginal value

Yes; controlled by placement
policy and memory size at
least ten times average
segment size

None

proper choice of page size

Table fragmentation Yes

Compression factor

Yes

Can be much less than 1 with TUsually 1

small page sizes

over and above those gained by minimizing
fragmentation. Nonpaged memory systems
(or paged systems with large page sizes)
cannot enjoy this benefit.

COMPARISON OF PAGED AND NONPAGED
MEMORIES

As we have discussed, the various imple-
mentations of virtual memory fall into two
classes: paged and nonpaged. We have
discussed a great number of facts pertaining
to each. Table I summarizes these facts dnd
compares the two methods.

Acecording to Table I, paging is superior
to nonpaging in all respects save suscepti-
bility to infernal fragmentation; but internal
fragmentation c¢an be countrolled by proper
choice of page size. Not listed in the table

Computing Surveys, Vol. 2, No. 3, September 1970

is an aspect of paged memory that makes
its implementation more elegant and much
“cleaner” than implementations of non-
paged memory: its “uniform” treatment of
memory. Whereas paging regards main
memory simply as a pool of anonymous
blocks of storage, segmentation regards it
as 3 patchwork of segments and holes of
various sizes. The same statement holds
for auxiliary memory. Therefore (fixed
length) page transports are much simpler
to manage than (variable length) segment
transports. The dificulty of transporting
variable length segments is compounded
by overhead in watching out for the specific
segment length in order not to overrun
buffers. Tt is no surprise that somec form
of paging is used i almost all virtual mem-
ories.

DEMAND PAGING

Because paging is so commonly used and so
frequently discussed in the literature, the
remainder of our discussions center around
this topic. Demand paging, the simplest
form, is the most widely used. Demand
paging has—unfairly—been subjected -to
widely publicized eriticism [F2, F4, K6, R3],
before anyone has had enough experience
to evaluate it properly.

In order to avoid maintaining a large
number of lightly used resources, time-
sharing and multiprogramming systems
attempt to iIncrease the load factors on
resources by sharing them. To do this, time
is partitioned into disjoint intervals, each
program being allocated resources during
certain intervals but not during others.
(This is sometimes called resource multi-
plexing.) These intervals are defined either
naturally, by the alternation between
running states and input-output waiting
states of processing, or artificially, by &ime
quanta and preemption. The latter method is
used primarily in time-sharing systems,
where response-time deadlines must be
satisfied. We restrict attention to this case
throughout this seetion.

At the beginning of its allotted time
quanta, a program’s working information
must be loaded into main memory. Older
time-gsharing systems employed swapping
to do this, i.e. they would transport a pro-
gram’s working information as a contiguous
unit into memory just before each time
quantum began, and out of memory just
after each time quantum ended. Demand
paging systems transport just one page (that
containing the next instruction to be exe-
cuted) into memory just before a program’s
time quantum begins, and “page in” add-
tional pages as the program demands them;
at time guantum end, no immediate action
will be taken to remove a program’s pages
from memory, that being left up to the
replacement policy.

One occasionally hears proposals to the
effect that paging systems could be improved
markedly if swapping were used to load
(unload) a program’s working information

" Virtual Memory - 173
at the beginning (end) of a time quantum,
and demand paging were used within a time
quantum. We shall show that swapping is
at best of marginal value in systems using
either a nonmoving auxiliary store or a
specially organized drum, the paging drum.
Prepaging, however, may have some value
when properly managed from a paging drum.

Paging Drum

We pointed out in the section on Page
Size above that among all rotating or moving
auxihary stores, only drums {or drumlike
stores [Al]) may be suitable for handling
page traffic through main memory. Even
then, a particular drum organization is
required for efficient operation. A paging
drum [Al, C2, D3, W1] consists of a drum
memory together with hardware (or soft-
ware) implementing an optimal scheduling
policy. As shown in Figure 16, the drum
surface is laid out into equal areas, each
capable of storing one page;each such “drum
page” is identified by its ‘“‘sector address”
7 and its “field address” 7. Each field is
equipped with a set of read-write heads. As
shown in Figure 17, the scheduler sorts

incoming requests into s separate ‘‘sector

queues” according as which sectors are
requested. Within a given sector queue,
service is in order of arrival (i.e. “first-come-
first-served””). The rotary switch arm re-
volves synchronously with the drum, point-
ing to queue ¢ whenever sector 7 is under
the read-write heads. Suppose a read (write)
request for drum page (4, §) is at the head
of sector queue 7. Just as the switch arm

SECTOR § FIELD j DRUM PAGE (i, j)

.

READ-WRITE
HEADS

Fic. 16, Layout of paging drum

Computing Surveys, Yol, 2, No. 3, September 1970

174 . Peter J. Denning

INCOMING REQUESTS

SECTOR QUEUE
Fia. 17. Paging drum queue organization

reaches sector queue 4, the heads for field 7
are set to read (write) status and connected
to the drum channel. Then transmission
begins.

Paging drums are sometimes known as
“slotted drums’’ or ‘“shortest-access-time-
first” drums. Some manufacturers market
drumlike “paging disks,” whieh are fixed-
head disks with one head per track. These
are equivalent to paging drums.

The paging drum stands in eontrast to its
historical predecessor, the ‘“first-come-first-
gerve” (IFCFS) drum, which collects all
incoming requests into a single, order-of-
arrival queue. To compare these, we imagine
two systems: Systemn P is a paging drum,
and System F an FCFS drum. In both
systems, the drum revolution time is ¢, and
the number of sectors is s. Since most dram
allocation policies do not attempt to group
contiguous pages of a given program on
contiguous sectors, we may assume that
each request selects a sector at random
A1, C2, D3, Wi]. The “drum load” L is
the number of requests waiting in the drum
queune(s). _

Drum Erriciency Resuvur. Let ep(L)
denole the expected efficiency of System P

Computing Surveys, Vol. 2, No. 3, September 1970

and ep(L) that of System F, when the drum
load ¢s held fived af L. Then

ep(L) = (L +1)/(s + L+ 1), L1

< ep(L) = 2/(s + 2),

Consider System P. The expression for
ep(L) is an approximation derived as follows,
Let &y, ty,---, &, -+ be a sequence of
time instants at which requests cémiplete
serviee and depart from the drum system.
(Sinee L is assumed fixed, a new request is
added to the drum system at each time
t;) Then x, = . — 1., denotes the service
time of the Zth request. Since the requested
seetor positions are statistically independent
and L is fixed, the service times z; have a
common distribution with expectation Fjz].
Now, Efz] can be written Ez] = ¢ -+ Efr],
where ¢ = {,/s is"a transmission time and
Elr] an expecied rotational delay. To ap-
proximate K[r], we imagine a circle with
circumference ¢, having L + 1 points dis-
tributed randomly about its perimeter; one
of these points represents the drum position
at the moment a request departs, and the
remaining L points represent the positions
of the requested sectors. The expected
distance between two of these points is
t,/(L + 1) = E[r]. The efficiency is ep(L) =
t/Elx] = /@ + Efrl), which reduces to the
expression given. In System F, each request
in the queue must complete its service
before the next may begin, and each selects
ity sector randomly. Therefore eq(L) is
independent of L, and indeed ey{l) =
er(l) = ep(l) = 2/(s + 2).

Several facts follow from this result. (1)
For small page sizes (large s) the efficiency
ep is always small. (2) For any page size
there are always values of I. that make ep
close to 1. (3) Whereas er I8 constant,
¢o(L + 1) > ep(L); in other words, the
paging drum is “‘self-regulating,” becoming
more efficient under heavier loads. (4) For
L>1ands > 1,e(l) > e (L)

As one would suspeci, the paging drum
(System P) gives smaller transport times
than the less efficient FCI'S drum (System
Fy.

Drum TranseorT TiME Resurr. Sup-

Pose o poage request arrives when the drum
load 4s L. The time each system delays this
request 13

Te = t(L/s + (s + 2)/2s),
Te = 8L+ D{s 4+ 2)/2s,

The incoming request will be known as
the “tagged” request. In System P, the
tagged request enters a sector queue whose
expected length is I/ = L/s. Before com-
pleting service the tagged request experi-
ences the following additive delays: ¢,/2 for
the drum to begin serving the first request
in the queue; L', for the drum to begin
serving the tagged request; and t,/s for iis
own transmission. Thus T, = (L +
1 4+ 1/s). In System F, the tagged request
joins the single queue with L requests ahead
of it. There are now L -+ 1 requests in the
queue, each requiring time &.(3 + 1/8) to
complete.

From these two results we see that, under
normal drum loads (L >), e, > e and
Tr < Tr, with the greatest differences
occurring at heavy loads. For these reasons,
paging systems using FCFS drums may
experience severe loss of efficiency.

L=0

Cost

To evaluate the “cost” of demand paging,
two concepts are useful: “space-time prod-
uct’ and “working set.”” Suppose a program
occupies m{t) pages of memory at time i;
the space-time product of memory usage
across an interval (& |, &) 1s defined to be

Cltte) = j;‘z m(t) dt.

Since memory usage charges are usually
based both on the extent and duration of
memory usage, Ol , &) relates to the actual
dollar cost of using memory, and is often
termed ‘‘cost.’”’ Space-time cost has become
an important aid in determining the efficacy
of memory allocation strategies [B5, B6, D5,
Dy, F1, L1, P1, R3]. The working set of a
program at a given time is the smallest
collection of its pages that must reside in
memory to assure some level of efficiency
{a more precise definition will be given later)
(D4, D5].

Viriual Memory . 175

Let Ca(A) denote the space-time cost
of loading a working set into mermory under
demand paging from auxiliary memory 4,
and C,(A4) the cost of leading a working set
into memory under swapping from auxiliary
memory A. We ghall establish four asser-
tions:

+ Under demand paging, the paging deum
costs significantly less than the FCFS drum
(i.e. Cg(F) — Co(P) is large).

+« With nonmoving auxiliary storage
{e.g. 4 18 LCS or ECS), demand paging never
costs more than swapping (e Cy(d) <
Ci(4)).

¢ The combined swapping and demand
paging strategy is at best of questionable
value when compared to “pure” demand
paging with a paging drum.

» Unless predictions can be made with
little error, prepaging, even from a paging
drum, may not be advantageous.

These assertions are considered in the
following paragraphs. Assume that a working
set of size w is to be loaded, that a single
transport operation requires processor time
to, and that the drum has revolution time
{, and s sectors.

The cost Ca(A) is determined as follows.
Suppose & — 1 of the w pages have already
been loaded and a fault for the kth page
oceurs; we must reserve one more page of
memory and stop the program for the kth
transport time T . Since there is no correla-
tion between the order of page calls and
their order of storage on the drum, T, = T
for1 < & < w. Thus

kT = kT

k=1 =t {i)
Tlw(w 4+ 1)/2).

Now if A is the paging drum sysiem P (see
the section on Paging Drum above), then
T =ty -+ Tp. Similarly, T = #; + T for
the FCFS drum system F. Applying the
Drum Transport Time Result for load L,

CuF) — CalP) = (wlw. + 1)/2) 4(L/2).

As long as L > 1 (the usual case) the cost
difference grows as the square of the working
set size. This establishes the first assertion,

Co(d) =

i

Computiing Surveys, Vol, 2, No. 3, September 167

176 . Peter J. Denning

The cost C.(4) is determined as follows.
We reserve w pages of memory, then trans-
port the entire working set as a unit in a
transport time 7. Thus

Co(A) = wT", (i)

If A is ECS with access time f, (see the
section on Page Size above) and page trans-
mission time £, , then

T=ty+ta+ 1,
T to + 8, + wis.

Substituting these values into (i) and (ii)
respectively, we find

Ci(4) — Ca(4)
= (w(w — 1)/2){ — to — L)

This expression ig positive if £, > 1o + .,
which normally is the ecase. If A is LCS,
then i, = 0, and the same eonclusion follows,
This establishes the second assertion.

A “swapping drum’ is an FCF8 drum #
for which the system guarantees that each
working set's pages are stored on contiguous
sectors. Suppose a request for a working
set of w pages arrives when L other requests
of sizes o1, ---, vz are in the drum queue;
the swapping drum transport time is given
by

’ NS T 1, w

T = zn+t,(;(2+ s)+§+ s).

(The argument to derive 7’ is analogous to

that for deriving T».) We are interested
in comparing

Ca(P) = (w(w + 1)/2)(bo + T»),
CF) = wl".

We shall ignore &, since &, < ¢, . Consider
two extremes of the drum load v, --- , vz.
At the one, each v; is a request to swap in a
full working set; taking w as the average
working set size and each v, = w, we find
(after some algebra) that for all w > 0,
C.(F) > Cu(P). At the other extreme, each
v 18 a request for a single page; taking each
vy = 1, we find (after some algebra) that

w>we= 14+ 2Ls/(2L + s — 2)

i

Computing Surveys, Vol. 2, No. 3, September 1970

ig necessary for C(F) < O, (). For the
normally heavy drum loads (L large) found
in paging systems, wy =< s + 1 is slightly
more than & full drum circumference. If we
repeat the analysis to include the cost of
swapping w pages out again at time quantum
end, we find we == 2s; for typical drums 2s
is approximately 8000 words, a substantial
working set. To sum up: as the drum load
varies from the former extreme to the latter,
the system enters and exits states unfavor-
able to swapping; even in favorable states,
swapping is cheaper only when working
setg of substantial size are moved. Our
analysis does not account for two other
factors: it may be expensive to find or main-
tain a supply of contiguous sectors into
which working sets may be swapped, and
it may be expensive to implement hoth a
swapping policy and a demand paging
policy in the same system. Swapping thus
appears at best to be of marginal value in a
demand paging system. Thig establishes the
third assertion.

Now, let C,(P) denote the cost of pre-
paging from drum system F, and suppose
¢ = 0 is the probability that a prepaged
page is not used. To prepage from drum £,
we would specify the w pages as a group
and add them to the drum load L. Ignoring
s, this costs approximately wTz’, where
Te' is Tp evaluated at load I - w. Of these
w pages, ew were preloaded erraneously, so
there will be ew additional page faults;
assuming each of these replaces an erroneous
page with a correct one, the cost for each
is wT'p . Thus,

C(P) = uwTs" + ew(wTe).
After some algebra, we find
2L + s+ 2)/
(Q—-292L+s+2) —4)

is sufficient for C,(P) £ C4(P£) to hold. This
has two consequences. First, if € is small and
I large, then we =< 1, and prepaging would
almost always be advantageous. Second, in
order that the denominator of the expression
for we be positive, we require

€< 32L + s — 2)/2L + s + 2).

W > we =

If ¢ is not small and L is small, then wp would
be large, and prepaging would not be ad-
vantageous, Since the foregoing sargument
is very qualitative and based on average-
value arguments, we must be careful not to
attach too much significance to the particu-
lar expressions given. Our infention is
showing that the advantage of prepaging
may be very sensitive to the relations among
e, L, and s, and that careful analysis would
be required to assess its value in a given
system. (See [P1).) Thig establishes the
fourth assertion.

The foregoing discussion establishes also
that the performance of virtual memory
may depend strongly on the capacity of the
channel carrying the traffic of pages through
main memory. Although we have pot studied
it, the reader should realize that several
parallel channels between main and auxiliary
memory (contrasted with the single channel
presumed above) would provide further
increases in capacity.

In general, the smaller the ratio of paging
traffic through memory to the system’s
capacity for handling it, the better the
performanee of the virtual memory. To
minimize this ratio, we must (1} choose a
memory management policy to minimize the
rate at which a given program load generates
page Taults, (2) modify program structure
to reduce the rate at which a given program
generates new page faults, and (3) provide
hardware support to increase the system’s
capacity for handling page traffic. These
three aspects are examined in detail in the
following sections.

PROGRAM BEHAVIOR AND MEMORY
MANAGEMENT

Program behavior is among the least under-
stood aspects of computer system design
and analysis. And yet we need to model
program behavior if we are to have a sound
basis on which to predict a program’s future
memory needs or if we are to understand
how close resource allocation policies are to
being optimal.

Virtual Memory . 177
Replacement Algorithms .
From now on we gshall nge N' = {1, 2,
-, n} to denote the pages of a given
program. A program’s dynamic behavior
may be described in machine independent
terms by its reference string

TkEN,kZI,

which is a sequence of those pages from N
which are referenced by the program (not
necegsarily distinet). We guppose this pro-
gram has been allocated a memory space of
size m, where 1 < m < 1, and is to operate
in that space under paging. If i(ry) denotes
the time instant at which page 7 is refer-
enced, then the expected time E[i(ryy) —
Uri)] 38 A if ry is present in memory and
A 4+ T otherwise (see the section on Basic
System Hardware), Therefore the expected
increment in space-time cost is

w = ?'17'2...?-;;...’

ma f 7 in
memory,
m(A + T) otherwise.

CQrs), rapr)) =

When the page size is fixed and T > A
(typically, in fact, T 2> A}, minimizing the
total cost of running & program under
paging requires minimizing the number of
page faults. To understand what this en-
tails, we need a precise definition of replace-
ment algorithm.

A subset 8 of N such that 8 contains
m or fewer pages (written | S| < m) is a
possible memory siade, and M, is the set
of all such S. A replacement algorithm
generally keeps records about the program’s
behavior; the status of its records will be
called a control state ¢, and @ is the set of
all such q. A replacement algorithm con-
Jiguration 18 a pair {8, ¢). If the configura-
tion is (S, ¢) and page ¢ is referenced, a
new configuration (S/, ¢") is entered. We
describe this behavior *by the eallocation
MAPPIng

g: My X @ X N =My, X Q,
where

908, ¢, 9 = (8, ¢)

and 7 is in &, Starting from an initial con-
figuration (Sa, gq), a replacement algorithm

Computing Surveys, Vol. 2, No. 3, September 1970

178 . Peter J. Denning
pracesses the references nirs - -+ 7 by gen-
erating a sequence of configurations

(Sﬂ ’ qo).v (Sl ? QI), T (S-'f-') qk):
where

(S]c 3 Qk) = g(Sk-l ? Qk—l 1 T’C)) 'I‘; _>_ 1

Thus a replacement algorithm A may be
described by specifying the 3-tuple A =
(Q; o !7)

Now if A is a demand paging replace-
ment algorithm, then whenever (8, ¢') =
g(8, g, 7), the memory state S’ must satisfy
these properties:

olf 7 € S then 8 = S (no page fault).

olf ¢ € S and | S| < m, then 8’ =
S U {4} (page ¢ added to memory).

oIf £ ¢ S and | S| = m, then 4 selects
some j € Sand 3 = (S — {7}) U {4} {(page
i replaces 7).

It ean be shown that, for any nondemand
paging algorithm A4, one may construct a
demand paging algorithm 4’ that produces
no more faults than 4 on every reference
string [A2, M2]. We are therefore justified
in restricting attention to demand paging
algorithms. From now on, the term “al-
gorithm”’ specifically means “demand paging
replacement algorithm.”

Optimal Paging Algorithms

Suppose #y -+ 7% -+ rx is the reference
string generated by a given run of a pro-
gram, and the reference moment i(r;) is
that of a page fault. If algorithm A requires
precise knowledge of the future {(ry4y -+ - rx)
to make its replacement decision at t{r,),
A ig an “unrealizable” algorithm. Otherwise,
it A bases its decision at #(»,) only on as-
sumptions aboui the fature (e.g. probabil-
ities), 4 is a “realizable’” algorithm. In
most practical applications, we must be
content with realizable algorithms; un-
realizable ones would require ‘“‘preprocess-
ing” the program and recording its refer-
ence string. Not only is this operation costly,
but the record so eobtained may well be
invalid, due to conditional branching.

As diseussed in the previous section, we
take ag our optimality criterion the mini-

Clomputing Surveys, Vol. 2, No. 3, September 1970

mization of the number of faults generated.
Since the days of the earliest paging machine,
people have reasoned that, to minimize the
number of faults, it is necessary to maxi-
mize the times hetween faults [K3]. There-
fore the following has been the accepted

PrincrrLE oF OrriManiry. Lel 8§ =
11,2« m’} be the memory state at time
t, the momend of a page fault, and let ¢(i') > ¢
be the earliest moment at which page ' 1s
next referenced. Define (i) = (i) — &
Replace that poage i for whick (1) i mavi-
mum. If the future is not precisely knoum,
replace that page ' for which the expected
time E[r{i')] is moximum.

In the case that we maximize E[r(z')]—
the ease of realizable algorithms—we are
attempting only to minimize the expected
number of faults, rather than the actual
number of faults. Thus an optimal un-
realizable algorithm would produce fewer
faults than an optimal realizable algorithm.

The principle of optimality has great
intuitive appeal. Belady [B3] has used it to
develop an optimal unrealizable algorithm.
Many other authors have developed various
optimal realizable algorithms, each depend-
ing on the particular assumptions used to
determine E[r(7")]; for example, the Atlas
machine’s algorithm assumed most pro-
grams were looping and therefore generating
periodic reference strings [K3], and several
systems used an algorithm that supposes
E[r(#)] = t — (") where ’'{7') < {is the
time ¢’ was most recently referenced (this
rule is called ‘‘least recently used”). We
shall not attermapt to survey the multitude
of paging algorithms that have been pro-
posed and studied, these being amply treated
in the literature [B3, B4, B6, C3, €8, D4,
D5, D9, H1, K5, J2, K3, 02, 82, 83, 85].

Degpite its intuitive simplicity, the Prin-
eiple of Optimahty is known not to hold for
arbitrary assumptions about reference string
structure and statistics. Even when it does
hold, proofs of this are difficult, and are
known only in simple cases [A2, M2].

Even though the Principle of Optimality
may not in fact be always optimal, it is a
good heuristie, and experience and experi-

mental evidence indicate that algorithms
based on this principle give nearly optimal
performance. This evidence, suggested in
Figure 18, is abstracted from the work of
Belady [B3], and of Coffman and Varian
[C3]. Let F(A4, m, ») denote the number of
faults generated as algorithm A processes
the reference string « under demand paging
in an initially empty memory of size m,
and define the fault probability

JIA,m) = 2o Pre](F(4, m, 0)/),

where Pr[e] denotes the probability of oc-
currence of w, and | w | denotes the length
of w. The curves f(A, m) for “reasonable”
algorithms A lie in the shaded region of
TFigure 18 (by “reasonable” we mean that
the assumptions used to determine Elr(7’)]
in the Prineciple of Optimality are reasen-
able). For comparison we have shown the
relative position of f(4, m) for Belady’s
optimal unrealizable algorithm [B3]. The
point is: for reasonable A, f(A, m) is much
more sensitive to m than to 4. Therefore,
although the choice of paging algorithm is
important, the choice of memory size is
critical.

TFigure 18 brings out one other point.
Occagionally in the literature one finds
analyses of program behavior based on the
assumption of randomness, i.e. that each
page of a given program is equally likely to
be referenced at any given refercnce. This isg
equivalent to the assumption that E[r(z)] =
Elr(7)) in the Principle of Optimality. If
this were so, the fault probability for every
realizable algorithm A would have to be
fl4, m) = (n — m)/n. This simply is not
the case. Programs tend to reference certain
pages heavily, others lightly, still others
rarely.

Contrary to intuition, Iluncreasing the
memory size m may not always result in a
corresponding deereasc in f(A, m); that is,
F(A, m} may not be decreasing in m, as
suggested by TFigure 18. The FIFO (first-in-
first-oul) replacement algorithm, for -ex-
ample, is known to exhibit an increasing
section in its fault probability curve, for
certain reference strings [B6]. Mattson et

Virtual Memory . 179

Fig. 18. ault probability

al. [M2] have discovered a very interesting
class of replacement algorithms, called
stack algorithms, whose f-curves are always
decrcasing in m. These algorithms are de-
fined as {ollows. Let « be a reference siring,
and let S(A4, m, ») denote the memory state
alter A has processed » under demand pag-
ing in an initially empty memory of size m.
Algorithm A is a stack algorithm if

SA,m) @S(A4,m + 1, w),

1 <m<n, ®
for every reference string . That is, the
contents of the m-page memory are always
contained in the {(m <4 1)-page memory, so
that the memory states are ‘‘stacked up”
on one another. The LRU (least-recently-
uscd) replacement algorithm, for example,
is a stack algorithm (to see this, note that
S(LRU, m, ») always eontains the m most
recently used pages). Consider a stack
algorithm A and a reference string wr. If
x is in S(A, m, w)—there is no fault when
x 18 referenced—then by (i) = ig also in
S(4, m + 1, w}; thus increasing the mem-
ory size can never result in more page
faults, and f(4, m) must be decreasing in
m for every stack algorithm A. The class
of stack algorithms containg all the “reason-
able” algorithms, and two algorithms known
to be optimal [A2, M2]. They are particu-
larly easy to analyze [M2].

Computing Surveys, Vol. 2, No. 3, September 1970

180 . Peter J. Denning

The Principle of Locality and the Working
Set Model

An important program property, alluded
to in previous sections, is lecality. Infor-
mally, locality means that during any inter-
val of execution, a program favors a subset
of its pages, and this set of favored pages
changes membership slowly. Locality is an
experimentally observed phenomenon mani-
festing itself partly as a tendeney for refer-
ences to a given page to cluster, partly in
the shape of the f(4, m) curve in Figure 18
[B3, B4, D4, D5, DY], and partly in the
rapidity with whick a program aequires
certain pages on demand at the beginning
of a time quantum [C3, F'2]. Loecality is not
unexpected, by the very nature of the way
programs are constructed:

-—Conlext. At any given time a program
is operating in one of its modules, which
causes a concentration of references in cer-
tain “regions” or ‘localities” of address
space. For example, its instructions are
being fetched from within the pages of some
subroutine, or its data are being fetched
from the content of some specifie data seg-
ment,,

—Looptng. Programs tend often to loop
for a long thme within a small set of pages.

In order to render the statement of
locality more precise, we introduce the
notion of the “reference density’ for page i:

1eN.

Thus0 < a.;(k) < 1and 25 alk) = 1. Al
though a program’s reference densities are
unknown (and perhaps unknowable), the
definition of “working set” given below
obviates the need for attempting to measure
them. By a “ranking” of a program’s pages
we mean a permutation E(k) = (17, 2/,
-, n') such that an.(k) = - - > a.k);
a ranking K£(k) 1s “strict” if a;.(k) > --- >
an (k). A “ranking change” occurs at refer-
ence L if R(E — 1) = R(k); a “ranking life-
time’’ is the number of references between
ranking changes. Ranking lifetimes will
tend to be long if the a,(k) are slowly vary-
ing functions of k.
Princiere oF Locanrry,

a;(k) = Prireference r, = i,

The rankings

Computing Surveys, Vol. 2, No. 3, September 1970

R(E) are strict and the expected ranking life-
temes long.

From the principle of locality comes the
notion of “working set.”” A program’s work-
ing set at the kth reference is defined to be

Wk, h) = {i € N | page 7 appears among
Ti—bt1 " ’l“k}, h 2 1.

In other words, Wk,) is the “contents”
of a “window” of size & looking backwards
at the reference string from reference 7 .
The working set at time ¢t is W(t, k) =
Wk, h) where t(r;) < t < t(riy1). Page 7 is
expected to be a member of the working set
if it 18 referenced in the window, i.e. if

&

2, a2 L.

i=E
(This equation, together with assuraptions
about the a;(k}, could be used to determine
a value for k. For example, if it were as-
sumed that a:(k) = a; and it were declared
that pages with a; < a, for some given a,
ought not be expected as members of the
working set, then & = 1/a,.) Therefore, a
working set is expecied to contain the “most
useful” pages; by the principle of locality it
changes membership slowly.

Now suppose locality holds and R(k) =
(1,2, -~ , »/). If 7 is ranked higher than
7 oGe. aplk) > a;(k)) then E[rZ)] <
Eir(7], and because ranking lifetimes are
long, this relation is expected not to change.
Since 7’ is more likely than 77 to be in
Wk, k), there follows:

Working ST PriNcipLE. Suppose mem-
ory management operates according to the
following rule: A program may run if and
only if is working set is in memory, and a
page may not be removed of ¥t is lhe member
of a working set of a running program. Then,
according to the principle of locality, this rule
s an tmplementation of the principle of opti-
mality.

The working set principle is more than a
memory managemcent policy, for it implics
a strong correlation between processor and
memory allocation. Tts implementation does
not depend on measurement of reference

densities. This prineiple is used explicitly in
at least one computer system, the RCA
Spectra 70/46 D2, 03, Wi).

Working sets exhibit a number of impor-
tant properties. Let w(h) denote the expected
working set size, ie. wh) = E[| W, h) | 1.
It is shown in [D3] that, for b > 1,

(1) 1 £ wh) < min {n, h},

(2) wh) <€ wk -+ 1) (nondecreasing),

B) wh + 1) + wkh — 1) < 2wh) (con-
cave down),

which give w(h) the general character of
Figure 19. The following is also shown in
[D5). Let g(h) denote the probability that a
page, when referenced, is not in W{, h).
Suppose k is increased by 1, so that a new
reference (r,_;) is included in the window;
the resulting change in the working set size
18

1 ifr,pisnotin W{, h),
AW =)
0 otherwise.

But then E[AW] = ¢(h), and we have the
important result that

g(h) = wlh + 1) — wk).

This suggests that measurements of a pro-
gram’s working set size function can be used
to obtain approximations to f(4, m), for
m = w(h) and working set strategy A. It is
possible to relate w(h) to certain properties
of reference strings [D5], and to use w(h) in
determining how much memory is required
in a given computer system [D7]. Finally,
let w(kh, z) denote the expected working set
size (in pages) when the page size is z, and
apply the compression results of the section
on Compression Factor:

awlh, 21) < zav(h, 22}

That 1s, a working set will comprise fewer
words for smaller page sizes.

The definition given above is not, of
course, the only possible definition for work-
ing set. As specified, the method for measur-
ing a working set iz after the fact and its
reliability depends on the slowly varyving
assumption about reference densities. The
method will fail to prediet the imminent

if21< 2o .

Virtual Memory . 131

4] |
o

Fic. 19. Expeeted working set size

presence in the working set of a page which
was not referenced in the window. This
definition is designed for systems where the
future is unknown, where the principle of
locality holds most of the time, and where a
“maximum likelihood” estimate of the
future is sufficient. A still open question
concerns how to use “context” and “loop-
ing” properties, together with knowledge of
program structure, to prediet before i 7s
referenced that a page will shortly become a
member of the working set.

Multiprogramming and Thrashing

Paging algorithms for multiprogrammed
memories normally Lie at or between two
extremes:

1. Locally. The memory is partitioned
into “work spaces,” one for each program.
The paging algerithm is applied independ-
ently in each work space. In particular, a
page fault in a given program can cause a
replacement only from its own work space.
The size of a work space remaing fixed until
allowed to change by the system.

2. Globally. The paging algorithm is
applied to the entire collection of runming
programs, as if that colleciion were one
large program, without regard for which
pages belong to which programs. In particu-
lar, a page fault in 2 given program may
cause a replacement from any program in
memory. The size of a program’s work space
is therefore randomly variable.

The working set principle, so formulated

..

Computing Surveys, Vol 2, No. 3, September 1970

182 . Peter J. Denning

that it tells how memory is to be managed
under multiprogramming, is a form of a
local policy. Indeed, global policies are in
general suboptimal, partly bhecause there ig
no way to determine when memory is “over-
crowded,” and partly because there is no
way to guarantee that a program’s work
space is large enough to contain its working
set even if memory is not “‘overcrowded.”’

Multiprogramming under a global policy
is susceptible to thrashing, a collapse of
performance that may oceur when memory
(or parts of memory) is overcommitted
[D6]. Thrashing is a complicated phenome-
non. At the risk of oversimplification, we
shall derive a condition that estimates when
it will occur. We assume (1) that the #th
program in memory has average work space
m; and fault probability f:m.) under the
given global policy, where f; is stationary
over the fime interval under consideration;
and (2) for each i, f:.(m") > fi(m) whenever
m’ < m.

A “duty factor” d(m} for a program occu-
pying a work space of average size m may
be defined as follows: if f(m) is the program’s
fault probability, then the expeeted number
of references between faults is 1 /f(im)}; if each
memory reference takes expeected time a
(see the section on Basic System Hardware)
and each page transport takes expected
time T, then the expected fraction of time
this program spends in execution is

d(m) = [A/fm))/Ia/f(m) + T,
= 1/]1 + of(m)),

Using condition (2) above, it is not diffieult,
to show that, if m” < m,

0 < d(m) — dim') < a(fm’) — fm)). (1)

If d(m) — d(m’) is near its upper bound and
« is large, a relatively small change in work
space size will be reflected as a large change
in d. This is necessary to induece thrashing.
Now imagine the following conditions
holding for an M-page multiprogrammed
memory using a global policy. Tnitially there
are & — 1 programs in memory, the ith pro-
gram occupies a work space of average size
m: > 1l,and my + - + mp-g = M. When

a = T/A

Computing Surveys, Vol. 2, No. 3, September 1970

the kth program is introduced, it is granted
m;" pages and the global policy changes the
remaining m; to m;" < m;. Letting D; de-
note the total expected processing efficiency
when j programs are in memory, we have

=1

D, = 5_‘{ de'(mi),
[3

D, = > dim).

=1

Thrashing occurs if D, < D,y ' ie. the
addition of one more program triggers s
collapse of processing efficiency. Using (i)
we find

k—1
Diyv—-—D<a ; (fi(mi’) - fi(mi))

- dk(mk')
2 aFy — di(my’).

Now if the quantity Dy — D, is near its
upper bound and «F, ig not gmall, then it is
possible to obtain D,y << D; . Experiments
on the RCA Spectra 70/46 computer sys-
tem, for which @ > 10¢ (a drum auxiliary
memory), show that this condition is easy
to induce [D2]. Conversely, we can prevent
thrashing if we can guarantee that «F, is
small, which may be done by using faster
auxiliary memory or by operating programs
with space allocations which vary only in
ranges where F is small.

Now suppose a working set policy is in
effect. Let the random variable w;(h;) denote
the working set size of program 7 for window
size h;, and let ¢.(h;) denote the prabability
that a page is not in the working set. Be-
cause the pages with highest reference den-
sities are most likely to be members of the
working set, g, is decreasing, i.e. g:{(h;} >
gilh: + 1). The duty factor d;(h;} for pro-
gram 7 under a working set policy satisfies

di(hs) 2 1/[1 + agi(ha)},

where the inequality holds because a page
not in the working set may still be in the
memory, 80 that g;{h;) is at least as large
as.the fault probability. Since g, is decreas-

(ii)

* Notation # << y means “z is much less than y.”

ing, we may always choose h; large enough
so that g.(h;) £ g for some given gy, 0 <
go < 1; therefore we may guarantee that

do = 1/(1 + ago) < di(hs) < 1.

In other words, we may always choose h;
large enough that program < operates at or
above the desired level d; of efficiency.
(Normally, we would choose dp so that the
relation dy << 1 is false.} This implies that

kde < Dy < k. (iii)

If we are considering adding the kth pro-
gram to memory, we may do so if and only if

E—1
wrlhe) < M -~ z__:, wilhs),

i.e. there is space in memory for its working
set. Assuming that dy << 1 is false, the addi-
tion of the kth program cannot cause thrash-
ing. Suppose it does, ie. suppose D «
Dy, ; by (ili) we have

kdy < Dy <€ Dhy < K,

which vyields the contradiction dy << 1.
Thus working set policies may be used to
prevent thrashing. Experiments on the RCA
Spectra 70/46 computer system appear to
verify this [D2].

PROGRAM STRUCTURE

Careful attention to algorithm organization
and program structure can improve the
performance of virtual memory systems.
There are two ways in which this can be
accomplished: distributing program code
properly into pages, and improving pro-
gramming style.

Program code is normally assigned to
pages simply by assigning the first z words
io page 1, the next z words to page 2, and
50 on. There is considerable evidence that
this may be far from satisfactory. Comeau
IC7] describes an experiment in which a
program consisting of many subroufines
was paged, first with the subroutines in
alphabetic order, then with the subroutines
grouped together according as they were

Virtual Memory . 183
likely to call one another; there was a re-
markable reduction in the number of page
faults using the latter method. McKellar
and Coffman [M4] have studied how matrix
elements should be assigned to pages and
how standard matrix operations could be
organized to give better performance under
paging; they too report a rather remarkable
improvement in certain cases.

Informally, the code distribution problem
1s: How can the compiler {or the subroutine
linker) be employed to distribute program
code and data into pages in order to improve
locality and obtain small, stable working
sets? I'ormally, the code distribution prob-
lem may be stated in the following way.
A program is regarded as a directed graph
G whose nodes represent instructions or
data and whose edges represent possible
single-step control transfers. With edge
{i,) is associated a cost ¢;; > 0 of travers-
ing that edge (e;; might, for example, repre-
sent the probability that {Z, 7) will be used).
Given a page size z = 1, a paginaiion of the
program is a partition of the nodes of ¢
into disjoint sets X, --- , X, such that X,
contains at most z nodes, 1 £ & £ 7. Bach
X, will be placed on its own page. For a
given pair of pages (X, X’), let

VX, X)) = 20 2 o
ieX jex'
denote the total cost of all edges passing
between X and X’. The cost of the pagina-
tion X, -+, X, is then

CXy, -, X = %

1<i<y<r
A pagination is optimal if it achieves mini-
mal cost. Caleulating an optimal paginaftion
for a given program is in general a hope-
lessly complex computation, and relatively
simple algorithms are known oaly in special
cases [K2, R1]. Even then, the prospective
user of such a scheme would be faced with
the problem of deciding whether he would
be executing the optimized code sufficiently
often that the long-term gavings would
balance the initial high cost of eobtaining
the optimized code.

One must be careful with this sort of
approach, However attractive the mathe-

ViX:, X,).

Computing Surveys, Vol, 2, No. 3, September 1970

184 . Peter J. Denning

matics involved, the results may not be
particularly useful except in certain obvious
cases such ag those mentioned above. If the
trend toward increased use of modular
programming continues, the value of using
a compiler to determine an optimal pagina-
tion is questionable; (1) program modules
tend to be small, and very often fit on their
own pages; and (2) in contradiction to the
agsumption that the code optimizer must
know the connectivity structure of the
entire program, the compiler of a module
may not know the internal structure of any
other module. (If it did, the very purpose of
modular programming would be defeated.)
The optimization process cannot, therefore,
be invoked prior to loading time; and if the
trend toward data dependent program
structures continues, there is some question
whether even the loader can perform mean-
ingful optimization.

Improving programming style to improve
locality is an almost intangible objective
and is something about which little is known
or can be said [K6]. A few experiments
show that locality (and therefore paging
behavior) is strongly a function of a pro-
grammer’s style, and it is possible to im-
prove many programs significantly by rela-
tively minor alterations in strategy, altera-
tions based on only a slight knowledge of
the paging environment B9, S2]. It is not
known, however, whether programmers can
be properly educated and inculeated with
the “right” rules of thumb so that they
habitually produce programs with “good”
loeality. If any such education is to be
fruitful for a large class of programmers, it

PROCESSOR
e SLAVE GONNECTIONS
--~ DISTRIBUTIVE CONNECTIONS
Fic. 20. Memory bierarchy structure

Computing Surveys, Vol. 2, No. 3, September 1970

must teach techniques that may be applied
without knowledge of machine details (page
size, memory size, and the like). Hipghly
structured programming languages, where
the “‘context” (see the section on The Prin-
ciple of Locality and the Working Set
Model) is readily detectable at the machine
level, may be the answer; in other words,
the programming language would ‘“force”
the programmer intce the ‘‘correct’ style.
The programming language Avgown, which
makes heavy use of a stack during execu-
tion, is an example of this; the working set
will surely contain the information near the
top of the stack, and is therefore easily
measured. Much more sophisticated ap-
proaches have been conceived [D14].

HARDWARE SUPPORT

We have seen that the three principal po-
tential difficulties with multiprogrammed,
paged memory systems are fragmentation,
thrashing, and the high space-time cost of
loading working sets into memory under
demand paging, These three problems are
partially attributable to the iarge speed
ratio T/A between the main and auxiliary
memory; if this ratio is large, it forces large
page sizes in order to make page transport
operations efficient, it makes proeessing
efliciency very sensitive to fluctuations in
fault. probability, and it esuses the space-
time cost of a single page-transport opera-
tion to be very high. Therefore, one aspect
of improving hardware {or virtual memory
concerns the reduction of this ratio.

The literature reports two directions in
which approaches to reducing the ratio
T/A have proceeded, to which we shall
refer as slave memory {“cache” memory)
[F5, L2, W3, W4] and distributive memory
[A3, D8, F1, L1, V1]. Both approaches
employ a memory hierarchy (Figure 20)
consisting of k “levels”; levels M,, .-+,
M, are electronically accessed (e.g. core
memory, thin fibm memory, or silicon-
register memory), and level M, is mechan-
ically accessed (e.z. drum or disk). The
electronic levels may be accessed without

latency time. Generally, the lower the num-
ber of the level, the faster its speed, the
higher its cost, and the lower its capacity.
The distinguishing feature is that slave
memory permits procesging only from level
M, , whereas distributive memory allows
processing from any of the electronic levels
My, -, My,

Typically, the combined capacity of the
electronic levels in these approaches is large
enough to hold all the information of all
active programs. Therefore, the transport
time for a page among the elecironic levels
is small, because the speed ratios between
adjacent levels can be made small. Accord-
ingly, a hierarchical memory organization
of this kind can achieve the objectives re-
quired to make paged virtual memory per-
form well.

The slave memory approach [W3] was
first implemented as the “cache store’” on
the IBM 360/85 [L2]. This approach is so
named because information transfers among
levels are entirely controlled by activity in
the (“master”) level M, . The rules of opera-
tion are:

1. Whenever a page is stored in M ; , there
is a copy of it in each of Moy, -+, M.
Whenever a page in M, is modified, all
copies of it in the lower levels must be
modified likewise.

2. Whenever a page not in A, is refer-
enced, a request for it is sent to the lower
levels; the retrieval time depends on the
“distance’ to the “nearest” level containing
a copy of the required page.

3. Whenever 3 is full and a new page is
brought in from My, , a replacement policy,
usually least recently used, is invoked to
select a page to be deleted (since there is
already a copy in M., , there is no need to
move the displaced page).

The principal advantage of this organiza-
tion is that a program’s working set will
rapidly accumulate in M, and be retained
there; accesses will thus be completed at
nearly the speed of M, . A second advantage
is that, because transport times are smail,
pages may be small, and all the advantages
of small pages are accrued. A third ad-

Virtual Memory . 185
vantage is that the mechanism is simple
enough to be implemented almost entirely in
hardware [W3]. A fourth advantage iy the
possibility of implementing certain associa-
tive processing operations in the main
level [S6].

Many modero processors employ an
“instruction stack,” which is a small num-
ber of registers (usually no more than 32)
that store the most recently referenced in-
struetions of a program. Not only does this
stack permit “lookahead,” it acts as a small
slave memory that allows processing to
proceed at nearly register speed for loops
that are contained in the stack [W3]. The
most notable examples of slave memory
implemented as diseussed above are the
cache memory [L2] on the IBM 360/85,
IBM 360/195, and CDC 7600. These sys-
tems use k = 3, M, being a silicon-register
memory with cycle time about 0.1 gsee ahd
M, a core memory with eycle time about
1 psee. The level M, is about 32K bytes
capacity, and has been found substantial
enough to accumulate the working sets of
all but the largest programs. Even if the
working set cannot be contained in M,
performance is not appreciably degraded
because the speed ratio between M, and
M, is small.

In the distributive memory approach, the
processor may access information stored in
any of the electronic levels. Thus the pages
of a given program Inay be distributed
among the various levels while being proc-
essed. Generally, the more frequently a
page is referenced, the higher should be the
level in which it is stored. The most notable
example of such a system is that at Carnegie-
Mellon University {F1, L1, V1}, which uses
k = 3; M, is a standard core memory with
cycle time about 1 psec and M, a large
capacity store (LCS) with eyele time about
8 usec.

The distributive memory system presents
certain sticky implementation problems not
found in the slave memory system. The
worst is a requirement, that there be a policy
to determine when a page should be moved
to a higher {or lower) level. These policies
are generally based on a tradeoff between

Computing Surveys, Vol. 2, No. 3, September 1970

136 . Peler J. Denning

the cost of not moving the page and running
at slower speed, and the cost of moving the
page; they generally require some estimate of
each page’s reference density for these de-
cisions, the estimates being obtained by
preprocessing [C1], by measurements taken
in a previous time quantum [I1], or dy-
namically [D8]. Svstems using dynamic
measurement techniques require additional
mechanism to avoid instability [D8].

Which of the two approaches—slave or
distributive memory—is superior is an un-
settled question. That the implementation
problems of distributive memory seem more
severe leads one to suspect that perhaps the
slave memory approach may be the betier
way fo use the hardware.

Reducing the ratio T/A is not alone
sufficient to improve performance of virtual
memory systems. A second aspect of im-
proving hardware for these systems con-
cerns mechanisms for obtaining measure-
ments useful in memory allocation. Most
gystems implement page table entries with
one or more of these extra bits present:

1. Modified bit. Set to 1 if and only if
the page was modified since being placed in
memory. If this bit is 0, the page may be
deleted rather than replaced, assuming there
1s a copy in a lower level of memory.

2. Use bit. Set to 1 whenever the page is
referenced, and to 0 by a usage metering
routine. The metering routine can compile
statistics on page use by reading these bits.

3. Unused bit. Set to 1 when a page is
placed in memory and to 0 the first time it
is referenced. This bit signifies that the page
has not yet been referenced by the program
that demanded it, and should not be re-
moved from memory at leagt until that time.

The use bits may serve to determine a
working set or to calculate reference den-
sities. Counters can also be used for this
purpose [D8]. If the addressing mechanism
containg a large enough associative memory
that its contents remain stable, then the
pages entered there may be regarded as the
program’s working set; similarly, the pages
which accumulate in the level M, of the
slave memory may be regarded as the pro-
gram’s working set.

Computing Surveys, Vol. 2, No. 3, Sepicmber 1970

A third aspect of improving virtual mem-
ory hardware eoncerns the nature of the
addressing mechanisms. Difficulties have
oceurred in virtual memories where informa-
tion is potentially sharable among distinet
address spaces [B7, D13). Here each seg-
ment may have two names: a “local’” name
which serves to identify it within a given
address space, and a “global” name which
serves to identify it systemwide. Local
names are interpreted in the usual way by
hardware (see the section on Implementa-
tion of Virtual Memory}, and global names
are interpreted by software (e.g. “file direc-
tories’). The mechanism for converting
global names to local names is quite involved
and time consuming [B7, D1]. The solution
appears to require that every segment have
one, system-wide name which may be in-
terpreted by hardware at every level of
memory [114].

CONCLUSIONS

We began this survev of virtual memory
system principles by tracing the history
and evolution of the forces that compelled
dynamic storage allocation, ie. desires for
program modularity, machine independence,
dynamie data structures, eliminating manual

overlays, multiprogramming, and time-
gharin the most_elegant solutions

to the{dynamic storage allocation roblem is
virtual memory, whereln & MM—
given the illusion that his address space is.
the “memory space. There-are two basm
approaches to imiplementing the automatic
translation of addresses from address to
memory . sgaee these being § ¢gmentatlon.
and paging} since segmentation is desired
by programmers and paging by system
implementers, the best lmplementa,tlun com- -

bines the two. We compared “pure”’ seg-..
mentation with paging, and found, paged

memory systems generally eror except
for three potential difficulties? (1) suscepti-
bility o low storage utilization for large
page sizes, (2) propensity toward thrashing
under multiprogramming, and (3) the high
cost of loading working sets under demand
paging at the start of a time quantum. One

problem with all implementations of virtual
memory in which the address space is much
larger than the memory space is potential
misuse by programmers elinging unduly to
the idea that space and time may be traded.
This last statement must, however, be in-
terpreted carefully. Programmers who have
been warned that the space-time tradeoff
does not hold, and have gone to the extra
work of reducing the total amount of ad-
dress space emploved, have often dnereased
the size of the working set. The objective is
to have a small, stable, slowly changing
working set. If this is achieved, the amount
of address space employed is immaterial.

These problems can be controlled, but re-
quire hardware support above and beyond
that offered by many current systems. Since
8 memory system is more than mere imple-
mentation of an address map, we included a
study of the principles of optimal replace-
ment policies, and found that the sorking
Set prineiple, together with the principle—ef
%g:gmx, is an implementation of the Prin-

iple of Optimality. By stating a method
whereby one may determine each program’s
working set, this prineiple implies that one
may take steps to avoid overcommitment
of memory, and thrashing.

ACKNOWLEDG MENTS

1 am deeply grateful to Jack B. Dennis
(of MIT), to Bernurd A. Galler and Bruce
W. Arden (both of the University of Michi-
gan), and to David Sayre (of IBM T. J.
Watson Researeh Center), whose penetrat-
ing comments proved invaluable in improv-
ing the manugeript. I should also like to
thank John E. Pomeranz (of the University
of Chicago) for suggesting some refinements
in the section on Demand Paging.

REFERENCES

Al. Anatg, J., sxp DuBNER, 1. Optimizing the
performance of a drum-like storage. TEEHR
Trans. C-18, 11 (Nov. 1969}, 992-997.

A2. Aro, A. V., Densing, P. J., anp UrLnman,
J. 1>. Principles of optimal page replace-
ment. Compuler Science Tech. Rep. No. 82,
Princeton. U., Princeton, N. J., Jan. 1970.

A3.

A4,

A5,

B1.

B2.

B3.

B4.

Bb.

B6.

B7.

BS.

B4,

B10.

C1.

Ccz.

C3.

C4.

Virtual Memory . 187

ANACKER, W., AND Wang, C.P. Performance
evaluation of computing systems with mem-
ory hierarchies. IEEE Trans. EC-16 (Dec.
1967), 764-772.

ArpEN, B. W., AND BORTTNER, D. Measure-
ment and performance of a multiprogram-
ming system. Proe. Second ACM Symp. on
Operating Systems Principles, Princeton,N. J.,
Oct. 20-22, 1969, pp. 130-146.

——, GaLregr, B. A., O'Briewn, T, C., axp
WesteErveLT, F. H. Program and address-
ing structure in a time-sharing environment.
J.ACM 13,1 (Jan. 1966), 1-16.

Baskerr, F., Browns, J. C., anp Rarxn,
W. M. The management of a multi-level
non-paged memory system. Proe. AFIPS
1970 Spring Joint Comput. Conf., Vol. 36,
pp. 459-465.

Batson, A., Ju, 8., anp Woop, I). Measure-
ments of segment size. Proe. Second ACM
Symp. on Operating Systems Principles,
Princeton, N, J., Oct. 20-22, 1969, pp. 25-29.
Also, Comm. ACM 18,3 (Mareh 1970), 1535-159.

Beuapy, L. A. A study of replacement
algorithms for virtual storage compuiers.
IBM Syst. J. 5, 2 (1966), 78-101.

Biased replacement algorithms for
multiprogramming. Rep. NC697, IBM T. I.
Watson Res. Center, Yorktown Heights,
N. Y., March 1967.

—— aNp Kugpner, C. J. Dynamie space
sharing in computer sysiems. Comm, ACM
12,5 (May 1969}, 282-288.

—, Nsuson, R. A., ano SHeEpLER, G. B.
An anomaly in the spaee-time characteristics
of certain programs running in paging ma-
chines. Comm. ACM 12,6 (%une 1969), 349-
353, :
Bexsoussan, A., Cunceen, C. T., axp
DaLey, R. C. The Multies virtual memory.
Proe. Second ACM Symp. on Operating
Svstems Principles, Princeton, N. J., Oet. 20~
22,1969, pp. 30-42.

Boprow, . G., anp MurrHY, D. L. Struc-
ture of a LISP system using two-level stor-
age. Comm. ACM 10,3 (March 1967), 155-159.

Brawn, B., anp Gusravson, F. Program
behavior in a paging environmeunt. Proc.
AFIPS 1968 Fall Joint Comput. Conf., Vol.
33, pp. 1019-1032.

BurrovucHs CorporRaTiON. The deseriptor
—A definition of the B5000 information
processing system. Burroughs Corp., 1961.

Cuen, Y. C. Selective transfer analysis.
Rep. RC-1926, 1IBM T. J. Waitson Regearch
Center, Yorktown Heights, N. Y., 1968.
CorrMan, E. G., JR. Analysis of a drum in-
put/output gueue under scheduled operation
mn a paged computer sysiem. J. ACM 16, 1
{Jan. 1969}, 73-90.

~——, aND VariaN, L. C. Further experimen-
tal data on the behavior of programs in a pag-
ing environment. Comm. ACM 11, 7 (July
1968), 471-474.

Couen, J. A. Use of fast and slow memories
in list processing languages. Comm. ACM 10,
2 {(Feb. 1967), 82-86.

Compairting Surveys, Vol. 2, No. 3, September 197¢

138

Cs.

Co.

Cr.

C8.

Di.

D2.

D3.

D4.

Ds.

Ds.

D7.

Ds.

D9.

D10.

Dil.

Diz.

D1s.

Di4.

. Peter J. Denning

Cougn, L. J. Stochastic evaluation of a
static storage alloeation. Comm. ACM 4, 10
{Oct. 1961), 460-464.

Coruins, G. 0., JR. Experience in automatic
storage allocatton. Comm. ACM 4, 10 (Oct.
1961), 436-440.

Comeau, L. A study of the effect of user
program optimization in a paging system.
ACM Symp. on Operating System Prineiples,
Gatlinburg, Tenn., Oct. 1-4, 1967 (7 pp.).

Corpaté, F. J. A paging experiment with

the Multics system. Rep. MAC-M-384, MIT

Project MAC, Cambridge, Mass., May 1968.
Dawey, R., ano Dexnis, J. B. Virtual
memory, processes, and sharing in muliics.
Comm. ACM 11, 5 (May 1968), 306-312.

DeMEis, W. M., anp WEizER, N. Measure-
ment and analysis of a demand paging time
sharing system. Proc. 24th Nat. Conf.
ACM, ACM Pub. P-69, 1969, pp. 201-216.

Dexning, P. J. FEffects of scheduling on

file memory operations. Proc. AFIPS 1967

szring Joint Comput. Conf., Vol. 30, pp.

0-21.

——. The working set model for program

lgéaémgvigor. Comm. ACM 11, 5 (May 1968),
~-333.

Resource allocation in multiprocess
computer systems. Tech. Rep. MAC-TR-50,
MIT Project MAC, Cambridge, Mass., 1968
{Ph. D. thesis).

Thrashing: Tts causes and prevention.
Proc. AFIPS 1968 Fall Joint Comput. Conf.,
Vol. 33, pp. 915-022.

Equipment configuration in balanced
computer systems. I[EEE Trans. C-18
(Nov. 1969), 1008-1012.
—— AND Bryno, J. L. On the management
of muliilevel memories. Computer Science
Teeh. Rep. 76, Princeton U., Princeton,
N. J., April 1969.
, Cuen, Y. C., Axp SHEDLER, G. 8. A
model for program behavior ynder demand
paging. Rep. R(C-2301, TBM T. J. Watson
Res. Center, Yorktown Heights, N. Y.,
Sept. 1968.
Dzwnis, J. B. Program structure in a
mulii-access computer. Tech. Rep. MAC-
g‘{R-lI, MIT Projeet MAC, Cambridge,
asg.

Segmentation and the design of mul-
tiprogrammed computer systems. J. ACH
12, 4 (Oet. 1965), H89-602.

—— aND GrasEr, E. L. The structure of
on-line information processing systems.
Proc. Second Congress on Information Syst.
Sei., Spartan Books, Washington, D. C,,
1965, pp. 5-14.

—— anp Van Horn, E. C. Programming
semantics for multiprogrammed computa-
tions. Comm. ACM 9, 3 (March 1966), 143-
155.

Programming generality, parallelism
and computer arehitecture. Proe.

Congr. 1968, Vol. 1, North-Holland, Amster-
dam, 1969, pp. 484-492 (Computation Struc-

Computing Surveyvs, Yol. 2, No. 3, September 1970

F1.

F2.

F3.

F4.

Fb.

H1.

H2.

I1.
Ta.

J1.

J2.

K1.

K2

K3.

K4.

K5.

K6.

L1.

tures Group Memo 32, MIT Projeet MAC,
Cambridge, Mass., Aug. 1968).

Frxes, R. E,, Laver, H. C., AND VAREHA,
A. L., Jr. Steps toward a general-purpose
time-sharing system using large capacity
core storage and TSS/360. Proe. 23rd Nat.
Conf. ACM, ACM Tub. P-68, 1968, pp. 7-18.
Fing, G. H., Jackson, C. W., anp McIsaac,
P. V. Dynamic program behavior under
paging. Proe. 21st Nat. Conf. ACM, ACM
Pub. P-66, 1966, pp. 223-228.

ForveprincHAM, J. Dynamie storage allo-
cation in the Atlas computer, including an
sutomatic use of a backing store. Comm.
ACM 4,10 (Oct. 1961}, 435-436.

FrerserGs, I. F. The dynamic behavior of
programs. Proc. AFIPS 1968 Fall Joint Com-
put. Conf., Vol. 33, pp. 1163-1168.

Fucuer, K., anp Henrig, 8. Considerations
in the design of a multiple eomputer system
with extended core storage. Comm. ACM 11,5
{May 1968), 334-340.

Heriepman, H. Complementary replace-
ment—A mets scheduling principle. Proe.
Second ACM Symp. on Operating Systems
Principles, Princeton, N. I, Oct. 20-22, 1969,
pp. 4346

Hour, A. W. Program organization and
record keeping for dynamic storage alloca-
tion. Comm. ACM 4, 10 (Oct. 196]1), 422-431.
Iirre, J. K. Basic Machine Principles.
American Elsevier, New ¥York, 1068.

—— anD Jooerr, J. G. A dynamic storage
allocation scheme. Compui. J. § (Oct. 1962),
200-209.

JounsToN, J. B. The structure of multiple

activity algorithms. Proe. Third Annual
Princeton Conf., Princeton, N. J., March
1069.

Jones, R. M. Factors affecting the efliciency
of a virwual memory. IEEE Trans. C-18, 11
(Nov. 1969), 1004-1008.

Xerrey, J. E., Jr. Techniques for storage
allocation algorithms. Comm. ACM 4, 10
(Oect. 1961), 449-454.

Kerwraiian, B. W. Optimal segmentation
points for programs. Proc. Second ACM
Symp. on Operating Systems Principles,
Princeton, N. J., Oet. 20-22, 1969, pp. 47-53.
KrLeurn, T., Enpwarns, D. B. G., LANIGAN,
M. J., axp Sumner, F. H. One-level storage
system. IRE Trans. EC-11, 2 (April 1062),
223-235.

Kxuru, D.E. The Art of Compuler Program-
ming, Vol Addison-Wesley, Reading,
Mass., 1968, pp. 435-455.

Kuck, D. J., anp Lawrig, 3. H. The use
and performance of memory hierarchies: A
survey. Tech. Rep. No. 363, Dep. of Computer
Hei., U. of Tllineis, Urbana, IIl., Dec. 1969.

Kouenner, C. I., ano Ranneen, B. Demand
paging in perspeciive. Proc. AFTPS 1968 Fall
Joint Comput. Conf., Vol. 33, pp. 1011-1018.
Laver, H. Bulk core in a 360/67 time sharing
system. Proc. AFIPS 1967 Fall Joint Comput.
Coni., Vol. 31, pp. 601-609.

]

L.2.

Mi.

Ma2.

M3.

M4.

M5,

O1.

02.

03.

Pi.

P2

R1.

R2.

R3.

Lipray, J. 8. The eache. IBM Syst. J. 7, 1
(1968}, 15-21.

MacKenzie, F. B. Automated secondary
storage management. Datamalion 11, 11
(1965), 24-28.

Martrson, R. L., Gecser, J., Suurz, D. R,
AND Trarcer, I. W. Evaluation Techniques
for Storage Hierarchies. IBM Syst. J. 9, 2
(1970), 78-117.

McCarruy, J., Coneaté, F. J., anp Dae-
cerr, M. M. The Linking Segment Sub-
program Language and Linking Loader.
Comm. ACM 6,7 (July 1963) 391-395.

McKeLnagr, A., ann Corrman, BE. G. The
organization of matrices and matrix opera-
tions in a paged multiprogramming environ-
ment. Comm. ACM 12, 3 (March 1969),
153-165.

MIT. Report of the long range computa-
tion study group, April 1961.

O’'NEeLn, R.W. A preplanned approach to a
storage allocating computer. Comm. ACM 4,
10 (Oct. 1961), 417.

Experience using a time sharing multi-
programming system with dynamic address
relocation hardware. Proc. AFIPS 1967 Spring
Joint Comput. Conf., Vol. 30, pp. 611-621.
OrrENHEIMER, G., AND WEZzER, N. Re-
source management for a medium scale time
sharing operating system. Comm. AOM 11, 5
(May 1968), 313-322,

PinkertoN, T. Program behavior and con-
trol in virtual storage computer systems.
CONCOMP Project Rep. No. 4, U. of Mich.,
April 1968 (Ph.D. thesis).

Poowr, P. C., axp Warrg, W. Machine-
independent software. Proc. Seeond ACM
Symposium on Operating Systems Principles,
Princeton, N. J, Oct. 20-22, 1989, pp. 19-24.
RamamoortHY, C. V. The analytic design of
a dynamic look ahead and program segment.-
ing system for multiprogrammed computers.
Proc. 21st Nat. Conf. ACM, ACM Pub. PP-66,
1966, pp. 229-239.

RanpeLL, B. A note on storage fragmenta-
tion and program segmentation. Comm.
ACM 12,7 (July 1369), 365-369.

—— anp Kvenner, C. J. Dynamic storage
allocation systems. Comm. ACM 11 (May
1968), 207-305.

R4.

S1.

S2.

S4.

583,

56.

V1.

w1

wz.

W3.

W4,
W5,

W6.

we.

Virtual Memory . 189

Riskin, B. N. Core allocation based on
probability. Comm. ACM 4, 10 (Oct. 1951),
454-459.

Sams, B. H. The case for dynamic storage
allocation. Comm. ACM 4, 10 (Oct. 1961),
417-418.

Sayrg, D. TIs automatic folding of programs
efficient enough to displace manual? Comm.
ACM 12, 12 (Dee. 1969), 656-660.

. SuEMER, J. E., AND GurTa, 3. C. On the

design of Bayesian storage allocation algo-
rithms for paging and segmentaiion. TEEE
Trans. C-18, 7 (July 1969), 644-651.

—— a~p SHirPEY, B. Statistical analysis of
paged and segmenited compuier systems.
IEER Trans. EC-15, 6 (Dec. 1966), 855-863.

Smit, J. L. Multiprogramming under a
page on demand strategy. Comm. ACM 10,
10 (Oct. 1967), 636-646.

Stone, H. 8. A logic-in-memory computer.
IEEE Trans. C-19,1 (Jan. 1970), 73-78.

VareHA, A. L., Ruruepce, R. M., axp GoLo,
M. M. Sirategies for structuring two-level
memories in 2 paging environment. Proc.
Second ACM Symp. on Operating Systems
Principles, Princeton, N. [J., Oct. 20-22, 1969,
pp. 54-59.

WeincanTeN, A, The Eschenbach drum
sﬁilzxeme. Comm. ACM 9, 7 (July 1966), 509-

Weizer, N., aNo OrPPENHEIMER, G. Virtual
memory management in s paging environ-
ment. Proc. AFIPS 1969 Spring Joint Com-
put. Coni., Vol. 34, p. 234.

WiLkes, M. V. Slave memories and dy-
namic storage allocation. IEEE Trans. EC-
14 (April 1965), 270-271.

Time Sharing Computer
American Elsevier, New York, 1958.

Computers then and now. J. ACM 135,
1 (Jan. 1968}, 1-7.

A model for eore space alloeation in a

time sharing system. Proe. AFIPS 1969

gf[;rir217g Joint Comput. Conf., Vol. 34, pp.
5-271.

WoLman, E. A fixed optimum cell-size for
records of various lengths. J. ACM 12, 1
(Jan 1965), 53-70.

R Systems.

Computing Surveys, Vol. 2, No. 3, September 1970

