
Virtual Memory

PETER J. DENNING

Princeton University,* Princeton, New Jersey
\

The need for automatic storage allocation arises from desires for program
modularity, machine independence, and resource sharing. Virtual memory is an
elegant way of achieving these objectives. In a virtual memory, the addresses a
program may use to identify information are distinguished from the addresses the
memory system uses to identify physical storage sites, and program-generated
addresses are translated automatically to the corresponding machine addresses.
Two principal methods for implementing virtual memory, segmentation and
paging, are compared and contrasted. Many contemporary implementations have
experienced one or more of these problems: poor utilization of storage, thrashing,
and high costs associated with loading information into memory. These and
subsidiary problems are studied from a theoretic view, and are shown to be
controllable by a proper combination of hardware and memory management
policies.

Key words and phrases: virtual memory, one-level store, memory allocation,
storage allocation, dynamic storage allocation, segmentation, paging, replacement
algorithms, storage fragmentation, thrashing, working set

CR categories: 4.3, 6.2

INTRODUCTION

From the earliest days of electronic com-
puting it has been recognized that , because
fast-access storage is so expensive, computer
memories of very large overall capacity must
be organized hierarchically, comprising at
least two levels, "main mem ory" and "auxil-
iary memory . " A program's information
(i.e. instruction code and data) can be
referenced only when it resides in main
memory; thus, information having immedi-
ate likelihood of being referenced must
reside in main memory, and all other infor-
mat ion in auxiliary memory. The storage
allocation problem is tha t of determining, at
each moment of time, how information shall
be distributed among the levels of memory.

During the early years of computing,
each programmer had to incorporate storage

* Department of Electrical Engineering. This work
was supported in part by National Aeronautics
and Space Administration Grant NGR-31-001-170.

allocation procedures into his program
whenever the total i ty of its information was
expected to exceed the size of main memory.
These procedures were relatively straight-
forward, amounting to dividing the program
into a sequence of "segments" which would
"over lay" (i.e. replace) one another in main
memory. Since the p rogrammer was inti-
mately familiar with the details of both the
machine and his algorithm, it was possible
for him to devise efficient "over lay se-
quences" with relative ease.

The picture began to change markedly
after the introduction of higher level pro-
gramming languages in the mid-1950s. Pro-
grammers were encouraged to be more
concerned with problem-solving and less
concerned with machine details. As the
complexity of their programs grew, so grew
the magnitude of the storage overlay prob-
lem. Indeed, by the late 1950s it was clear
tha t program operating efficiency could
suffer greatly under poor overlay strategies,

Computing Surveys, Vol. 2, No. 3, September 1970

154 * Peter J. Denning

CONTENTS

Introduction 153-157

Basic System Hardware 157

Definition of Virtual Memory 157-159

Manual Versus Automatic Memory Management 159-
160

Implementation of Virtual Memory 16O-165

Segmentation
Paging
Segmentation and Paging

Storage Utilization 165-172
Placement Policies
Overflow and Compaction
Fragmentation
Page Size
Compression Factor

Comparison of Paged and Nonpaged Memories 172

Demand Paging 173-177
Paging Drum
Cost

Program Behavior and Memory Management 177-183
Replacement Algorithms
Optimal Paging Algorithms
The Principle of Locality and the Working Set Model
Multiprogramming and Thrashing

Program Structure 183-184

Hardware Support 184-186

Conclusions 186-187

References 187-189

and it was generally agreed that storage
allocation had become a problem of central
importance. But, since programmers were
shielded from machine details by .program-
ming languages, it was increasingly diffi-
cult to persuade them to expend the now
relatively large effort required to devise good
overlay sequences. This situation led to the
appeal of computers havillg very large main
memories [M5].

Two divergent schools of thought about
solutions emerged. These have come to be
known as the static (preplanned) and dy-
namic approaches to storage allocation.
These two approaches differ on their assump-
tions about the most fundamental aspect of
the storage allocation problem, prediction,
both (1) of the availability of memory
resources, and (2) of certain properties of a
program's "reference string," i.e. its se-
quence of references to information.

The static approach assumes that. (1) is
either given or can be prespecified, and that
(2) can be determined either by preprocess-
ing the program and recording its reference
string, or by examining the structure of its
text during compilation [C5, K1, O1, R1, R4].
The dynamic approach assumes that (1)
cannot (or ought not) be prespecified, and
that (2) is determinable only by observing
the program during execution; the memory
space in use by a program should grow and
shrink in accordance with the program's
needs [$1]. Computer and programming
systems during the 1960s have so evolved
that, in a great many cases, neither memory
availability nor program behavior are suffi-
ciently predictable that the static approach
can provide a reasonable solution. The
reasons for this can be classed as program-
ming reasons and system reasons.

To understand the programming reasons,
it is useful to distinguish two concepts:
address space, the set of identifiers that may
be used by a program to reference informa-
tion, and memory space, the set of physical
main memory locations in which information
items may be stored. In early computer sys-
tems the address and memory spaces were
taken to be identical, but in many con-
temporary systems these spaces are dis-

Computing Surveys, Vol. 2, No. 3, September 1970

tinguished. This distinction has been made
to facilitate the eventual achievement of
three objectives.

1. Machine independence. There is no a
priori correspondence between address
space and memory space.

The philosophy behind machine inde-
pendence is: It relieves the programmer
of the burden of resource management,
allowing him to devote his efforts fully to the
solution of his problem; it permits equip-
ment changes in the computer system with-
out forcing reprogramming; and it permits
the same program to be run at different
installations.

2. Program modularity. Programs may
be constructed as collections of sepa-
rately compilable modules which are
not linked together to form a complete
program until execution time.

The philosophy behind program modularity
is: It enables independent compilation, test-
ing, and documentation of the components
of a program; it makes it easier for several
programmers to work independently on
parts of the same job; and it enables the
modules constructed for one job to be used
in another, i.e. building on the work of
others [D4, D5, D10, D l l , D12, D13,
P2, R3, W4].

3. List processing. Languages (e.g. LisP)
having capability for handling problems
involving structured data are in-
creasingly important.

As we suggested earlier, these three pro-
gramming objectives invalidate reliable pre-
dictability, upon which static storage allo-
cation is predicated. The mechanisms that
implement machine independence cannot
(by definition) establish a correspondence
between addresses and locations until exe-
cution time, much too late for a programmer
or a compiler to preplan memory use. Pro-
gram modularity makes it impossible for the
compiler of a module to know either what
modules will constitute the remainder of a
program or (even if it could know) what
their resource requirements might be. List
processing languages employ data struc-
tures whose sizes vary during execution and

Virtual Memory • 155

which, by their very nature, demand dy-
namic storage allocation.

The major system reasons compelling
dynamic storage allocation result from cer-
tain objectives arising principally in multi-
programming and time-sharing systems: (1)
the ability to load a program into a space of
arbitrary size; (2) the ability to run a
partially loaded program; (3) the ability to
vary the amount of space in use by a given
program; (4) the ability to "relocate" a
program, i.e. to place it in any available
part of memory or to move it around during
execution; (5) the ability to begin running a
program within certain deadlines; and (6)
the ability to change system equipment
without having to reprogram or recompile.
Program texts prepared under the static
approach require that the (rather inflexible)
assumptions about memory availability, On
which they are predicated, be satisfied be-
fore they can be run. Such texts are generally
incompatible with these six objectives.

Even within the dynamic storage alloca-
tion camp there was disagreement. One
group held that the-programmer, being best
informed about his own algorithm's opera-
tion, should be in complete control of storage
allocation. He would exercise this control
by calling on system routines which would
"allocate" and "deallocate" memory regions
on his behalf. This thinking is at least
partially responsible for the block struc-
ture and stack implementation of the
ALGOL programming language (1958) and
subsequently the ALgoL-oriented Burroughs
computers. It has also influenced the imple-
mentation of list-processing languages [B8,
C4, K4].

The other group in the dynamic storage
allocation camp advocated a very different
approach: automatic storage allocation. Their
thinking was influenced by their belief
that complicated programs beget storage
allocation problems so complicated that
most programmers could not afford the time
to manage memory well, and most particu-
larly by their belief that multiprogram-
ming would soon be a concept of great
importance. Because the availability in
main memory of particular parts of address

Computing Surveys, Vol. 2, No. 3, September 1970

156 • Peter J. Denning

space may be unpredictable under multi-
programming, a programmer's ability to
allocate and deallocate storage regions may
be seriously impaired. Realizing that the
principal source of difficulty was the small
size of programmable main memory, this
group advanced the concept of a o~e-level
store. In 1961 a group at MIT [M5] pro-
posed the construction of a computer having
several million words of main memory (an
amount then considered vast) so that the
storage allocation problem would vanish.
Economic reasons prevented this from ac-
tually being realized.

In 1961 the group at Manchester, Eng-
land, published a proposal for a one-level
store on the Atlas computer [F3, K3], a
proposal that has had profound influence
on computer System architecture. Their
idea, known now as virtual memory, gives
the programmer the illusion that he has a
very large main memory at his disposal,
even though the computer actually has a
relatively small main memory. At the heart
of their idea is the notion that "address"
is a concept distinct from "physical loca-
tion." It becomes the responsibility of the
computer hardware and software auto-
matically and propitiously to move infor-
mation into main memory when and only
when it is required for processing, and to
arrange that program-generated addresses
be directed to the memory locations that
happen to contain the information addressed.
The problem of storage allocation (for ob-
jects represented in virtual memory) thus
vanishes completely from the programmer's
purview and appears in that of the com-
puter system. By basing memory use on
system-observed actual use of space, rather
than (poor) programmer estimates of space,
virtual memory is potentially more efficient
that preplanned memory allocation, for it
is a form of adaptive system.

By the mid-1960s the ideas of virtual
memory had gained widespread acceptance,
and had been applied to the internal design
of many large processors--IBM 360/85 and
195, CDC 7600, Burroughs B6500 and later
series, and GE 645, to name a few. The
fact of its acceptance testifies to its general-
ity and elegance.

The foregoing discussion has summarized
the ideas leading to the virtual memory
concept. By distinguishing between ad-
dresses and locations, and automating stor-
age allocation, virtual memory facilitates
certain programming and system design
objectives especially important in multipro-
gramming and time-sharing computers. The
discussion in the remainder of this paper
divides into two general areas: the mecha-
riisms for effecting virtual memory, and the
policies for using the mechanisms. The prin-
cipal mechanisms are: segmentation, under
which the address space is organized into
variable size "segments" of contiguous
addresses; and paging, under which the
address space is organized into fixed size
"pages" of contiguous addresses. We shall
compare and contrast these two mecha-
nisms and show why systems using some
form of paging are predominant.

Although it has some very important
advantages, virtual memory has not been
without its problems. There are four of
particular interest. (1) Many programmers,
in their illusion that memory is unlimited,
are unduly addicted to the old idea that time
and space may be traded, in the sense
that a program's running time may be re-
duced if there is more programmable
memory space available. But space in a
virtual memory may be an illusion; un-
necessarily large and carelessly organized
programs may generate excessive overhead
in the automatic storage allocation mecha-
nism, inevitably detracting from tile effi-
ciency of program operation. Nonetheless,
as programmers and language designers
gain experience with virtual memory, this
problem should disappear. (2) Many paged
systems suffer severe loss of usable storage--
"fragmentation"--because storage requests
must be rounded up to the nearest integral
number of pages. (3) Many time-sharing
systems using "pure demand paging" (a
policy under which a page is loaded into
main memory only after an attempted
reference to it finds it missing) experience
severe costs as a program's working pages
are loaded singly on demand at the start
of each time quantum of execution. (4)
Many systems have shown extreme sensi-

Computing Surveys, Vol. 2, No. 3, September 1970

t ivi ty to "thrashing," a phenomenon of
complete performance collapse that may
occur under multiprogramming when mem-
ory is overcommitted. We shall demonstrate
that these problems may be controlled if
virtual memory mechanisms are governed
by sound strategies.

The reader should note that these four
observed inadequacies of many contem-
porary systems result not from ill-conceived
mechanisms, but from ill-conceived policies.
These difficulties have been so publicized
that an unsuspecting newcomer may be
led erroneously to the conclusion that vir-
tual memory is folly. Quite the contrary;
virtual memory is destined to occupy a
place of importance in computing for many
years to come.

BASIC SYSTEM HARDWARE

As our basic computer system, we take that
shown in Figure 1. The memory system
consists of two levels, main memory and
auxiliary memory. One or more processors
have direct access to main memory, but not
to auxiliary memory; therefore information
may be processed only when in main mem-
ory, and information not being processed
may reside in auxiliary memory. From now
on, the term "memory" specifically means
"main memory."

There are two time parameters of interest
here. The first, known as "memory reference
t ime," is measured between the moments
at which references to items in memory are
initiated by a processor; it is composed of
delays resulting from memory cycle time,
from instruction execution time, from "in-
terference" by other processors at tempting
to reference the same memory module
simultaneously, and possibly also from
switching processors among programs. We
take the average memory reference time to be
,5. The second time parameter, known as
" t ranspor t t ime," is the time required to
complete a transaction that moves infor-
mation between the two levels of memory;
it consists of delays resulting from waiting
in queues, from waiting for the requested
information transfer to finish, and possibly

Virtual Memory • 157

PROCESSORS

Fie,. 1. Basic system hardware

AUXILIARY
MEMORY

also from waiting for rotating or movable
devices to be positioned ("latency t ime").
We take the average transport time to be T.
Since main memories are ordinarily elec-
tronically accessed and auxiliary memories
mechanically accessed, ,5 is typically 1
~sec and T is typically at least 10 msec.
Thus speed ratios (T/h) in the order of 104
or more are not uncommon.

Main memory may be regarded as a
linear array of "locations," each serving
as a storage site for an information item.
Each location is identified by a unique
"memory address." If the memory contains
m locations, the addresses are the integers
0, 1, . - . , m - 1. If a i s an address, the
item stored in location a is called the "con-
tents of a,'; and is denoted c(a). Under
program control, a processor generates a
sequence of "references" to memory loca-
tions, each consisting of an address and a
command to " fe tch" from or " s t o r e " into
the designated location.

DEFINITION OF VIRTUAL MEMORY

As mentioned earlier, virtual memory may
be used to give the programmer the illu-
sion that memory is much larger than in
reality. To do this, it is necessary to allow
the programmer t~ use a set-of addresses
different from that provided by the memory
and to provide a mechanism for translating
program-generated addresses into the cor-
rect memory location addresses. An address
used by the programmer is called a "name"
or a "vir tual address," and the set of such
names is called the address space, or name
space. An address used b~,: the memory is
called a " locat ion" or "memory address,"

Computing Surveys, Vol. 2, No. 3, September 1970

158 • Peter J. Denning

!

2

4

7

i I
m-!

M0f~Y SPACE

ADDRESS SPACE

FiG. 2. Mapping from name to memory space

and the set of such locations is called the
memory space. F o r future reference we
denote the address space by N -- {0, 1,
• . . , n - 1} and the memory space by

M = {0, 1, . - . , m - 1} and we assume
n > m unless we say otherwise.

Since the address space is regarded as a
collection of potentially usable names for
information items, there is no requirement
that every virtual address "represent" or
"conta in" any information.

The price to be paid for there being no a
priori correspondence between virtual ad-
dresses and memory locations is increa,sed
complexity in the addressing mechanism.
We must incorporate a way of associating
names with locations during execution.
T o this end we define, for each moment of
time, a function f : N - + M U {4~} such tha t

' if i tem a is in M at location a',
f(a) = if i tem a is missing from M.

This function f is known as the address map,
or the address-translation function.

For reasons given earlier, it is to our
advantage to make n much larger than m,
but this is not necessary. Even if n _~ m,
virtual storage could help with the relocation
problem [Dll] , i.e. tha t of moving informa-
tion around in memory.

Figure 2 gives an example of a mapping
f, where a line (a, a') for a in N and a'
in M indicates tha t i tem a is stored in loca-
tion a', and the absence of a line indicates
tha t i tem a is not present in M. Figure 3
shows how a hardware device implementing

f could be interposed between the processor
and the memory to handle the mapping
automatically. Note that , by virtue of the
mapping f , the programmer may be given
the illusion tha t items consecutive in N are
stored consecutively in M, even though the
items may in fact be stored in arbi t rary
order. This proper ty of address maps is
known as "artificial contiguity" [R3].

The mapping device, when presented with
name a, will generate a p = f(a) if i tem a is
present in M, and a missing-item fault
otherwise. The fault will interrupt the
processing of the program until the missing
i tem can be secured from auxiliary memory
and placed in M at some location a' (which
takes one transport time); the address map
f is then redefined so that f(a) = a', and
the reference may be completed. If M is full,
some item will have to be removed to make
way for the item entering, the particular
item being chosen at the discretion of the
replacement rule (if item b is entering and the
replacement rule chooses the replace item a,
where a p -- f(a), then the address map is
redefined so tha t f(b) becomes a' and
f(a) becomes ¢). Contrasted with the re-
placement rule, which decides which items
to remove, are the fetch rule, which decides
when an item is to be loaded, and the
placement rule, which decides where to
place an item. I f no action is taken to load
an i tem into M until a fault for it occurs,
the fetch rule is known as a demand rule;
otherwise, if action is taken to load an item
before it is referenced, the fetch rule is
known as a nondemand or anticipatory rule.

ADDRESS TRANSLATION MECHANISM
-r 1
I MAP TABLE f I

'
O'

P t AOORESS } MEMORY
I

OPERATION:

a loaded into VA
if ath entry of j blank, missing-item fault
a' loaded into MA

FIG. 3. Implementation of address map

CompuLing Surveys, Vol. 2, No. 3, September 1970

Consider briefly the implementation of
the address map f. The simplest implemen-
tation to visualize, called direct mapping,
is a table containing n entries; the ath
entry contains a' whenever f(a) = a r, and
is blank (i.e. contains the symbol ~) other-
wise. If, as would normally be the case, n
is much greater than m, this table would
contain a great many (i.e. n - m) blank
entries. A much more efficient way to repre-
sent f is to create a table containing only
the mapped addresses; the table contains
exactly the pairs (a, a ~) for which f(a) = a'
and no pair (a, ~), and thus contains at
most m entries. Such a table is more com-
plicated to use; when presented with name
a, we must search until we find (a, a') for
some a', or until we have exhausted the
table. Hardware associative memories are
normally employed for storage of these
mapping tables, thereby making the search
operation quite efficient. (An associative, or
"content-addressable," memory is a memory
device which stores in each cell information
of the form (k, e),where k is a "key" and e
an "ent ry ." The memory is accessed by
presenting it with a key k; if some cell con-
tains (k, e) for some e, the memory returns
e, otherwise it signals "not found." The
search of all the memory cells is done si-
multaneously so that access is rapid.)

MANUAL VERSUS AUTOMATIC MEMORY
MANAGEMENT

The discussion in the Introduction reviewed
the motivation for automatic storage allo-
cation from a qualitative view. Before open-
ing the discussion of methods for imple-
menting and regulating virtual memory, we
should like to motivate automatic storage
allocation from a more quantitative view.
The question before us is: How well does
automatic storage allocation compete with
manual?

Although the literature contains sub-
stantial amounts of experimental informa-
tion about program behavior under auto-
matic storage management [B3, B9, C3,
F2, F3, F4, K5, O2, $2], authors have reached
conflicting conclusions. Many of these

Virtual Memory • 159

experiments addressed the question "How
do programs behave under given automatic
storage allocation policies?" but not the
question at hand, "How does automatic
storage allocation compare with manual?"
Experiments for the former question are
clearly of a different nature than those for the
latter. Therefore, at tempts to make in-
ferences about the latter from data gathered
about the former are bound to result in
conflicting conclusions. The following dis-
cussion is based on a paper by Sayre [$2],
who has summarized and interpreted the
work of Brawn and Gustavson [B9], for
these appear to be the only published works
addressing the latter question.

If the name space N is larger than the
memory space M, it is necessary to "fold"
N so that, when folded, N will "f i t" into M.
Let g(b, t) denote the inverse of the address
map f :

g(b, t) = I a if f(a) = b at time t,
undefined otherwise.

The address space N is said to be folded if,
for some b and tl < t2, g(b, tl) # g(b, t2).
That is, there is some memory location

w h i c h has been assigned to more than
one address during the course of a program's
execution. Between the instants tl and t~,
a sequence of commands, move o u t and
move in, must have been issued, which
caused g(b, tl) to be replaced by g(b, t2).
The name space N is manually folded if the
programmer has preplanned storage alloca-
tion, and has inserted the move o u t and
move in commands into the program text
where needed. The name space is auto-
matically folded if the move o u t and move
in commands are not in the program text,
but instead are generated by the replace-
ment and fetch rules, respectively, of the
virtual memory mechanism. Note that
manually folded text is intended to fit into
some specific memory space of size So,
whereas the automatically folded text may
fit into any nonempty memory space.

The question before us now is: Can auto-
matic folding compete with manual folding?
I t is reasonably clear that automatic folding
should be competitive when the speed ratio

Computing Surveys, Vol. 2, No. 3, September 1970

160 • Peter J. Denning

T/a between main and auxiliary memory is
small; but is it competitive when T/h is
large (say, 104 or greater)? Sayre reports
affirmatively.

Brawn and Gusta~vson, Sayre tells us,
considered a number of programs represent-
ing a wide range of possible behaviors, and
the following experiment in a memory sys-
tem with T/& in excess o f 104. For a given
program, let Ta(so) denote the total running
time (execution and transport time) when
N is folded automatically into a memory
of size So, when a demand fetch rule and a
good replacement rule are in effect. Let
Tm(so) denote the total running time when
N is folded manually for a memory of size
so. For the programs considered,

0.8 < T~(so)/T~(so) < 1.7,
(i)

W[Ta(so)/Tm(so)] = 1.21,

where E[] denotes expected value. In
other words, automatic folding was (on the
average) no more than 21 percent less
efficient than manual folding.

Now, let Ks(so) denote the number of
transports issued while the program ran
under the automatic folding conditions, and
Kin(so) denote the number of transports
under the manual folding conditions. For
the programs considered,

0.6 < K~(so)/K,,(So) < 1.05,

E[K~(so)/Km(so)] = 0.94.

Thus the automatic folder (i.e. the virtual
memory) generally produced fewer moves
than the manuM folder (i.e. the program-
mer). A similar result was observed by the
Atlas designers for a more restricted class of
programs [K3]. The advantage of manual
folding is that, unlike virtual memory with a
demand fetch rule, processing may be over-
lapped with transports This suggests that
anticipatory fetch rules might result in
ratios Ta(so)/T,~(so) consistently less than
one [P1].

The experiments show also that the auto-
matic folder is robust, i.e. it continues to
give good performance for memory sizes
well below the intended So. Specifically,
T~(s)/Tm(so) was found essentially constant

for a wide range of s, including s much less
than So. In other words, a given program is
compatible with many memory sizes under
automatic folding, but only one under
manual.

As we shall see in the section on Program
Behavior and Memory Management, virtual
memory management mechanisms perform
most efficiently when programs exhibit good
locality, i.e. they tend to concentrate their
references in small regions of address space.
We shall define a measure of locality, the
working set of information, which will be
the smallest set of virtual addresses that
must be assigned to memory locations so
that the program may operate efficiently.
Sayre reports that the running time under
automatic folding, Ta(s0), can be very
sensitive to programmers' having paid at-
tention to endowing the programs with
small working sets, and relation (i) depends
on this having been done. Should program-
mers not pay attention to this, very large
Ta(so)/Tm(so) can occur. Sayre reports that
the costs of producing good manually :folded
text appear to exceed by 25 to 45 percent
the costs for producing nonfolded text with
good locality. Thus, one can tolerate as
much as 25 percent inefficiency in the auto-
matic folding mechanism before virtual
memory begins to be less efficient than
manual folding. Relations (i) indicates this
generally is the case.

On the basis of the experimental evidence,
therefore, we may conclude that the best
automatic folding mechanisms compete very
well (and may indeed outperform) the best
manually folded texts. Virtual memory is
thus empirically justifiable.

IMPLEMENTATION OF VIRTUAL MEMORY

The table implementation for the address
mapping f described in the section on Defi-
nition of Virtual Memory is impractical,
because it would require a second memory
of size m to store the mapping table. In the
following sections we shall examine three
methods that result in a considerable re-
duction in the amount of mapping informa-
tion that must be stored. Each method

Computing Surveys, Vol, 2, No. 3, September 1970

groups information into blocks, a block
being a set of contiguous addresses in ad-
dress space. The entries in the mapping
table will refer now to blocks, which are far
less numerous than individual addresses in
address space. The first method--segmenta-
tion-organizes address space into blocks
("segments") of arbitrary size. The second
method--paging--organizes memory space
into blocks ("pages") of fixed size. The third
method combines both segmentation and
paging.

Both segments and pages have names,
which can be used to loeate entries in the
map tables. Segment names are usually (but
not always) assigned by the programmer and
are interpreted by the software, and page
names are usually assigned by the system
and interpreted by the hardware. Segmenta-
tion and paging, when combined, form an
addressing system incorporating both levels
of names. Otherwise, the only essential
difference between the two schemes is
paging's fixed block size.

Segmentation
Programmers normally require the ability

to group their information into content-
related or function-related blocks, and the
ability to refer to these blocks by name.
Modern computer systems have four objec-
tives, each of which forces the system to
provide the programmer with means of
handling the named blocks of his address
space:

• Program modularity. Each program
module constitutes a named block which is
subject to recompilation and change at any
time.

• Varying data structures. The size of
certain data structures (e.g. stacks) may
vary during use, and it may be necessary to
assign each such structure to its own, varia-
ble size block.

• Protection. Program modules must be
protected against unauthorized access.

• Sharing. Programmer A may wish to
borrow module S from programmer B, even
though S occupies addresses which A has
already reserved for other purposes.

These four objectives, together with

Virtual Memory • 161

machine independence and list processing,
are not peculiar to virtual memory systems.
They were fought for in physical storage
during the late 1950s [W5]. 'Dynamic storage
allocation, linking and relocatable loaders
[M3], relocation and base registers [Dll],
and now virtual memory, ~ll result from the
fight's having been won.

The segmented address space achieves these
objectives. Address space is regarded as a
collection of named segments, each being a
linear array of addresses. In a segmented
address space, the programmer references
an information item by a two-component
address (s, w), in which s is a segment name
and w a word name within s. (For example,
the address (3, 5) refers to the 5th word in
in the 3rd segment.) We shall discuss shortly
how the address map must be constructed
to implement this.

By allocating each program module to its
own segment, a module's name and internal
addresses are unaffected by changes in other
modules; thus the first two objectives may
be satisfied. By associating with each seg-
ment certain access privileges (e.g. read,
write, or instruction-fetch), protection may
be enforced. By enabling the same segment
to be known in different address spaces under
different names, the fourth objective may be
satisfied.

Figure 4 shows the essentials of an ad-
dress translation mechanism that imple-
ments segmentation. The memory is a
linear array of locations, and each segment
is loaded in entirety into a contiguous
region of memory. The address a at which
segment s begins is its base address, and the
number b of locations occupied by s is its
limit, or bound. Each entry in the segment
table is called a descriptor; the sth descriptor
contains the base-limit information (a, b)
for segment s if s is present in memory, and
is blank otherwise. The steps performed in
forming a location address a' from a name
space address (s, w) are shown in Figure 4.
Note that a missing-segment fault occurs
if s it not present in memory, interrupting
program execution until s is placed in
memory; and an overflow fault occurs if w
falls outside the allowable limit of s. Pro-

Computing Surveys, Vol. 2, No. 3, September 1970

162 •

SEGMENT

WORD

Peter J. Denning

SI~31WF~T TABLE ST

tl. ' "1 llA 7 LIMIT

MEMORY
AOORESS

OPERATION:

(s, w) loaded into segment and word registers
if sth entry of ST blank, missing-segment fault
if w > b, overflow fault
(a + w) loaded into MA

Fro. 4. Address translation for segmentation

teetion bits (the darkened region in the
table entry of Figure 4) can be checked
against the type of access being a t tempted
(i.e. read, write, or instruction-fetch) and a
protection fault generated if a violation is
detected.

The segment table can be stored in main
memory instead of being a component of
the address translation mechanism. Figure 5
shows the operation of the mapping mecha-
nism when the segment table is in memory
starting at location A. The segment table
is itself a segment, known as the descriptor
segment, and the segment table base register

SEGMENT MEMORY
- -~ AOORESS

SEGMENT

WORD BASE IdI~MOI~Y
REGISTER.

OPERATION :

(s, w) loaded into segment and word registers
(A + s) loaded into MA
c(A + s) fetched into MR
if MR blank, missing-segment fault
a := base field of MR
b := limit field of MR
if w > b, overflow fault
(a + w) loaded into MA
Fro. 5. Segmentation with mapping table in mem-

ory

is known sometimes as the descriptor base
register.

In this case, each program-generated
access would incur two memory-references,
one to the segment table, and the other to
the segment being referenced; segmentation
would thus cause the program to run as slow
as half speed, a high price to pay. A common
solution to this problem incorporates a
small high speed associative memory into
the address translation hardware. Each
associative register contains an entry (8, a, b)
and only the most recently used such entries
are retained there. If the associative memory
contains (s, a, b) at the moment (s, w) is to
be referenced, the information (a, b) is
immediately available for generating the
location address a ' ; otherwise the additional
reference to the segment table is required.
I t has been found that 8 to 16 associative
registers are sufficient to cause programs
to run at very nearly full speed [$4]. (The
exact number depends of course on which
machine is under consideration.)

Historically, the four objectives discussed
at the beginning of this section haw~ been
provided by "file systems," which permit
programmers to manipulate named "files"
and to control decisions that move them
between main and auxiliary memory. In
principle, there is no need for the pro-
grammer to use a file system in a virtual
memory computer, since auxiliary memory
is presumably hidden from him and all his
information may be permanently represented
in his address space. In practice, most
contemporary "vir tual memory systems"
provide both a virtual memory and a file
system, together with "file processing primi-
t ives" tha t operate outside the virtual
memory. In these systems, a "segment" is a
"file" tha t has been moved from auxiliary
memory into address space. Multics is the
only documented exception to this [B7].

Among the earliest proposals for segmen-
• tation, though without the use of an address

space, was Holt 's [H2]. Addressing schemes
very similar to that given in Figure 4 were
first implemented on the Rice University
Computer [I1, I2] and on the Burroughs
B5000 computer [B10, M1]. This idea was

Computing Surveys, VoL 2, No. 3, September 1970

expanded, its implications explored, and a
strong case made in its favor by Dennis
[DIO-D12]. Details of implementing seg-
mentation and of combining segments into
programs during execution are given by
Arden et al. [AS], and again by Daley and
Dennis [D1]. Dennis and Van Horn [D13],
Johnston [J1], and also Wilkes [W4], place
segmentation in proper perspective among
all aspects of multiprocess computer systems.
Randell and Kuehner [R3] place segmenta-
tion in perspective among dynamic storage
allocation techniques, and provide details
for its implementation on various machines.

Paging

Paging is another method for reducing
the amount of mapping information and
making virtual memory practical. Main
memory is organized into equal size blocks
of locations, known as page frames, which
serve as sites of residence for matching size
blocks of virtual addresses, known as pages.
The page serves as the unit both of informa-
tion storage and of transfer between main
and auxiliary memory. Each page frame will
be identified by its frame address, which is
the location address of the first word in the
page frame.

We suppose that each page consists of z
words contiguous in address space, and that
the address space N consists of n pages
{0, 1, 2, . . . , n - 1} (i.e. nz virtual ad-
dresses), and the memory space M consists
of m page frames {0, z, 2z, . . . , (m -- 1)z}
(i.e. mz locations). A virtual address a is
equivalent to a pair (p, w), in which p is a
page number and w a word number within
page p, according to the relation a = pz +
w, 0 <_ w < z, where p = [a/z], the
integer part of a/z, and w = R,(a), the
remainder obtained in dividing a by z. In
machines using binary arithmetic, the
computation that generates (p, w) from a is
trivial if z is a power of 2 [A5, Dll].

Figure 6 shows the essentials of the address
translation mechanism that implements
paging. The pth entry of the page table con-
tains frame address p' if page p is loaded in
frame p', and is blank otherwise. The steps
performed in forming location address a'

VtRTUAL
ADDRESS

Virtual Memory

P ~ T ~ . E PT

I
P

2 p' ~

• 1 6 3

MEMORY
ADDRESS

O P E R A T I O N :

a loaded in to VA
p := [a/z]
w : = R , (a)

if pth entry of PT blank, missing-page fault
(p' + w) loaded into MA

Fi~. 6. Address translation for paging

from virtual address a are shown in Figure 6.
Note that a missing-page fault occurs if p is
not present in memory, interrupting program
execution until p has been placed in an
available frame of memory. Protection bits
(the darkened area in the page table entry)
may be compared against the type of refer-
ence being attempted, and a protection
fault generated if a violation is detected.

As in the implementation of segmentation,
the page table can be stored in memory.
The modification of the address translation
mechanism follows the Lsame lines as Figure
5, and is not shown here. As before, program
operation may be speeded up by incorporat-
ing an associative memory into the address
translation mechanism to retain the most
recently used page table entries.

Paging was first used in the Atlas compu-
ter IF3, K3], and is presently used by almost
every manufacturer in at least one of his
products [R3]. As with any virtual memory
system, it shields, the programmer from
storage allocation problems, and is therefore
susceptible to misuse; its performance has
generally been encouraging [A4, 02, P1, $2],
but occasionally discouraging [K6]. Because
paging has received a great deal of attention
in the literature, and its behavior nonetheless
tends not to be widely understood, we shall

Computing Surveys, ¥ol. 2, No. 3, September 1920

k • .> ,•2 '~ : ~ : : ~ ' ~ , ~

164 • Peter J. Denning

SEGMENT PAGE
TABLE ST TABL~E PT

I "
WORD

OPERATION :

MEMORY
ADORE:S$

(s, w) loaded into segment and word registers
if sth entry of ST blank, missing-segment fault
if w > b, overflow fault
p := [w/z]
w' := R~(w)
if pth entry of PTA blank, missing-page fault
(p " + w') loaded into MA

FIo. 7. Address translation for segmentation and
paging

devote most of the later sections of this paper
to it.

Segmentation and Paging
Because paging by itself does not alter the

linearity of address space, it does not achieve
the objectives that motivate segmentation.
Because segmentation by itself requires that
contiguous regions of various sizes be found
in memory to store segments, it does not
result in the simple uniform treatment of
main memory afforded by paging. To under-
stand what is meant by "uniform treatment"
of memory, compare the problem of loading

new segment into memory with that of
loading a new page into memory. Loading a
segment requires finding an unallocated
region large enough to contain the new
segment, whereas loading a page requires
finding an unallocated page frame. The
latter problem is much less difficult than
the former: whereas every unallocated page
frame is exactly the right size, not every
unallocated region may be large enough,
even though the sum of several such regions
may well be enough. (The question of find-
ing or creating unallocated regions will be
considered later.)

It is possible to combine segmentation
and paging into one implementation, thereby
accruing the advantages of both. Figure 7
shows the essentials of such an addressing
mechanism. Each segment, being a small

linear name space in its own right, may be
described by its own page table. The sth
entry of the segment table contains :~ pair
(A, b) where A designates which page table
describes segment s and b is the limit for
segment s. The word address w is converted
to a pair (p, w t) as in paging, and p is used
to index page table A to find the frame
address pl containing page p. As before,
protection bits may be included in the seg-
ment table entry. As before, the segment and
page tables may be stored in memory, the
addressing mechanism being appropriately
modified. As before, associative memory may
be used to speed up address formation;
indeed, the associative memory is essential
here, since each program-generated mem-
ory reference address incurs two table
references, and the program could run at one-
third speed without the associative memory.
(If the processor has a sufficiently rich
repertoire of register*to-register operations,
speed degradation would not be as bad as
one-third.)

We mentioned earlier that segmentation
and paging combined serve to achieve the
objective of sharing or borrowing programs
(see the section on Segmentation .above).
Programmer X, who owns segment s, may
allow programmer Y to borrow s, and Y may
choose to call s by another name s'. Then
programmer X's segment table will contain
(A, b) at entry s, and programmer Y's
segment table will contain (A, b) at e, ntry s',
where A designates a single (shared) page
table describing the segment in question.
The details of implementation, as well as a
description of advantages and difficulties of
sharing segments, are adequately described
in [A5, B7].

Most addressing mechanisms use a single
register to implement the segment and word
registers shown separately in Figure 7. Typi-
cally the leftmost q bits of this register con-
tMn the segment name, and the rightmost r
bits contain the word name; thus there may
be as many as 2q segments and 2 ~ words
per segment. In these implementations the
r word-bits serve as the program counter
(PC). Now suppose the program attempts to
increment the program counter (i.e. PC : =

Computing Surveys, Vol. 2, No. 3, September 1970

PC + 1) when its contents are c(PC) =
2 * - 1; the result will be c(PC) = 0 and a
carry from the leftmost program counter
position. Some implementations require
tha t a segment's size limit b satisfy 0 _<
b < 2 r, whereupon this carry would trigger
an overflow fault. Other implementations
allow the carry to propagate into the seg-
ment field; thus if c(PC) = 2 ~ - 1 in segment
s and the operation PC : = PC + 1 is
performed, the result is c(PC) = 0 in seg-
ment s + 1 [R3].

STORAGE UTILIZATION

Our previous discussion has directed atten-
tion to the mechanisms of implementing
segmentation, paging, or both. A virtual
memory system, however, is more than mere
mechanism; it necessarily includes the
policies whereby the mechanisms are used.
We mentioned earlier tha t policies fall into
three classes:

1. Replacement policies. Determine which
information is to be removed from memory;
i.e. create unallocated regions of memory.

2. Fetch policies. Determine when in-
formation is to be loaded; i.e. on demand or
in advance thereof.

3. Placement policies. Determine where
information is to be placed; i.e. choose a
subset of some unallocated region.

Replacement and fetch policies use es-
sentially the same principles in both paged
and nonpaged systems, and present the
same degree of difficulty in either case; we
therefore defer discussion of these topics
until later. The placement policy for placing
k pages in a paging system is in principle
quite elementary; use the replacement policy
to free k pages. Placement policies for non-
paging systems are, however, considerably
more involved. To investigate why this is
so, we consider a very elementary model for
th~ behavior of a nonpaged memory system.

Placement Policies
We suppose that a linear m-word memory

is to be used to store each segment con-
tiguously (in the manner of the section on
Segmentation). At certain moments in time
transactions occur, which change the con-

Virtual Memory * 165

m°l

Fio. 8. Checkerboarding of memory

figuration of the memory. A transaction is
either a request to insert a new segment of
given size, or to delete some segment already
present. We assume tha t the system is in
equilibrium; i.e. that , over a long period of
time, the number of insertions is the same as
the number of deletions for segments of each
size. (For our purposes, the fetch policy is
the source of insertion requests and the
replacement policy the source of deletion
requests.) After a long time, the memory will
consist of segments interspaced with holes
(unallocated regions); as suggested by Figure
8, the memory has the appearance of being
"checkerboarded."

The placement algorithm, which imple-
rnents the placement policy, makes use of
two tables: the "hole table," which lists all
the holes, and the "segment table," which
already exists for use by the addressing
mechanism. An insertion request for seg-
ment s, which always adds entry s to the
segment table, may increase, leave un-
changed, or decrease the number of holes
depending respectively on whether s is
inserted so as to be surrounded by two boles,
a hole and a segment, or two segments.
The last possibility occurs with very low
probability and may be ignored; and the
first possibility is usually precluded because
placement policies make insertions beginning
at a boundary of the hole. A deletion request
for segment s, which always removes entry s
from the segment table, may decrease, leave
unchanged, or increase the number of holes,
depending respectively on whether s is
surrounded by two holes, by a hole and a
segment, or by two segments. Both the hole
table and the segment table must be modified
appropriately at each transaction.

We shall derive now two simple but im-
portant relationships for placement policies
having the properties described above. The

Computing Surveys, Vol. 2, No. 3. September 1970

166 • Peter J. Denmng

first is the "fifty percent rule" (due to Knuth
[K4]), which states that the average number
of holes is half the average number of seg-
ments. The other is the "unused memory
rule," which establishes a relation between
the difficulty of placing a segment and the
amount of unused memory.

FIFTY PERCENT RVL~ [K4]. Suppose the
memory system described above is in equilib-
rium, having an average of n segments and h
holes, where n and h are large. Then h is
approximately n /2.

To establish this, we find the probability p
that an arbitrarily chosen segment has a hole
as right neighbor ("right" has meaning
according to Figure 8). Over a segment's
lifetime in memory, half the transactions
applying to the memory region on its im-
mediate right are insertions, half are dele-
tions; thus p = ½. Therefore, the number of
segments with holes as right neighbors is
np = n/2, i.e. the number of holes is ap-
proximately n/2.

UNUSED MEMORY RULE. Suppose the
memory system described above is in equilib-
rium, and let f be the fraction of memory
occupied by holes. Suppose further that the
average segment size is So and that the average
hole size is at least kSo for some k > O. Then
f >_ k / (k + 2).

To establish this result for an m-word
memory we note that, by the fifty percent
rule, there are n /2 holes in memory; since
each segment occupies an average space of
size so, the amount of space occupied by
holes is m -- nso, and the average space per
hole (hole size) is x = (m -- nso)/h =
2(m - nso)/n. But we assume x ~ ks0,
which implies

(him)so < 2/(k + 2).

Then

f = (m - - n s o) / m = 1 - (n/m)so

_> ~ - 2 / (k + 2) = k / (k + 2).

In other words, if we wish to limit place-
ment algorithm overhead by maintaining
large holes, we must be prepared to "pay"
for this limitation by "wasting" a fraction f
of memory. This is not quite as serious as it

might seem, for simulation experiments
[K4] show that there is a large variance in
hole sizes, and it is often possible to make f
as small as 10 percent (i.e. k approximately
¼). Even so, it is not possible to reduce f to
zero.

Of the many placement algorithms having
the properties described above, there are two
of special interest. The first is appealing
because it makes best use of holes, and the
second is appealing because it is simple to
implement. Assume there are h holes of sizes
xl , x2, • •., xh, and an insertion request of
size s arrives.

1. Best fit. The hole table lists holes in
order of increasing size (i.e. xl ~_ x2 _< . . .
_< xh). Find the smallest i such that s _< xi.

2. First fit. The hole table lists holes in
order of increasing initial address. Find the
smallest i such that s < xl. (After a long
time, small holes would tend to accumulate
at the head of the hole list, thereby increas-
ing the search time. To prevent this, the
hole table is implemented as a circular list
with a "start pointer"; each search advances
the pointer and begins searching with the
designated hole.)

Knuth [K4] reports detailed simulation
experiments on these and other placement
policies. He finds that the first-fit algorithm
is the most efficient of a large class of al-
gorithms, including the best-fit. He finds also
that the memory size must be at least ten
times the average segment size for efficient
operation. Similar conclusions are also
reported by Collins [C6].

Knuth reports also on another algorithm
which he found slightly better than first-fit
but which, being not in the class of placement
policies described above, does not follow the
fifty percent rule and the unused memory
rule. This policy is called the "buddy sys-
tem." Its dynamic properties have not yet
been completely deduced [K4].

3. Buddy system. Assume that the re-
quest size is s = 2 ~ for some i ~ ,~. This
policy maintains k hole-lists, one for each
size hole, 21, 2 ~, . . . , 2 k. A hole may be re-
moved from the (i + 1)-list by splitting it in
half, thereby creating a pair of "buddies" of

Computing Surveys, Vol. 2, No. 3, September 1970

sizes 2 i, which are entered in the /-list;
conversely, a pair of buddies may be removed
from the/ - l i s t , coalesced, and the new hole
entered in the (i + 1)-list. To find a hole of
size 2 ~, we apply this procedure recursively:

procedure gethole(i)
begin if i ~ k + 1 then report failure;

if/-list empty then
begin hole := gethole(i + 1);

split hole into buddies;
place buddies in/-list;

end
gethole := first hole in/-list;

end

Overflow and Compaction
The unused-memory rule tells us that , in

equilibrium, we must tolerate a significant
loss of memory. In terms of Figure 8, the
memory has become so checkerboarded that
there are many small holes, collectively
representing a substantial space. Indeed, it
is possible that , when we scan the hole sizes
x~, x~, • •. , xh for a request of size s, we find
s > x~, 1 < i < h (i.e. the request can-
not be satisfied) even though s < ~]~=1 x~
(i.e. there is enough space distributed among
the holes). What can be done about this?

The solution usually proposed calls for
"compacting memory," i.e. moving seg-
ments around until several holes have been
coalesced into a single hole large enough to
accommodate the given request. Knuth [K4]
reports that simulation experiments showed
that , when the first-fit algorithm began to
encounter overflow, memory was nearly full
anyway; thus compacting it would provide
at best marginal benefit. In other words, a
good placement policy tends to obviate the
need for a compacting policy.

A somewhat different point of view can be
adopted regarding the role of memory com-
paction. Instead of using a sophisticated hole
selection policy and no compaction, we may
use a sophisticated compaction policy and

n o hole selection. Just as overhead in main-
taining the hole list previously limited our
ability to use memory fully, so the overhead
in running a compaction policy limits our
ability to use memory fully. To show this,
we consider the compaction scheme sug-

Virtual Memory • 167

/

I~ wm(#- #) ..L mf .~
V T

HOL£

Fio. 9. Configuration of memory after compaction

gested in Figure 9. At certain moments in
t ime--"compact ion ini t ia t ions"--computer
operation is suspended and all segments are
moved together at the low end of memory,
creating one large hole at the high end of
memory. Each insertion request is placed at
the low end of the hole, thereby moving the
boundary rightward; when the boundary
reaches the high end of memory, the next
compaction initiation occurs.

COMPACTION RESULT. Suppose the mem-
ory system described above is in equilibrium,
a fraction f of the memory being unused;
suppose that each segment is referenced an
average r times before being deleted, and that
the average segment size is So. Then the fraction
F of the time system expends on compaction
satisfies F ~ (1 -- f) / [1 -- f + (f/2)(r/so)].
To establish this result, observe tha t a refer-
ence occurs to some segment in memory each
time unit, and that one segment is deleted
every r references. Because the system is in
equilibrium, a new segment must be inserted
every r references; therefore the rate of the
boundary's movement is so/r words per unit
time. The system's operation time to is then
the time required for the boundary to cross
the hole, i.e. to = fmr/so. The compaction
operation re~luires two memory references--
a fetch and a s tore--plus overhead for each
of the (1 - f)m words to be moved, i.e. the
compaction time t~ is at least 2(1 -- f)m.
The fraction F of the t ime spent compacting
is F = 1 - to/(to + t~), which reduces to the
expression given.

Figure 10 shows a plot of F versus f, from
which it is evident that , if we are to avoid
expending significant amounts of t ime com-

Comput ing Surveys, Vol. 2, No. 3, September 1970

; Z!

168 • Peter J. Denning

F

o.e .-~,-, I

(14

O.4

0.2

0 f
o e.z 0.4 0.6 o.e Lo

Fro. 10. Inefficiency of compaction

pacting, we must tolerate a significant waste
of memory. Because of the relative slowness
of compaction compared to searching a well-
organized hole list, the former tends to be
less efficient than the latter, and compaction
is not often used.

In summary, nonpaged memory requires
an "investment," i.e. a certain amount of
unused memory and overhead in placement
policies, for efficient operation. Some sys-
tems, notably the Burroughs B5000 series
[R3] and certain CDC 6600 installations
[B1], have chosen to make this investment;
but most have elected to use paged memory,
which can be fully utilized by pages at all
times. Many of the techniques discussed in
this section have been used with great suc-
cess in applications of a less general purpose
nature, particularly in list-processing sys-
tems [BS, C4, K4].

£¢,)

Fro. 11. Probability of external fragmentation

Fragmentation
Our discussion in the previous section

unveiled a problem of some importance in
virtual memory systems; storage fragmenta-
tion, the inability to assign physical locations
to virtual addresses that contain informa-
tion.

There are three major types of storage
fragmentation. The first is external frag-
mentation [R2], which occurs in nonpaged
memories when checkerboarding becomes so
pronounced that every hole is too small to
be used. (More precisely, external frag-
mentation occurs for segments of size s with
probability E(s), the probability that
s > max{xl}, where {xi} are the hole sizes.
E(s) follows the curve suggested in :Figure
11.) The second is internal fragmentation
[R2], which results in paged memories be-
cause storage requests must be rounded up
to an integral number of pages, the last part
of the last page being wasted (Figure 12).
(More precisely, if z is the page size and s a
segment size, then s is assigned to k pages,
where (k -- 1)z < s < kz; then kz - s
words are wasted inside the last page.) The
third is table fragmentation, which occurs in
both paged and nonpaged memories because
physical locations are occupied by mapping
tables and are therefore unavailable for
assignment to virtual addresses.

Randell [R2] reports simulation experi-
ments showing that fragmentation raay be
serious, and that internal fragmentation is
more troublesome than external. His experi-
ments rely on three assumptions: (1) each
segment is entirely present or entirely
missing from memory, (2) each segment
begins at a new page boundary, and (3)
segments are inserted or deleted one at a
time. Many systems violate (1), there being
some nonzero probability that a segment's
final page is missing. Many systems violate
(2) and (3) by providing facilities theft allow

I ~ I 2 k

L I - l a o
v !

F~a. 12. Internal fragmentation

Computing Surveys, Vol. 2, No. 3, September 1970

many small segments to be combined into
one large contiguous region of address space
(e.g. a "relocatable loader" for virtual
memory, or a file system separate from
virtual memory). Thus fragmentation is not
as serious in practice as it could be, but then
again it cannot be ignored.

Page Size
Two factors primarily influence the choice

of page size: fragmentation, and efficiency
of page-transport operations.

There is a page size optimal in the sense
that storage losses are minimized. As the
page size increases, so increases the likeli-
hood of waste within a segment's last page.
As the page size decreases, so increases the
size of a segment's page table. Somewhere
between the extremes of too large and too
small is a page size tha t minimizes the total
space lost both to internal fragmentation
and to table fragmentation.

OPTIMAL PAGE SIZE RESULT. Let z be
the page size and so the average segment size;
suppose el is the cost of losing a memory word
to table fragmentation and c2 the cost of losing
a memory word to internal fragmentation,
and let c = c~/c~ . I f z << so, the optimal page
size Zo is approximately (2cs0) t.

To establish this result, suppose segment
size s is a random variable with expectation
E[s] = so. A segment may be expected to
occupy approximately so/z pages, each being
described by one page table word; the page
table cost for this segment is therefore ap-
proximately ClSo/Z. If z << so, the expected
loss inside the last page is approximately
z /2; the internal fragmentation cost for this
segment is therefore approximately c~z/2.
The total expected cost for fragmentation is
then

E i C I z] = (So/Z)C~ + (z/2)c~ .

If we set d E [C] z] / d z = 0 and solve for z,
we obtain the expression given for z0.

These results presume that each segment
begins on a page boundary (as suggested by
Figure 12), and tha t both the segment and
its page table are entirely present in memory.
Many virtual memory computers provide
mechanisms for loading or relocating a col-
lection of segments contiguously in address

Virtual Memory • 169

space, in which the internal fragmentation
will occur only in the last page of the last
segment in a such collection. I f there are k
segments in such a collection on the average,
then the foregoing results are modified by
replacing so by ks0, whence zo = (2ckso) ~.

These results are by no means new. In
fact, the problem of choosing page size to
minimize fragmentation is identical to tha t
of choosing block size in variable length
buffers to minimize space lost to internal
fragmentation and to chaining information.
Wolman [W7] has studied this issue in some
detail; he gives a detailed account of the
accuracy of the approximation z0 ~= (2s0) ½.

What might be a typical value for z0?
The available data on segment size [B2]
suggests tha t so g 1000 words in most cases;
taking this and c = 1, we find z0 _~ 45 words.
This is rather startling when we consider
that pages of 500-1000 words are commonly
used.

When we consider the other fac tor - -
efficiency of page-transport operat ions--we
discover the motivation for using a large
page size. Each page-transport operation
takes one transport t ime T (see the section
on Basic System Hardware above) to be
completed. The following expressions for T
on typical devices are lower bounds because
in deriving them, we have ignored queueing
delays and processor overhead expended on
name conversion and auxiliary memory
control.

1. Drums. To obtain a page from a
drum, one must wait an average of half a
drum revolution time t~ for the initial word
of the desired page to rotate into position.
If there are w words on the circumference
of the drum, the page transfer time tt is
t rz/w. Therefore

T = tr/2 + tt = t , (1/2 + z /w) .

Typically, t~ = 16 msec and w = 4000
words.

2. Disks (moving arm). A disk access is
just like a drum access except there is an
additional "seek t ime" t~ required to move
the arms into position. Therefore

T = t~ + tr/2 + tt = t, + t~(1/2 + z /w) .

Computing Surveys, Vo|. 2, No. 3, September 1970

170 • Peter J. Denning

T (pIJ

,o'

,o'

IO

£c

i I0 I00 0
Fzo. 13. Lower b o u n d t r a n s p o r t t i m e s

z

1.0 LCS 0.8 ~ ECS

0.6. / / DRUM

0.4.

0 z I I0 I00 I000
FIG. 14. Upper bound transport efficieneies

Typically, t8 = 100 msec, t~ = 30 msec,
and w = 4000 words.

3. Large capacity storage (LCS). This is
nothing more than a slow-speed core mem-
ory. If its cycle time is tc, then

T = t~ = ttz.

Typically, t~ = 10 psec.
4. Extended core storage (ECS). This is a

form of core memory with special transmis-
sion facilities; after an initial "access t ime"

ta, it delivers v words per main memory
cycle. Therefore

T = t~, + t , .= ta + (Z/v)tc.

Typically, t~ = 3 psec, tc = 1 psec, and v =
10 words.

Figure 13 shows these four lower bound
transport time expressions plotted for various
values of z. Note the several orders of magni-
tude differences at small page sizes. Figure
14 shows the corresponding upper bound
efficiencies e = t t / T plotted for various
values of z. I t is immediately apparent from
these figures tha t moving-arm disks should
never be used, neither for paging applications
nor for any other heavy-traffic auxiliary
memory applications [D3]. I t is also apparent
tha t drums should be used with care [C2,
D3]; and that if drums are used, a page size
of at least 500 words is desirable. ']?his is
why most paging systems use drums instead
of moving-arm disks for auxiliary storage,
why page sizes of 500-1000 words are com-
mon in these systems, and why some systems
have been experimenting with LCS [F1],
ECS [F5], and other [L2] auxiliary stores.

I t is equally apparent tha t there is a great
discrepancy between the page size for maxi-
mizing storage utilization and the page size
for maximizing page-transport efficiency--
about two orders of magnitude discrepancy.
I t is easy to see that the poor performance of
some of these systems [K6] is at least par-
tially at tr ibutable to this factor.

I t is sometimes argued that another factor
inhibiting small page sizes is the additional
hardware cost to accommodate the larger
number of pages. Whereas this hardware cost
is an initial one-shot investment, the in-
creased storage utilization provides a con-
tinuing long-term payoff, and the extra
hardware is probably worthwhile. The
cache store on the IBM 360/85 is an ex-
ample of a system where this investment
has been made, with apparently good effect.

One approach to constructing a system in
which a page size z0 is feasible would be to
use a much faster device, such as LCS or
ECS, to handle the traffic of pages in and
qut of main memory. Some systems have
adopted this approach IF1, F5, L2].

Computing Surveys, Vol. 2, No. 3, September 1970

Another approach--"par t i t ioned segmen-
t a t ion" - -has been suggested by Randell
[R2]. I t effects a compromise between the
large page size required for transport effi-
ciency from rotating auxiliary devices and
the small page size required for good storage
utilization. We shall describe a slight variant
to Randell 's scheme. The memory system
uses two page sizes: a "major page" whose
size is chosen to make transports efficient,
and a "minor page" whose size is chosen
close to z0. Suppose the major page size is
Z and the minor page size z, where Z is a
multiple of z. A segment of size s is assigned
a "head" consisting of K major pages such
that Z K < s < Z (K + 1), and a " ta i l"
consisting of k minor pages such that
zk < s - Z K < z(k-4- 1) , a n d K q - k _ > 1.
Internal fragmentation thus occurs only
within the last minor page. An address
translation mechanism that implements
partit ioned segmentation is shown in Figure
15. A major drawback to this scheme is
that , to operate effectively, segments must
be large enough so that they consist mostly
of major pages. Available data [B2] suggests
tha t this need not be the case.

Compression Factor
During any given run, certain sections of

a program's code will never be referenced
because conditional branch instructions will
have unfavorable outcomes. In other words,
an n-word program will, on a given run,
have occasion to reference only n' < n of
its words, and n ' - n addresses will have
been unreferenced. These n' - n unrefer-
eneed words are said to be superfluous [K5].
Storage losses due to loading superfluous
words into main memory are less serious in
paged memories using small page sizes
because, for small page size, unreferenced
blocks of code will tend to be isolated on
their own pages, which need never be
brought into memory. Belady's simulations
[B3] and O'Neill's data [02] confirm this.

The more are superfluous words isolated
on their own pages, the less space will a
program require, and the more "compres-
sible" will it be. For page size z and a given
run of the program, define the compression
factor c(z) to be the ratio of the number of

Virtual Menwry • 171

SEGMENT PAGE
TABLE ST TABLE p'r a

OPERATION :

(s, w) Loaded into segment and word registers
if sth entry of ST blank, missing-segment fault
if w > b, overflow fault
p := [w/Z]
p" :-=O
if pth entry of FT, marked by *,

p" := [(w - ZK)/z.]
if (p ÷ p")-th entry of PT~ blank, missing-page

fault
vo' := R,(w -- ZK)
(p' ÷ w') loaded into MA

Fro. 15. Partitioned segmentation

referenced pages to the total number of
pages. Tha t c(z) -- x implies tha t at least a
fraction 1 - x of a program's words are
superfluous, or conversely that x is the
maximum relative amount of memory space
a program needs on a given run. Note that
c(n) = 1 and c(1) = n ' / n . According to the
data presented by Belady [B3] and O'Neill
[02], the compression factor is approximated
by the expression

c(z) = a -~ b log2z, 25 < z _< 2",

where a .~ 0 and b > 0. The data suggests
the following properties of c(z):

1. Halving the page size tends to decrease
the compression factor by 10 to 15 percent;
thus 0.10 ~ b ~ 0.15 [B3].

2. For small z, 1 < z < 25, the expression
a + b log2 z is a lower bound on c(z), and in
particular c(1) = n ' / n _> a. Extrapolating
the data, a in the range 0.1 ~ a < 0.4
appear typical.

3. For page sizes z ~ 29, c(z) > 0.8
appear typical.

These results are significant. They reveal
a frequently overlooked potential advantage
of virtual memory: small page sizes permit a
great deal of compression without loss of
efficiency. Small page sizes will yield signifi-
cant improvements in storage utilization,

Colnputing Surveys, Vol. 2, No. 3, September 1970

]

172 • Peter J. Denning

TABLE I. COMPARISON OF PAGED AND NONPAGED MEMORY

Factor .Paged Nonpaged

Segmented name space

Number of memory accesses per pro-
gram reference:

1. With paging
2. With segmentation
3. With both
4. With associative memory mapping

Replacement policy

Fetch policy

Placement policy

Memory compaction

External fragmentation

Internal fragmentation

Table fragmentation

Compression factor

Feasible Feasible

2

3

Required

Usually demand

Required, but simple

Not required

None

Yes, but can be controlled by
proper choice of page size

Yes

Can be much less than 1 with
small page sizes

2

Required

Usually demand

Required, but complicated

Optional; of marginal value

Yes; controlled by placement
policy and memory size at
least ten times average
segment size

None

Yes

Usually 1

over and above those gained by minimizing
fragmentation. Nonpaged memory systems
(or paged systems with large page sizes)
cannot enjoy this benefit.

COMPARISON OF PAGED AND NONPAGED
MEMORIES

As we have discussed, the various imple-
mentations of virtual memory fall into two
classes: paged and nonpaged. We have
discussed a great number of facts pertaining
to each. Table I summarizes these facts and
compares the two methods.

According to Table I, paging is superior
to nonpaging in all respects save suscepti-
bility to internal fragmentation; hut internal
fragmentation can be controlled by proper
choice of page size. Not listed in the table

is an aspect of paged memory that makes
its implementation more elegant and much
"cleaner" than implementations of non-
paged memory: its "uniform" t reatment of
fnemory. Whereas paging regards main
memory simply as a pool of anonymous
blocks of storage, segmentation regards it
as a patchwork of segments and holes of
various sizes. The same statement holds
for auxiliary memory. Therefore (fixed
length) page transports are much simpler
to manage than (variable length) segment
transports. The difficulty of transporting
variable length segments is compounded
by overhead in watching out for the specific
segment length in order not to overrun
buffers. I t is no surprise that some form
of paging is used in almost all virtual mem-
ories.

Computing Surveys, "~ol. 2, No. 3, September 1970

DEMAND PAGING

Because paging is so commonly used and so
frequently discussed in the literature, the
remainder of our discussions center around
this topic. Demand paging, the simplest
form, is the most widely used. Demand
paging has--unfairly--been subjected t o
widely publicized criticism [F2, F4, K6, R3],
before anyone has had enough experience
to evaluate it properly.

In order to avoid maintaining a large
number of lightly used resources, time-
sharing and multiprogramming systems
attempt to increase the load factors on
resources by sharing them. To do this, time
is partitioned into disjoint intervals, each
program being allocated resources during
certain intervals but not during others.
(This is sometimes called resource multi-
plexing.) These intervals are defined either
naturally, by the alternation between
running states and input-output waiting
states of processing, or artificially, by time
quanta and preemption. The latter method is
used primarily in time-sharing systems,
where response-time deadlines must be
satisfied. We restrict attention to this case
throughout this section.

At the beginning of its allotted time
quanta, a program's working information
must be loaded into main memory. Older
time-sharing systems employed swapping
to do this, i.e. they would transport 'a pro-
gram's working information as a contiguous
unit into memory just before each time
quantum began, and o u t of memory just
after each time quantum ended. Demand
paging systems transport just one page (that
containing the next instruction to be exe-
cuted) into memory just before a program's
time quantum begins, and "page in" addi-
tional pages as the program demands them;
at time quantum end, no immediate action
will be taken to remove a program's pages
from memory, that being left up to the
replacement policy.

One occasionally hears proposals to the
effect that paging systems could be improved
markedly if swapping were used to load
(unload) a program's working information

Virtual Memory • 173

at the beginning (end) of a time quantum,
and demand paging were used within a time
quantum. We shall show that swapping is
at best of marginal value in systems using
either a nonmoving auxiliary store or a
specially organized drum, the paging drum.
Prepaging, however, may have some value
when properly managed from a paging drum.

Paging Drum
We pointed out in the section on Page

Size above that among all rotating or moving
auxiliary stores, only drums (or drumlike
stores [A1]) may be suitable for handling
page traffic through main memory. Even
then, a particular drum organization is
required for efficient operation. A paging
drum [A1, C2, D3, W1] consists of a drum
memory together with hardware (or soft-
ware) implementing an optimal scheduling
policy. As shown in Figure 16, the drum
surface is laid out into equal areas, each
capable of storing one page ;each such "drum
page" is identified by its "sector address"
i and its "field address" j. Each field is
equipped with a set of read-write heads. As
shown in Figure 17, the scheduler sorts
incoming requests into s separate "sector
queues" according as which sectors are
requested. Within a given sector queue,
service is in order of arrival (i.e. "first-come-
first-served"). The rotary switch arm re-
volves synchronously with the drum, point-
ing to queue i whenever sector i is under
the read-write heads. Suppose a read (write)
request for drum page (i, j) is at the head
of sector queue i. Just as the switch arm

SECTOR | FIEiD j DROM .PAGE O,j)

READ-WRITE
HEADS

FiG. 16. Layout of paging drum

Computing Surveys, Vol, 2, No. 3, September 1970

174 Peter J. Denning

am~nHo n t ~ $ r $

/ •

• x /

'N
SECTOR QUEUE

Fio. 17. Paging drum queue organization

reaches sector queue i, the heads for field j
are set to read (write) status and connected
to the drum channel. Then transmission
begins.

Paging drums are sometimes known as
"slotted drums" or "shortest-access-time-
first" drums. Some manufacturers market
drumlike "paging disks," which are fixed-
head disks with one head per track• These
are equivalent to paging drums.

The paging drum stands in contrast to its
historical predecessor, the "first-come-first-
serve" (FCFS) drum, which collects all
incoming requests into a single, order-of-
arrival queue. To compare these, we imagine
two systems: System P is a paging drum,
and System F an FCFS drum. In both
systems, the drum revolution time is t~ and
the number of sectors is s. Since most drum
allocation policies do not attempt to group
contiguous pages of a given program on
contiguous sectors, we may assume that
each request selects a sector at random
[A1, C2, D3, W1]. The "drum load" L is
the number of requests waiting in the drum
queue(s).

DRUM EFFICIENCY RESULT. Let ep(L)
denote the expected e~ciency of System P

and ep(L) that of System F, when the drum
load is held fixed at L. Then

ep(L) = (L + 1)/(s --k L -k 1),
L > i .

• e F (i) = 2 / (s -b 2),
Consider System P. The expression for

ee(L) is an approximation derived as follows.
Let to, h , ' " , t k , . . , be a sequence of
time instants at which requests csmplete
service and depart from the drum system.
(Since L is assumed fixed, a new request is
added to the drum system at each time
tk .) Then xk = tk - tk-1 denotes the service
time of the kth request, Since the requested
sector positions are statistically independent
and L is fixed, the service times x, have a
common distribution with expectation E[x].
Now, E[x] can be written E[x] = t -~- E[r],
where t = t~/s is 'a transmission time and
E[r] an expected rotational delay. To ap-
proximate E[r], we imagine a circle with
circumference tr having L -b 1 points dis-
tributed randomly about its perimeter; one
of these points represents the drum position
at the moment a request departs, and the
remaining L points represent the positions
of the requested sectors. The expected
distance between two of these points is
tr/(L q- 1) = E[r]. The efficiency is ep(L) =
t/E[x] = t/(t + E[r]), which reduces to the
expression given. In System F, each request
in the queue must complete its service
before the next may begin, and each selects
its sector randomly. Therefore eF(L) is
independent of L, and indeed el(L) =
e , 0) = e~(1) = 2 / (s + 2).

Several facts follow from this result. (1)
For small page sizes (large s) the efficiency
e~ is always small. (2) For any page size
there are always values of L that make ee
close to 1. (3) Whereas eF is constant,
ee(L -b 1) > ee(L); in other words, the
paging drum is "self-regulating," becoming
more efficient under heavier loads. (4) For
L > 1 and s ~_ 1, ee(L) > eF(L).

As one would suspect, the paging drum
(System P) gives smaller transport times
than the less efficient FCFS drum (System
F).

DRUM TRANSPORT TIME RESULT. Sup-

Computing Surveys, Vol. 2, No. 3, September 1970

pose a page request arrives when the drum
load is L. The time each system delays this
request is

Tp = t~(L/s + (s + 2)/2s),
L ~ O .

T~ = t ,(L + 1)(s -4- 2)/2s,

The incoming request will be known as
the "tagged" request. In System P, the
tagged request enters a sector queue whose
expected length is L' = L/s. Before com-
pleting service the tagged request experi-
ences the following additive delays: L/2 for
the drum to begin serving the first request
in the queue; L't , for the drum to begin
serving the tagged request; and t~/s for its
own transmission. Thus T~ = t~(L' -4-
½ + 1/s). In System F, the tagged request
joins the single queue with L requests ahead
of it. There are now L + 1 requests in the

t 1 queue, each requiring time r(~ + 1/S) to
complete.

From these two results we see that, under
normal drum loads (L > 0), ee > e~ and
T~ < TF, with the greatest differences
occurring at heavy loads. For these reasons,
paging systems using FCFS drums may
experience severe loss of efficiency.

Cost
To evaluate the "cost" of demand paging,

two concepts are useful: "space-time prod-
uct" and "working set." Suppose a program
occupies re(t) pages of memory at time t;
the space-time product of memory usage
across an interval (t~, t2) is defined to be

C(t~,h) = re(t) dt.
1

Since memory usage charges are usually
based both on the extent and duration of
memory usage, C(t~, t~) relates to the actual
dollar cost of using memory, and is often
termed "cost." Space-time cost has become
an important aid in determining the efficacy
of memory allocation strategies [B5, B6, D5,
D9, F1, L1, P1, R3]. The working set of a
program at a given time is the smallest
collection of its pages that must reside in
memory to assure some level of efficiency
(~ more precise definition will be given later)
[D4, D5].

Virtual Memory . 175

Let Cd(A) denote the space-time cost
of loading a working set into memory under
demand paging from auxiliary memory A,
and Ca(A) the cost of loading a working set
into memory under swapping from auxiliary
memory A. We shall establish f()ur asser-
tions:

• Under demand paging, the paging drum
costs significantly less than the FCFS drum
(i.e. Cd(F) -- Cd(P) is large).

• With nonmoving auxiliary storage
(e.g. A is LCS or ECS), demand paging never
costs more than swapping (i.e. Ca(A) _<
Cs(A)).

• The combined swapping and demand
paging strategy is at best of questionable
value when compared to "pure" demand
paging with a paging drum.

• Unless predictions can be made with
little error, prepaging, even from a paging
drum, may not be advantageous.

These assertions are considered in the
following paragraphs. Assume that a working
set of size w is to be loaded, that a single
transport operation requires processor time
to, and that the drum has revolution time
tr and s sectors.

The cost Cd(A) is determined as follows.
Suppose k - 1 of the w pages have already
been loaded and a fault for the kth page
occurs; we must reserve one more page of
memory and stop the program for the kth
transport time Tk. Since there is no correla-
tion between the order of page calls and
their order of storage on the drum, Tk = T
for 1 < k <: w. Thus

Cd(A) = 5~ kTk = k T
~ 1 (i)

= T(w(zo + 1)/2).

Now if A is the paging drum system P (see
the section on Paging Drum above), then
T = to + Te. Similarly, T = to + TF for
the FCFS drum system F. Applying the
Drum ~Fransport Time Result for load L,

Cd(F) - Cd(P) = (W(W. + 1)/2) t~(L/2).

As long as L >_ 1 (the usual case) the cost
difference grows as the square of the working
set size. This establishes the first assertion.

Computing Surveys, Vol. 2, No. 3, September 197~)

:i

176 • Peter J. Denning

The cost Ca(A) is determined as follows.
We reserve w pages of memory, then trans-
port the entire working set as a unit in a
t ransport t ime T t. Thus

Ca(A) = wT' . (ii)

If A is ECS with access time t~ (see the
section on Page Size above) and page trans-
mission time t t , then

T = t 0 + t~ + t~,

T' = to + t~ "b w t t .

Substituting these vMues into (i) and (ii)
respectively, we find

C~(A) - Cd(A)

= (w(w - 1)/2)(tt - to - t,).

This expression is positive if tt ~_ to -q- t~,
which normally is the case. If A is LCS,
then t~ = 0, and the same conclusion follows.
This establishes the second assertion.

A "swapping d rum" is an FCFS drum F
for which the system guarantees tha t each
working set's pages are stored on contiguous
sectors. Suppose a request for a working
set of w pages arrives when L other requests
of sizes ~ , • • • , vL are in the drum queue;
the swapping drum transport t ime is given
by

1

(The argument to derive T ' is analogous to
tha t for deriving Tp .) We are interested
in comparing

Cd(P) = (w(w + 1)/2)(to + Te),

C,(F) = wT ' .

We shall ignore to since to << t~. Consider
two extremes of the drum load v~, . . . , vL •
At the one, each v~ is a request to swap in a
full working set; taking w as the average
working set size and each v~ = w, we find
(after some algebra) tha t for all w > 0,
C,(F) > Cd(P). At the other extreme, each
v~ is a request for a single page; taking each
v~ = 1, we find (after some algebra) tha t

w > wo = I + 2Ls / (2L + s - - 2)

is necessary for Ca(F) < Cd(P). For the
normally heavy drum loads (L large) found
in paging systems, w0 _--~ s q- 1 is slightly
more than a full drum circumference.. If we
repeat the analysis to include the cost of
swapping w pages out again at time quantum
end, we find w0 ~ 2s; for typical drums 2s
is approximately 8000 words, a substantial
working set. To sum up: as the drum load
varies from the former extreme to the latter,
the system enters and exits states unfavor-
able to swapping; even in favorable states,
swapping is cheaper only when working
sets of substantial size are moved. Our
analysis does not account for two other
factors: it may be expensive to find or main-
tain a supply of contiguous sectors into
which working sets may be swapped, and
it may be expensive to implement both a
swapping policy and a demand paging
policy in the same system. Swapping thus
appears at best to be of marginal value in a
demand paging system. This establishes the
third assertion.

Now, let Cp(P) denote the cost of pre-
paging from drum system P, and suppose

> 0 is the probabili ty tha t a prepaged
page is not used. To prepage from drum P,
we would specify the w pages as a group
and add them to the drum load L. Ignoring
to, this costs approximately wTp', where
Tr ' is Tp evaluated at load L + w. Of these
w pages, ew were preloaded erroneously, so
there will be ew additional page faults;
assuming each of these replaces an erroneous
page with a correct one, the cost for each
is w T e . Thus,

Cp(P) = wTp' + ~w(wT~).

After some algebra, we find

w ~ w0 = (2L + s + 2) /

((1 -- 2e)(2L + s q- 2) -- 4)

is sufficient for Cp(P) < Cd(P) to hold. This
has two consequences. First, if • is small and
L large, then w0 ~ 1, and prepaging would
almost always be advantageous. Second, in
order tha t the denominator of the expression
for w0 be positive, we require

e < ½(2L -b s -- 2) / (2L + s zr- 2).

Computing Surveys, Vol. 2, No. 3, September 1970

If e is not small and L is small, then w0 would
be large, and prepaging would not be ad-
vantageous. Since the foregoing argument
is very qualitative and based on average-
value arguments, we must be careful not to
attach too much significance to the particu-
lar expressions given. Our intention is
showing that the advantage of prepaging
may be very sensitive to the relations among
e, L, and s, and that careful analysis would
be required to assess its value in a given
system. (See [P1].) This establishes the
fourth assertion.

The foregoing discussion establishes also
that the performance of virtual memory
may depend strongly on the capacity of the
channel carrying the traffic of pages through
main memory. Although we have not studied
it, the reader should realize that several
parallel channels between main and auxiliary
memory (contrasted with the single channel
presumed above) would provide further
increases in capacity.

In general, the smaller the ratio of paging
traffic through memory to the system's
capacity for handling it, the better the
performance of the virtual memory. To
minimize this ratio, we must (1) choose a
memory management policy to minimize the
rate at which a given program load generates
page faults, (2) modify program structure
to reduce the rate at which a given program
generates new page faults, and (3) provide
hardware support to increase the system's
capacity for handling page traffic. These
three aspects are examined in detail in the
following sections.

PROGRAM BEHAVIOR AND MEMORY
MANAGEMENT

Program behavior is among the least under-
stood aspects of computer system design
and analysis. And yet we need to model
program behavior if we are to have a sound
basis on which to predict a program's future
memory needs or if we are to understand
how close resource allocation policies are to
being optimal.

Vir!ua! Memory • 177

Replacement Algorithms
From now on we shall use N = {1, 2,

• . . , n} to denote the pages of a given
program. A program's dynamic behavior
may be described in machine independent
terms by its reference string

¢o -= r l r 2 . . . r k . . . , rk E N, k > 1,

which is a sequence of those pages from N
which are referenced by the program (not
necessarily distinct). We suppose this pro-
gram has been allocated a memory space of
size m, where 1 < m < n, and is to operate
in that space under paging. If t(rk) denotes
the time instant at which page rk is refer-
enced, then the expected time E[t(r~+l) -
t(rk)] is h if rk is present in memory and

-~ T otherwise (see the section on Basic
System Hardware). Therefore the expected
increment in space-time cost is

{ m~ if rk in
memory,

C(t(rk), t(rk+l)) = m(A q- T) otherwise.

When the page size is fixed and T > h
(typically, in fact, T >> ~), minimizing the
total cost of running a program under
paging requires minimizing the number of
page faults. To understand what this en-
tails, we need a precise definition of replace-
ment algorithm.

A subset S of N such that S contains
m or fewer pages (written [S[< m) is a
possible memory state, and 9lZ,, is the set
of all such S. A replacement algorithm
generally keeps records about the program's
behavior; the status of its records will be
called a control State q, and Q is the set of
all such q. A replacement algorithm con-
figuration is a pair (S, q). If the configura-
tion is (S, q) and page i is referenced, a
new configuration (S/, qt) is entered. We
describe this behavior b y the allocation
mapping

g: ~Zm X Q X N - + ffg,~ X Q,

where

g(S, q, i) = (S', q')

and i is in S'. Starting from an initial con-
figuration (So, q0), a replacement algorithm

Computing Surveys, Vol. 2, No. 3, September 1970

178 • Peter J . Denning

processes the references rlr2 . . . rk by gen-
erating a sequence of configurations.

(So, qo), (S,, q~), . . . , (S~, qk),

where

(Sk , qk) = g(Sk-1, qk-~ , r~), k > 1.

Thus a replacement algorithm A may be
described by specifying the 3-tuple A =
(Q, q0, g).

Now if A is a demand paging replace-
ment algorithm, then whenever (S', q') =
g(S, q, i), the memory state S p must satisfy
these properties:

• If i E S then S ~ = S (no page fault).
• If i ~ S and IS[< m, then S' =

S [J {i} (page i added to memory).
• I f i ~ S a n d ISI = m, t henA selects

somej E S andS ' = (S - {j}) (J {i} (page
i replaces j).

It can be shown that, for any nondemand
paging algorithm A, one may construct a
demand paging algorithm A' that produces
no more faults than A on every reference
string [A2, M2]. We are therefore justified
in restricting attention to demand paging
algorithms. From now on, the term "al-
gorithm" specifically means "demand paging
replacement algorithm."

Optimal Paging Algorithms
Suppose r~ . . - rk - . . rK is the reference

string generated by a given run of a pro-
gram, and the reference moment t(rk) is
that of a page fault. If algorithm A requires
precise knowledge of the future (rk+l --. r~)
to make its replacement decision at t(rk),
A is an "unrealizable" algorithm. Otherwise,
if A bases its decision at t(rk) only on as-
sumptions about the future (e.g. probabil-
ities), A is a "realizable" algorithm. In
most practical applications, we must be
content with realizable algorithms; un-
realizable ones would require "preprocess-
ing" the program and recording its refer-
ence string. Not only is this operation costly,
but the record so obtained may well be
invalid, due to conditional branching.

As discussed in the previous section, we
take as our optimality criterion the mini-

mization of the number of faults generated.
Since the days of the earliest paging machine,
people have reasoned that, to minimize the
number of faults, it is necessary to maxi-
mize the times between faults [K3]. There-
fore the following has been the accepted

PRINCIPLE OF OPTIMALITY. Let S =
{1 ~, 2 t, " " , m p} be the memory state at time
t, the moment of a page fault, and let t(i ~) > t
be the earliest moment at which page i ' is
next referenced. Define v(i ') = t(i ') -- t.
Replace that page i ' for which ~.(i t) is maxi-
mum. I f the future is not precisely known,
replace that page i ' for which the expected
time E[r(ir)] is max imum.

In the case that we maximize E[~.(i')]--
the case of realizable algorithms--we are
attempting only to minimize the expected
number of faults, rather than the actual
number of faults. Thus an optimal un-
realizable algorithm would produce fewer
faults than an optimal realizable algorithm.

The principle of optimality has great
intuitive appeal. Belady [B3] has used it to
develop an optimal unrealizable algorithm.
Many other authors have developed various
optimal realizable algorithms, each depend-
ing on the particular assumptions used to
determine E[r(i')]; for example, the Atlas
machine's algorithm assumed most pro-
grams were looping and therefore generating
periodic reference strings [K3], and several
systems used an algorithm that supposes
E[r(i')] = t - t ' (i ') where t ' (i ') < t is the
time i ' was most recently referenced (this
rule is called "least recently used"). We
shall not attempt to survey the multitude
of paging algorithms that have been pro-
posed and studied, these being amply treated
in the literature [B3, B4, B6, C3, (38, D4,
D5, D9, H1, K5, J2, K3, 02, S2, S3, $5].

Despite its intuitive simplicity, the Prin-
ciple of Optimality is known not to hold for
arbitrary assumptions about reference string
structure and statistics. Even when it does
hold, proofs of this are difficult, and are
known only in simple cases [A2, M2].

Even though the Principle of Optimality
may not in fact be always optimal, it is a
good heuristic, and experience and experi-

Computing Surveys, Vol. 2, No. 3, September 1970

mental evidence indicate that algorithms
based on this principle give nearly optimal
performance. This evidence, suggested in
Figure 18, is abstracted from the work of
Belady [B3], and of Coffman and Varian
[C3]. Let F(A, m, oo) denot~ the number of
faults generated as algorithm A processes
the reference string ,o under demand paging
in an initially empty memory of size m,
and define the fault probability

f(A, m) = ~E~11 ~ Pr[oo](F(A, m, ~)/I oo I),

where Pr[~] denotes the probability of oc-
currence of ~, and I~[denotes the length
of oo. The curves f(A, m) for "reasonable"
algorithms A lie in the shaded region of
Figure 18 (by "reasonable" we mean that
the assumptions used to determine E[r(i')]
in the Principle of Optimality are reason-
able). For comparison we have shown the
relative position of f(A, m) for Belady's
optimal unrealizable algorithm [B3]. The
point is: for reasonable A, f(A, m) is much
more sensitive to m than to A. Therefore,
although the choice of paging algorithm is
important, the choice of memory size is
critical.

Figure 18 brings out one other point.
Occasionally in the literature one finds
analyses of program behavior based on the
assumption of randomness, i.e. that each
page of a given program is equally likely to
be referenced at any given reference. This is
equivalent to the assumption that E[r(i')] =
E[r(j ')] in the Principle of Optimality. If
this were so, the fault probability for every
realizable algorithm A would have to be
f(A, m) = (n -- m)/n. This simply is not
the case. Programs tend to reference certain
pages heavily, others lightly, still others
rarely.

Contrary to intuition, increasing the
memory size m may not always result in a
corresponding decrease in f(A, m); that is,
f(A, m) mhy not be decreasing in m, as
suggested by Figure 18. The FIFO (first-in-
first-out) replacement algorithm, for 'ex-
ample, is known to exhibit an increasing
section in its fault probabihty curve, for
certain reference strings [B6]. Mattson et

Virtual Memory • 179

ffA,m)

!

"', , / ~IZAaLE A

/ , , ~ , , "~NOOM" a~oen.Ms

UNRIEALIZAEU[~ A ~ ~ ~'~xx x
01 I "" ~: ~ m

I n

Fro. 18. Fault probability

al. [M2] have discovered a very interesting
class of replacement algorithms, called
stack algorithms, whose f-curves are always
decreasing in m. These algorithms are de-
fined as follows. Let ¢o be a reference string,
and let S(A, m, ¢o) denote the memory state
after A has processed ~ under demand pag-
ing in an initially empty memory of size m.
Algorithm A is a stack algorithm if

S(A, m, oo) ~ S(A, m Jr 1, oo),
(i)

l < m < n ,

for every reference string w. That is, the
contents of the m-page memory are always
contained in the (m + 1)-page memory, so
that the memory states are "stacked up"
on one another. The LRU (least-recently-
used) replacement algorithm, for example,
is a stack algorithm (to see this, note that
S(LRU, m, ~) always contains the m most
recently used pages). Consider a stack
algorithm A and a reference string ~x. If
x is in S(A, m, w)--there is no fault when
x is referenced--then by (i) x is also in
S(A, m Jr- 1, w); thus increasing the mem-
ory size can never result in more page
faults, and f(A, m) must be decreasing in
m for every stack algorithm A. The class
of stack algorithms contains all the "reason-
able" algorithms, and two algorithms known
to be optimal [A2, M2]. They are particu-
larly easy to analyze [M2].

Computing Surveys, Vol. 2, No. 3, September 1970

180 • Peter J. Denning

The Principle of Locality and the Working
Set Model

An important program property, alluded
to in previous sections, is locality. Infor-
mally, locality means that during any inter-
val of execution, a program favors a subset
of its pages, and this set of favored pages
changes membership slowly. Locality is an
experimentally observed phenomenon mani-
festing itself partly as a tendency for refer-
ences to a given page to cluster, partly in
the shape of the f (A , m) curve in Figure 18
[B3, B4, D4, D5, D9], and partly in the
rapidity with which a program acquires
certain pages on demand at the beginning
of a time quantum [C3, F2]. Locality is not
unexpected, by the very nature of the way
programs are constructed:

--Context. At any given time a program
is operating in one of its modules, which
causes a concentration of references in cer-
tain "regions" or "localities" of address
space. For example', its instructions are
being fetched from within the pages of some
subroutine, or its data are being fetched
from the content of some specific data seg-
ment.

--Looping. Programs tend often to loop
for a long time within a small set of pages.

In order to render the statement of
locality more precise, we introduce the
notion of the "reference density" for page i:

ai(k) = Pr[reference rk = i], i E N.

Thus 0 _< a~(k) _~ I and ~ at(k) = 1. Al-
though a program's reference densities are
unknown (and perhaps unknowable), the
definition of "working set" given below
obviates the need for attempting to measure
them. By a "ranking" of a program's pages
we mean a permutation R(k) = (1', 2',
• . . , n ') such that a , (k) ~ . . . ~_ a~,(k);
a ranking R(k) is "str ict" if a , (k) > . - . >
a~,(k). A "ranking change" occurs at refer-
ence k if R(/c - 1) ~ R(k); a "ranking life-
t ime" is the number of references between
ranking changes. Ranking lifetimes will
tend to be long if the a~(k) are slowly vary-
ing functions of k.

PRINCIPLE OF LOCALITY. The rankings

R(k) are strict and the expected ranking life-
times long.

From the principle of locality comes the
notion of "working set." A program's work-
ing set at the kth reference is defined to be

W(k, h) = {i E N I page i appears among

rk-h+l ".- rk}, h ~ 1.

In other words, W(k, h) is the "contents"
of a "window" of size h looking backwards
at the reference string from reference rk.
The working set at time t is W(t, h) =
W(k, h) where t(r~) < t < t(rk+l). Page i is
expected to be a member of the working set
if it is referenced in the window, i.e. if

k
ai(j) ~ 1.

j~k--h+l

(This equation, together with assumptions
about the at(k), could be used to determine
a value for h. For example, if it were as-
sumed that ai(k) = al and it were declared
that pages with a~ < a0 for some given a0
ought not be expected as members of the
working set, then h = 1/ao .) Therefore, a
working set is expected to contain the "most
useful" pages; by the principle of locality it
changes membership slowly.

Now suppose locality holds and R(k) =
(1 p, 2', . . . , n ') . If i ' is ranked higher than
j ' (i.e. a~,(k) > aj,(k)) then E[r(i ')] <
E[r(j')], and because ranking lifetimes are
long, this relation is expected not to change.
Since i ' is more likely than j ' to be in
W(k, h), there follows:

WORKING SET PRINCIPLE. Suppose mem-
ory management operates according to the
following rule: A program may run if and
only i f its working set is in memory, and a
page m a y not be removed if it is the member
of a working set of a running program. Then,
according to the principle of locality, this rule
is an implementation of the principle of opti-
mality.

The working set principle is more than a
memory management policy, for it implies
a strong correlation between processor and
memory allocation. Its implementation does
not depend on measurement of reference

Computing Surveys, Vol. 2, No. 3, September 1970

Virtual Memory • 181

densities. This principle is used explicitly in
at least one computer system, the RCA
Spectra 70/46 [D2, O3, Wl].

Working sets exhibit a number of impor-
tant properties. Let w(h) denote the expected
working set size, i.e. w(h) = E[I W(t, h) I].
It is shown in [D5] that, for h P_ 1,

(1) 1 _< w(h) < min {n, h},
(2) w(h) < w(h t- 1) (nondecreasing),
(3) w(h -q- 1) -q- w(h - 1) < 2w(h) (con-

cave down),

which give w(h) the general character of
Figure 19. The following is also shown in
[D5]. Let g(h) denote the probability that a
page, when referenced, is not in W(t, h).
Suppose h is increased by 1, so that a new
reference (rL-h) is included in the window;
the resulting change in the working set size
is

Z x W = { : otherwise.ifrt-hisn°tinW(t'h)'

But then E[5W] = g(h), and we have the
important result that

~(h) = w(h + 1) - w(h) .

This suggests that measurements of a pro-
gram's working set size function can be used
to obtain approximations to f(A, m), for
m = w(h) and working set strategy A. It is
possible to relate w(h) to certain properties
of reference strings [D5], and to use w(h) in
determining how much memory is required
in a given computer system [D7]. Finally,
let w(h, z) denote the expected working set
size (in pages) when the page size is z, and
apply the compression results of the section
on Compression Factor:

zlw(h, zl) _< z~w(h, z2) if zl < z2.

That is, a working set will comprise fewer
words for smaller page sizes.

The definition given above is not, of
course, the only possible definition for work-
ing set. As specified, the method for measur-
ing a working set is after the fact and its
reliability depends on the slowly varying
assumption about reference densities. The
method will fail to predict the imminent

w(h)

I
/ I

/

i i

~ h
O

FiG. 19. Expected working set si~e

presence in the working set of a page which
was not referenced in the window. This
definition is designed for systems where the
future is unknown, where the principle of
locality holds most of the time, and where a
"maximum likelihood" estimate of the
future is sufficient. A still open question
concerns how to use "context" and "loop-
ing" properties, together with knowledge of
program structure, to predict before it is
referenced that a page will shortly become a
member of the working set.

Multiprogramming and Thrashing
Paging algorithms for multiprogrammed

memories normally lie at or between two
extremes:

1. Locally. The memory is partitioned
into "work spaces," one for each program.
The paging algorithm is applied independ-
ently in each work space. In particular, a
page fault in a given program can cause a
replacement only from its own work space.
The size of a work space remains fixed until
allowed to change by the system.

2. Globally. The paging algorithm is
applied to the entire collection of running
programs, as if that collection were one
large program, without regard for which
pages belong to which programs. In particu-
lar, a page fault in a given program may
cause a replacement from arty program in
memory. The size of a program's work space
is therefore randomly variable.

The working set principle, so formulated

Computing Surveys, Vol. 2, No. 3, September 1970

182 • Peter J. Denning

that it tells how memory is to be managed
under multiprogramming, is a form of a
local policy. Indeed, global policies are in
general suboptimal, partly because there is
no way to determine when memory is "over-
crowded," and partly because there is no
way to guarantee that a program's work
space is large enough to contain its working
set even if memory is not "overcrowded."

Multiprogramming under a global policy
is susceptible to thrashing, a collapse of
performance that may occur when memory
(or parts of memory) is overcommitted
[D6]. Thrashing is a complicated phenome-
non. At the risk of oversimplification, we
shall derive a condition that estimates when
it will occur. We assume (1) that the i th
program in memory has average work space
m~ and fault probability f i(ml) under the
given global policy, where f~ is stationary
over the time interval under consideration;
and (2) for each i, f i (m') ~ f~(m) whenever
t o t e m .

A "du ty factor" d(m) for a program occu-
pying a work space of average size m may
be defined as follows: if f(m) is the program's
fault probability, then the expected number
of references between faults is l / f (m); if each
memory reference takes expected time 5
(see the section on Basic System Hardware)
and each page transport takes expected
time T, then the expected fraction of time
this program spends in execution is

d(m) [5/ f (m)l /[5/ f (m) + T],
o~ = T / ~ .

= 1 / [1 --~ af (m)] ,

Using condition (2) above, it is not difficult
to show that , if m' < m,

0 ~ d(m) -- d(m') < a(f (m') -- f (m)) . (i)

If d(m) -- d(m') is near its upper bound and
a is large, a relatively small change in work
space size will be reflected as a large change
in d. This is necessary to induce thrashing.

Now imagine the following conditions
holding for an M-page multiprogrammed
memory using a global policy. Initially there
are k - 1 programs in memory, the i th pro-
gram occupies a work space of average size
mi ~ 1, and ml -b " - + mk-1 = M. When

the kth program is introduced, it is granted
mk' pages and the global policy changes the
remaining mi to mi' < m~. Letting Dj de-
note the total expected processing efficiency
when j programs are in memory, we .have

k--1

Dk-, = ~ d,(mi),

k

Dk = ~ di(m~').
i=l

Thrashing occurs if Dk << D~_1,1 i.e. the
addition of one more program triggers a
collapse of processing efficiency. Using (i)
we find

k--1

Dk-j -- Dk < a ~ (f~(m~') -- f~(m~))
i~l

-- dk(mk') (it)

aFo -- dk(mk').

Now if the quanti ty Dk_~ -- Dk is near its
upper bound and aF0 is not small, then it is
possible to obtain Dk_l << Dk. Experiments
on the RCA Spectra 70/46 computer sys-
tem, for which a > 104 (a drum auxiliary
memory), show that this condition is easy
to induce [D2]. Conversely, we can prevent
thrashing if we can guarantee tha t aF9 is
small, which may be done by using faster
auxiliary memory or by operating programs
with space allocations which vary only in
ranges where F0 is small.

Now suppose a working set policy is in
effect. Let the random variable ~(h~) denote
the working set size of program i for window
size h~, and let g~(h~) denote the probability
that a page is not in the working set. Be-
cause the pages with highest reference den-
sities are most likely to be members of the
working set, gi is decreasing, i.e. gi(hi) >
g~(h~ + 1). The duty factor d~(h~) for pro-
gram i under a working set policy satisfies

d,(h~) > 1/[1 + age(hi)I,

where the inequality holds because a page
not in the working set may still be in the
memory, so tha t g~(h~) is at least as large
as the fault probability. Since g~ is decreas-

Notation x << y means "x is much less than y."

Computing Surveys, Vol. 2, No, 3, September 1970

ing, we may always choose h~ large enough
so that g~(hO _< go for some given go, 0 <
go <_ 1 ; therefore we may guarantee that

do ~ 1/(1 + ago) _~ ddh~) _< 1.

In other words, we may always choose h~
large enough that program i operates at or
above the desired level do of efficiency.
(Normally, we would choose do so that the
relation do ~ 1 is false.) This implies that

l~do < Dk _< k. (iii)

If we are considering adding the kth pro-
gram to memory, we may do so if and only if

k--1

w,(hk) _< M - ~ ~i(h~),
i--1

i.e. there is space in memory for its working
set. Assuming that do << 1 is false, the addi-
tion of the kth program cannot cause thrash-
ing. Suppose it does, i.e. suppose Dk <<
Dk_~ ; by (iii) we have

kdo < Dk << Dk-1 < lc,

which yields the contradiction do << 1.
Thus working set policies may be used to
prevent thrashing. Experiments on the RCA
Spectra 70/46 computer system appear to
verify this [D2].

PROGRAM STRUCTURE

Careful attention to algorithm organization
and program structure can improve the
performance of virtual memory systems.
There are two ways in which this can be
accomplished: distributing program code
properly into pages, and improving pro-
gramming style.

Program code is normally assigned to
pages simply by assigning the first z words
to page 1, the next z words to page 2, and
so on. There is considerable evidence that
this may be far from satisfactory. Comeau
[C7] describes an experiment in which a
program consisting of many subroutines
was paged, first with the subroutines in
alphabetic order, then with the subroutines
grouped together according as they were

Virtual Memory • 183

likely to call one another; there was a re-
markable reduction in the number of page
faults using the latter method. McKellar
and Coffman [M4] have studied how matrix
elements should be assigned to pages and
how standard matrix operations could be
organized to give better performance under
paging; they too report a rather remarkable
improvement in certain cases.

Informally, the code distribution problem
is: How can the compiler (or the subroutine
linker) be employed to distribute program
code and data into pages in order to improve
locality and obtain small, stable working
sets? Formally, the code distribution prob-
lem may be stated in the following way.
A program is regarded as a directed graph
G whose nodes represent instructions or
data and whose edges represent possible
single-step control transfers. With edge
(i, j) is associated a cost c~i >_ 0 of travers-
ing that edge (c~ might, for example, repre-
sent the probability that (i, j) will be used).
Given a page size z ~ 1, a pagination of the
program is a partition of the nodes of G
into disjoint sets X~, . . . , Xr such that Xk
contains at most z nodes, 1 < k < r. Each
X~ will be placed on its own page. For a
given pair of pages (X, X/), let

v(x, x ') = 52 52 c,j
i E X j E X ~

denote the total cost of MI edges passing
between X and X/. The cost of the pagina-
tion X1, • • • , X~ is then

C(X,, . . . , X r) = ~ V(X, ,Xj) .

A pagination is optimal if it achieves mini-
mal cost. Calculating an optimal pagination
for a given program is in general a hope-
lessly complex computation, and relatively
simple algorithms are known only in special
cases [K2, R1]. Even then, the prospective
user of such a scheme would be faced with
the problem of deciding whether he would
be executing the optimized code sufficiently
often that the long-term savings would
balance the initial high cost of obtaining
the optimized code.

One must be careful with this sort of
approach. However attractive the mathe-

Computing Surveys, Vol. 2, No. 3, September 1970

184 • Peter J. Denning

matics involved, the results may not be
particularly useful except in certain obvious
cases such as those mentioned above. If the
trend toward increased use of modular
programming continues, the value of using
a compiler to determine an optimal pagina-
tion is questionable: (1) program modules
tend to be small, and very often fit on their
own pages; and (2) in contradiction to the
assumption that the code optimizer must
know the connectivity structure of the
entire program, the compiler of a module
may not know the internal structure of any
other module. (If it did, the very purpose of
modular programming would be defeated.)
The optimization process cannot, therefore,
be invoked prior to loading time; and if the
trend toward data dependent program
structures continues, there is some question
whether even the loader can perform mean-
ingful optimization.

Improving programming style to improve
locality is an almost intangible objective
and is something about which little is known
or can be said [K6]. A few experiments
show that locality (and therefore paging
behavior) is strongly a function of a pro-
grammer's style, and it is possible to im-
prove many programs significantly by rela-
tively minor alterations in strategy, altera-
tions based on only a slight knowledge of
the paging environment [B9, $2]. It is not
known, however, whether programmers can
be properly educated and inculcated with
the "right" rules of thumb so that they
habitually produce programs with "good"
locality. If any such education is to be
fruitful for a large class of programmers, it

PROCESSOR

....... S L k V E CONNECTIONS
- - - DISTRIBUTIVE CONNECTIONS

Fro. 20. Memory hierarchy structure

must teach techniques that may be applied
without knowledge of machine details (page
size, memory size, and the like). Highly
structured programming languages, where
the "context" (see the section on The Prin-
ciple of Locality and the Working Set
Model) is readily detectable at the machine
level, may be the answer; in other words,
the programming language would "force"
the programmer into the "correct" style.
The programming language ALGOL, which
makes heavy use of a stack during execu-
tion, is an example of this; the working set
will surely contain the information near the
top of the stack, and is therefore easily
measured. Much more sophisticated ap-
proaches have been conceived [D14].

HARDWARE SUPPORT

We have seen that the three principal po-
tential difficulties with multiprogrammed,
paged memory systems are fragmentation,
thrashing, and the high space-time cost of
loading working sets into memory under
demand paging. These three problems are
partially attributable to the large speed
ratio T/A between the main and auxiliary
memory; if this ratio is large, it forces large
page sizes in order to make page transport
operations efficient, it makes processing
efficiency very sensitive to fluctuations in
fault probability, and it causes the space-
time cost of a single page-transport opera-
tion to be very high. Therefore, one aspect
of improving hardware for virtual memory
concerns the reduction of this ratio.

The literature reports two directions in
which approaches to reducing the ratio
T/A have proceeded, to which we shall
refer as slave memory ("cache" memory)
[F5, L2, W3, W4] and distributive memory
[A3, D8, F1, L1, V1]. Both approaches
employ a memory hierarchy (Figure 20)
consisting of k "levels"; levels M1, . . .
Mk_l are electronically accessed (e.g. core
memory, thin film memory, or silicon-
register memory), and level Mk is mechan-
ically accessed (e.g. drum or disk). The
electronic levels may be accessed without

Computing Surveys, Vol. 2, No. 3, September 1970

latency time. Generally, the lower the num-
ber of the level, the faster its speed, the
higher its cost, and the lower its capacity.
The distinguishing feature is that slave
memory permits processing only from level
M1, whereas distributive memory allows
processing from any of the electronic levels
M1, - . . , Mk-1.

Typically, the combined capacity of the
electronic levels in these approaches is large
enough to hold all the information of all
active programs. Therefore, the transport
time for a page among the electronic levels
is small, because the speed ratios between
adjacent levels can be made small. Accord-
ingly, a hierarchical memory organization
of this kind can achieve the objectives re-
quired to make paged virtual memory per-
form well.

The slave memory approach [W3] was
first implemented as the "cache store" on
the IBM 360/85 [L2]. This approach is so
named because information transfers among
levels are entirely controlled by activity in
the ("master") level M~ . The rules of opera-
tion are:

1. Whenever a page is stored in Mi , there
is a copy of it in each of M~+i, • • • , Mk-1.
Whenever a page in M1 is modified, all
copies of it in the lower levels must be
modified likewise.

2. Whenever a page not in Mj is refer-
enced, a request for it is sent to the lower
levels; the retrieval time depends on the
"distance" to the "nearest" level containing
a copy of the required page.

3. Whenever M~ is full and a new page is
brought in from M~+j, a replacement policy,
usually least recently used, is invoked to
select a page to be deleted (since there is
already a copy in M~+i, there is no need to
move the displaced page).

The principal advantage of this organiza-
tion is that a program's working set will
rapidly accumulate in M~ and be retained
there; accesses will thus be completed at
nearly the speed of Mj . A second advantage
is that, because transport times are small,
pages may be small, and all the advantages
of small pages are accrued. A third ad-

Virtual Memory . 185

vantage is that the mechanism is simple
enough to be implemented almost entirely in
hardware [W3]. A fourth advantage is the
possibility of implementing certain associa-
tive processing operations in the main
level [$6].

Many modern processors employ an
"instruction stack," which is a small num-
ber of registers (usually no more than 32)
that store the most recently referenced in-
structions of a program. Not only does this
stack permit "lookahead," it' acts as a small
slave memory that allows processing to
proceed at nearly register speed for loops
that are contained in the stack [W3]. The
most notable examples of slave memory
implemented as discussed above are the
cache memory [L2] on the IBM 360/85,
IBM 360/195, and CDC 7600. These sys-
tems use k = 3, Mj being a silicon-register
memory with cycle time about 0.1 gsec and
Ms a core memory with cycle time about
1 gsec. The level Mj is about 32K bytes
capacity, and has been found substantial
enough to accumulate the working sets of
all but the largest programs. Even if the
working set cannot be contained in M1,
performance is not appreciably degraded
because the speed ratio between M1 and
M2 is small.

In the distributive memory approach, the
processor may access information stored in
any of the electronic levels. Thus the pages
of a given program may be distributed
among the various levels while being proc-
essed. Generally, the more frequently a
page is referenced, the higher should be the
level in which it is stored. The most notable
example of such a system is that at Carnegie-
Mellon University IF1, L1, V1], which uses
k = 3; M~ is a standard core memory with
cycle time about 1 ~sec and Ms a large
capacity store (LCS) with cycle time about
8 ~sec.

The distributive memory system presents
certain sticky implementation problems not
found in the slave memory system. The
worst is a requirement that there be a policy
to determine when a page should be moved
to a higher (or lower) level. These policies
are generally based on a tradeoff between

Computing Surveys, Vol. 2, No. 3, September 1970

186 • Peter J. Denning

the cost of not moving the page and running
at slower speed, and the cost of moving the
page; they generally require some estimate of
each page's reference density for these de-
cisions, the estimates being obtained by
preprocessing [C1], by measurements taken
in a previous time quantum [F1], or dy-
namically [D8]. Systems using dynamic
measurement techniques require additional
mechanism to avoid instability [D8].

Which of the two approaches--slave or
distributive memory--is superior is an un-
settled question. That the implementation
problems of distributive memory seem more
severe leads one to suspect that perhaps the
slave memory approach may be the better
way to use the hardware.

Reducing the ratio T/A is not alone
sufficient to improve performance of virtual
memory systems. A second aspect of im-
proving hardware for these systems con-
cerns mechanisms for obtaining measure-
ments useful in memory allocation. Most
systems implement page table entries with
one or more of these extra bits present:

1. Modified bit. Set to 1 if and only if
the page was modified since being placed in
memory. If this bit is 0, the page may be
deleted rather than replaced, assuming there
is a copy in a lower level of memory.

2. Use bit. Set to 1 whenever the page is
referenced, and to 0 by a usage metering
routine. The metering routine can compile
statistics on page use by reading these bits.

3. Unused bit. Set to 1 when a page is
placed in memory and to 0 the first time it
is referenced. This hit signifies that the page
has not yet been referenced by the program
that demanded it, and should not be re-
moved from memory at least until that time.

The use bits may serve to determine a
working set or to calculate reference den-
sities. Counters can also be used for this
purpose [D8]. If the addressing mechanism
contains a large enough associative memory
that its contents remain stable, then the
pages entered there may be regarded as the
program's working set; similarly, the pages
which accumulate in the level M1 of the
slave memory may be regarded as the pro-
gram's working set.

A third aspect of improving virtual mem-
ory hardware concerns the nature of the
addressing mechanisms. Difficulties have
occurred in virtual memories where informa-
tion is potentially sharable among distinct
address spaces [B7, D13]. Here each seg-
ment may have two names: a "local" name
which serves to identify it within a given
address space, and a "global" name which
serves to identify it systemwide. Local
names are interpreted in the usual way by
hardware (see the section on Implementa-
tion of Virtual Memory), and global names
are interpreted by software (e.g. "file direc-
tories"). The mechanism for converting
global names to local names is quite involved
and time consuming [B7, D1]. The solution
appears to require that every segment have
one, system-wide name which may be in-
terpreted by hardware at every level of
memory [D141.

CONCLUSIONS

We began this survey of virtual memory
system principles by tracing the; history
and evolution of the forces that compelled
dynamic storage allocation, i.e. desires for
program modularity, machine independence,
dynamic data structures, eliminating manual
overlays, multiprogramming, and time-
sharin~-Amoag the mo t ~ e g _ ~ t solutions
to the d ~ n a m i c ~ f ~ g ~ allocation~problem is
virtual memory, wherein a-_or.p_gr:A_~._2,r--Js--
.given the illusion that his address spa c, e_is
.~.e"- ihem(J~ space. There ~-aar6 t w o basic
ap~roa~s~o-i~p-I~menting the automatic
translation of addresses from address to
memory space, these being ~mentatiox~5
and .paging) since segmentation ~ i - r e O
by programmers and paging b y system
implementers, the best implementation c()n~- "
bines the two. We compared "pur~! seg=_.
mentation with paging, and ffoa!ng~p_gy~
memory systems generally ,.J.~pexic[r except
for three potential difficulties-'~ (1) suscepti-
bility to low storage utilization for large
page sizes, (2) propensity toward thrashing
under multiprogramming, and (3) the high
cost of loading working sets under demand
paging at the start of a time quantum. One

Computing Surveys, Vol. 2, No. 3, September 1970

problem with all implementations of virtuM
memory in which the address space is much
larger than the memory space is potential
misuse by programmers clinging unduly to
the idea that space and time may be traded.
This last statement must, however, be in-
terpreted carefully. Programmers who have
been warned that the space-time tradeoff
does not hold, and have gone to the extra
work of reducing the total amount of ad-
dress space employed, have often increased
the size of the working set. The objective is
to have a small, stable, slowly changing
working set. If this is achieved, the amount
of address space employed is immaterial.

These problems can be controlled, but re-
quire hardware support above and beyond
that offered by many current systems. Since
a memory system is more than mere imple-
mentation of an address map, we included u
study of the principles of optimal replace-
ment policies, and found that the ,worl~ing

..get prJ.aai-phb together with the .prk:w,l.ple--~f
l o c a ~ is an implementation of the Prin-
ciple of Optimality. By stating a method
whereby one may determine each program's
working set, this principle implies tha t one
may take steps to avoid overcommitment
of memory, and thrashing.

ACKNOWLEDGMENTS

I am deeply grateful to Jack B. Dennis
(of MIT) , to Bernard A. Galler and Bruce
W. Arden (both of the University of Michi-
gan), and to David Sayre (of IBM T. J.
Watson Research Center), whose penetrat-
ing comments proved invaluable in improv-
ing the manuscript. I should also like to
thank John E. Pomeranz (of the University
of Chicago) for suggesting some refinements
in the section on Demand Paging.

REFERENCES

A1. ABATE, J., AND].)UBNER, It. Optimizing the
performance of a drum-like storage. IEEE
Trans. C-18, 11 (Nov. 1969), 992-997.

A2. AHO, A. V., DENNING, P. J., ANn ULLMAN,
J. 1). Principles of optimal page replace-
ment. Computer Science Tech. Rep. No. 82,
Princeton U., Princeton, N. J., Jan. 1970.

Virtual Memory • 187

A3. ANACKER, W., AND WANG, C.P . Performance
evaluation of computing systems with mem-
ory hierarchies. IEEE Trans. EC-16 (Dec.
1967), 764-772.

A4. ARDEN, B. W., AND BOETTNEi% D. Measure-
ment and performance of a multiprogram-
ruing system. Proc. Second ACM Symp. on
Operating Systems Principles~ Princeton, N. J.,
Oct. 20-22, 1969, pp. 130-146.

A5. , GALLER, B. A., O'BmEN, T. C., AND
WESTERVELT, F. I~I. Program and address-
ing structure in a time-sharing environment.
J. ACM 18, 1 (Jan. 196fi), 1-16.

B1. BASKETT, F., BROWNE, J. C., AND RAIKE,
W.M. The management of a multi-level
non-paged memory system. ProP. AFIPS
1970 Spring Joint Comput. Conf., Vol. 36,
pp. 459-465.

B2. BATSON, A., Ju, S., ANn WOOD, D. Measure-
ments of segment size. Proc. Second ACM
Syrup. on Operating Systems Principles,
Princeton, N. J., Oct. 20-22, 1969, pp. 25-29.
Also, Comm. ACM 13, 3 (March 1970), 155-159.

B3. BEL~t)Y, L. A. A study of replacement
algorithms for virtual storage computers.
IBM Syst. J. 5, 2 (1966), 78-101.

B4. . Biased replacement algorithms for
multiprogramming. Rep. NC697, IBM T. J.
Watson Res. Center, Yorktown Heights,
N. Y., March 1967.

B5. - - - - ANn KUEHNER, C. J. Dynamic space
sharing in computer systems. Comm. ACM
12, 5 (May 1969), 282-288.

B6. - - , NELSON, R. A., AND SHEDLER, G. S.
An anomaly in the space-time characteristics
of certain programs running in paging ma-
chines. Comm. ACM 12, 6 (June 1969), 349-
353.

B7. BENSOUSSAN, A., CLINGEN, C. T., ANn
DAImY, R.C. The Multics virtual memory.
Proc. Second ACM Syrup. on Operating
Systems Principles, Princeton, N. J., Oct. 20-
22, 1969, pp. 30-42.

B8. Bol~aow, I). G., AND MURPHY, D.L. Struc-
ture of a LISP system using two-level stor-
age. Comm. ACM 10, 3 (March 1967), 155-159.

B9. BRAWN, B., AND GUSTAVSON, F. Program
behavior in a paging environment. Proc.
AFIPS 1968 Fall Joint Comput. Conf., Vol.
33, pp. 1019-1032.

B10. BURRO~'~HS CORPOR~TtON. The descriptor
--A definition of the B5000 information
processing system. Burroughs Corp., 1961.

C1. CHEN, Y. C. Selective transfer analysis.
Rep. RC-1926, IBM T. J. Watson Research
Center, Yorktown Heights, N. Y., 1968.

C2. COFFMAN, E. G., JR. Analysis of a drum in-
put/output queue under scheduled operation
in a paged computer system, d. ACM 16, t
(Jan. 1969), 73-90.

ca. - - - - , AND VARIAN, L . C . Further experimen-
tal data on the behavior of programs in a pag-
ing environmen6. Comm. ACM 11, 7 (July
1968), 471-474.

C4. COHEN, J.A. Use of fast and slow memories
in list processing languages. Comm. ACM 10,
2 (Feb. 1967), 82-86.

Computing Surveys, Vol. 2, No. 3, Sep~mber 19770

188 • Peter J . Denning

C5. COHEN, L. J. Stochastic evaluation of a
static storage allocation. Comm. ACM ~4, 10
(Oct. 1961), 460-464.

C6. COLLINS, G. O., JR. Experience in automatic
storage allocation. Comm. ACM 4, 10 (Oct.
1961), 436-440.

C7. COMEAU, L. A study of the effect of user
program optimization in a paging system.
ACM Symp. on Operating System Principles,
Gatlinburg, Tenn., Oct. 1-4, 1967 (7 pp.).

C8. CORBAT6, F. J. A paging experiment with
the Multics system. Rep. MAC-M-384, MIT
Project MAC, Cambridge, Mass., May 1968.

D1. DALEY, R., AND DENNIS, J. B. Virtual
memory, processes, and sharing in multics.
Comm. ACM 11, 5 (May 1968), 306-312.

D2. DEMEIs, W. M., AND WEIZER, N. Measure-
ment and analysis of a demand paging time
sharing system. Prec. 24th Nat. Conf.
ACM, ACM Pub. P-69, 1969, pp. 201-216.

D3. DENNING, P. J. Effects of scheduling on
file memory operations. Prec. AFIPS 1967
Spring Joint Comput. Conf., Vol. 30, pp.
9-21.

D4. . The working set model for program
behavior. Comm. ACM 11, 5 (May 1968),
323-333.

D5. . Resource allocation in multiprocess
computer systems. Tech. Rep. MAC-TR-50,
MIT Project MAC, Cambridge, Mass., 1968
(Ph. D. thesis).

Thrashing:I ts causes and prevention.
D6. Proc'. AFIPS 1968 Fall Joint Comput. Conf.,

Vol. 33, pp. 915-922.
Equipment configuration in balanced

DT. computer systems. IEEE Trans. C-18
(Nov. 1969), 1008-1012.

D8. AND BRUNO, J .L . On the management
of multilevel memories. Computer ~cience
Tech. Rep. 76, Princeton U., Princeton,
N. J., April 1969.

D9. - - , CHEN, Y. C., AND SHEDLER, G. S. A
model for program behavior under demand
paging. Rep. RC-2301, IBM T. J. Watson
Res. Center, Yorktown Heights, N. Y.,
Sept. 1968.

D10. DENNIS, J. B. Program structure in a
multi-access computer. Tech. Rep. MAC-
TR-11, MIT Project MAC, Cambridge,
Mass.

Dl l . . Segmentation and the design of mul-
tiprogrammed computer systems. J. ACM
12, 4 (Oct. 1965), 589-602.

D12. - - AND GLASER, E. L. The structure of
on-line information processing systems.
Prec. Second Congress on Information Syst.
Sci., Spartan Books, Washington, D. C.,
1965, pp. 5-14.

D13. - - ~ND VAN HORN, E. C. Programming
semantics for multiprogrammed computa-
tions. Comm. ACM 9, 3 (March 1966), 143-
155.

D14. - - . Programming generality, parallelism
and computer architecture. Prec. IFIP
Congr. 1968, Vol. 1, North-Holland, Amster-
dam, 1969, pp. 484-492 (Computation Struc-

tures Group Memo 32, MIT Project MAC,
Cambridge, Mass., Aug. 1968).

F1. FIKES, R. E., LtUER, H. C., AND VAREHA,
A. L., JR. Steps toward a general-purpose
time-sharing system using large capacity
core storage and TSS/360. Prec. 23rd Nat.
Conf. ACM, ACM Pub. P-68, 1968, pp. 7-18.

F2. FINE, G. H., JACKSON, C. W., AND MclSAAC,
P. V. Dynamic program behavior under
paging. Prec. 21st Nat. Conf. ACM, ACM
Pub. P-66, 1966, pp. 223-228.

F3. FOTHERINGHAM, J. Dynamic storage allo-
cation in the Atlas computer, including an
automatic use of a backing store. Comm.
ACM 4, 10 (Oct. 1961), 435-436.

F4. FREIBERGS, I. F. The dynamic behavior of
programs. Prec. AFIPS 1968 Fall Joint Com-
put. Conf., Vol. 33, pp. 1163-1168.

F5. FUCHEL, K., AND HELLER, S. Considerations
in the design of a multiple computer system
with extended core storage. Comm. ACM 11, 5
(May 1968), 334-340.

H1. HELLERMAN, H. Complementary replace-
ment--A meta scheduling principle. Prec.
Second ACM Syrup. on Operating Systems
Principles, Princeton, N. J., Oct. '20-22, 1969,
pp. 43-46.

H2. HOLT, A. W. Program organization and
record keeping for dynamic storage alloca-
tion. Comm. ACM 4, 10 (Oct. 1961), 422-431.

I1. ILIFFE, J. K. Basic Machine Principles.
American Elsevier, New York, 1968.

I2. - - AND JODEIT, Z. G. A dynamic storage
allocation scheme. Comput. J. 5 (Oct. 1962),
200-209.

J1. JOHNSTON, J. B. The structure of multiple
activity algorithms. Proc. Third Annual
Princeton Conf., Princeton, N. J., March
1969.

J2. JONES, R.M. Factors affecting the efficiency
of a virtual memory. IEEE Trans. C-18, 11
(Nov. 1969), 1004-1008.

K1. KELLEY, J. E., JR. Techniques :for storage
allocation algorithms. Comm. ACM .4, 10
(Oct. 1961), 449-454.

K2. KERNIGtIAN, B. W. Optimal segmentation
points for programs. Prec. Second ACM
Symp. on Operating Systems Principles,
Princeton, N. J., Oct. 20-22, 1969, pp. 47-53.

K3. KILBURN, T., EDWARDS, D. B. G., LANIGAN,
M. J. , AND SUMNER, F . H . One-level storage
system. IRE Trans. EC-11, 2 (April 1962),
223-235.

K4. KNUTII, D.E. The Arl of Computer Program-
ming, Vol. I. Addison-Wesley, Reading,
Mass., 1968, pp. 435-455.

K5. KUCK, D. J. , AND LAWRIE, D. H. The use
and performance of memory hierarchies: A
survey. Tech. Rep. No. 363, Dep. of Computer
Sci., U. of Illinois, Urbana, Ill., Dec. 1969.

K6. KUEHNER, C. J., AND RANDELI,, B. Demand
paging in perspective. Prec. AFIPS 1968 Fall
Joint Comput. Conf., Vol. 33, pp. 1011-1018.

L1. LAUER, H. Bulk core in a 360/67 time sharing
system. Prec. AFIPS 1967 Fall Joint Comput.
Conf., Vol. 31, pp. 601-609.

Computing Surveys, Vol. 2, No. 3, September 1970

L2. LIPTAY, J. S. The cache. IBM Syst. J. 7, 1
(1968), 15-21.

M1. MACKENZIE, F. B. Automated secondary
storage management. Datamation 11, 11
(1965), 24-28.

M2. MATTSON, R. L., GECSEI, J., SLUTZ, D. R.,
AND TRAIGER, I .W. Evaluation Techniques
for Storage Hierarchies. IBM SysL J. 9, 2
(1970), 78-117.

M3. MCCARTHY, J., COR~AT6, F. J., ANn DAG-
GETT, M. M. The Linking Segment Sub-

rogram Language and Linking Loader.
omm. ACM 6, 7 (July 1963) 391-395.

M4. McKELLAR, A., AND COFFMAN, E. G. The
organization of matrices and matrix opera-
tions in a paged multiprogramming environ-
ment. Comm. ACM I2, 3 (March 1969),
153-165.

M5. MIT. Report of the long range computa-
tion study group, April 1961.

O1. O'NEILL, R.W. A preplanned approach to a
storage allocating computer. Comm. ACM .~,
10 (Oct. 1961), 417.

02. . Experience using a time sharing multi-
programming system with dynamic address
relocation hardware. Proc. AFIPS 1967 Spring
Joint Comput. Conf., Vol. 30, pp. 611-621.

03. OPPENI~EIMER, G., AND WEIZER, N. Re-
source management for a medium scale time
sharing operating system. Comm. ACM ii , 5
(May 1968), 313-322.

P1. PINKERTON, T. Program behavior and con-
trol in virtual storage computer systems.
CONCOMP Project Rep. No. 4, U. of Mich.,
April 1968 (Ph.D. thesis).

P2. POOLE, P. C., AND WHITE, W. Machine-
independent software. Proc. Second ACM
Symposium on Operating Systems Principles,
Princeton, N. J., Oct. 20-22, 1969, pp. 19-24.

R1. RAMAMOORTHY, C.V. The analytic design of
a dynamic look ahead and program segment-
ing system for multiprogrammed computers.
Proc. 21st Nat. Conf. ACM, ACM Pub. P-66,
1966, pp. 229-239.

R2. RANDELL, n. A note on storage fragmenta-
tion and program segmentation. Comm.
ACM 1~, 7 (July 1969), 365-369.

R3. AND K•EHNER, C. J. Dynamic storage
allocation systems. Comm. ACM 11 (May
1968), 297-305.

Virtual Memory • 189

R4. RISKIN, B. N. Core allocation based on
probability. Comm. ACM 4, 10 (Oct. 1961),
454-459.

$1. SAMS, B. H. The case for dynamic storage
allocation. Comm. ACM 4, 10 (Oct. 1961),
417-418.

$2. ShinE, D. Is automatic folding of programs
efficient enough to displace manual? Comm.
ACM 12, 12 (Dec. 1969), 656--660.

83. SHEMER, J. E., AND GUPTA, S. C. On the
design of Bayesian storage allocation algo-
rithms for paging and segmentation. IEEE
Trans. C-18, 7 (July 1969), 644-651.

$4. - - AND SHIPPEY, B. Statistical analysis of
paged and segmented computer systems.
IEEE Trans. EC-15, 6 (Dec. 1966), 855-863.

$5. SMITH, J. L. Multiprogramming under a
page on demand strategy. Comm. ACM 10,
10 (Oct. 1967), 636--646.

$6. STONE, H. S. A logic-in-memory computer.
IEEE Trans. C-19, 1 (Jan. 1970), 73-78.

Vl. VAREHA, A. L., RUTLEDGE, n . M., AND GOLD,
M . M . Strategies for structuring two-level
memories in a paging environment. Proc.
Second ACM Syrup. on Operating Systems
Principles, Princeton, N. J., Oct. 20-22, 1969,
pp. 54-59.

Wl. WEINGARTEN, A. The Esehenbach drum
scheme. Comm. ACM 9, 7 (July 1966), 509-
512.

W2. WEIZER, N., AND OPPENHEIMER, G. Virtual
memory management in a paging environ*
ment. Proc. AFIPS 1969 Spring Joint Corn-
put. Conf., Vol. 34, p. 234.

W3. WILKES, M. V. Slave memories and dy
namic storage allocation. IEEE Trans. ~ [
15 (April 1965), 270-271.

W4. - - - - . Time Sharing Computer Systems.
American Elsevier, New York, 1958.

W5. - - . Computers then and now. J. ACM 15,
1 (Jan. 1968), 1-7.

W6. . A model for core space allocation in a
time sharing system. Proe. AFIPS 1969
Spring Joint Comput. Conf., Vol. 34, pp.
265-271.

W7. WOLMAN, E. A fixed optimum cell-size for
records of various lengths. J. ACM 12, 1
(Jan 1965), 53-70.

Computing Surveys, Vol. 2, No. 3, September 1970

