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Based on novel architecture, the 801 minicomputer project has developed a low-level storage manager 
that can significantly simplify storage programming in subsystems and applications. The storage 
manager embodies three ideas: (1) large virtual storage, to contain all temporary data and permanent 
files for the active programs; (2) the innovation of database storage, which has implicit properties of 
access serializability and atomic update, similar to those of database transaction systems; and (3) 
access to all storage, including files, by the usual operations and types of a high-level programming 
language. 

The IBM RT PC implements the hardware architecture necessary for these storage facilities in its 
storage controller (MMU). The storage manager and language elements required, as well as subsys- 
tems and applications that use them, have been implemented and studied in a prototype operating 
system called CPR, that runs on the RT PC. Low cost and good performance are achieved in both 
hardware and software. The design is intended to be extensible across a wide performance/cost 
spectrum. 
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Cl.1 [Processor Architectures]: Single Data Stream Architectures-reduced instruction set com- 
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Storage Management; D.4.3 [Operating Systems]: File Systems Management; D.4.7 [Operating 
Systems]: Organization and Design 
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1. INTRODUCTION 

This paper presents storage architecture and associated programming of the 
801 minicomputer project. The 801 [17] is a prototype reduced instruction set 
computer (RISC) [16], though our storage work is mainly independent of this. 
801 storage architecture contains three necessary features: segment registers that 
expand virtual addressing beyond 32 bits, an inverted page table for address 
translation, and a transaction locking mechanism that causes hardware calls to a 
software lock manager. The IBM RT PC [12, 191 implements these features in 
its hardware storage controller (MMU) [ 111. 

CPR (Control Program Research) is a prototype operating system used for 
research in several areas, with major emphasis on storage facilities. After earlier 
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development on 801 simulators and prototype hardware, it now runs on the RT 
PC. We describe only its virtual storage and transaction features, the storage 
manager that implements them, and related issues. 

The PL.8 compiler [3] is also part of the 801 project. PL.8 is a PL/l dialect 
used mainly for systems programming. The compiler also accepts Pascal and C 
programs, and produces code for several machines, including prototype 801 and 
the RT PC. We describe PL.8 language and compiler function added to improve 
programming with files. 

This paper is organized as follows: Section 2 reviews background and previous 
work. Section 3 covers the storage architecture, including 801 addressing and the 
relocation mechanism. Section 4 describes how CPR uses the storage architecture, 
and Section 5 describes the programming language interface to the storage 
system. Section 6 provides implementation details, and Section 7 contains 
performance data. Section 8 contains a summary. 

2. BACKGROUND 

There are two major themes that have influenced the development of 801 storage: 
virtual storage, particularly virtual addressing of permanent files, and the truns- 
action concept. The idea that permanent files should be placed in virtual storage, 
along with temporary data and programs, was first suggested and applied by 
Multics [4, 61, with claimed benefits of easier programming and better sharing. 
This approach is sometimes called a one-leuel store because all data in the system 
may be directly addressed by the storage instructions of the processor. Program- 
ming is simplified because the operating system, driven primarily by missing 
page interrupts, performs all the I/O operations and buffer management needed 
to move data, including files, between levels of the storage hierarchy. Sharing is 
better because processes access one copy of files in virtual storage, rather than 
separate copies they each read from disk. Real storage becomes a systemwide 
shared buffer pool. Contention between buffering and virtual paging is eliminated. 
Adding real storage improves this buffering. More recently, the midrange IBM 
System/38 [lo] and the Pilot system [ 13,181 for a Xerox personal computer have 
applied similar approaches for similar reasons. 

The transaction concept was originally developed in production and research 
database management systems (e.g., IMS [14] and System R [l]), and has since 
been widely studied. Informally, a transaction is a sequence of actions grouped 
together that observe some composite state of the database and/or that change 
it from one state to another. Usually database managers allow different trans- 
actions to share the database and run concurrently, with protection provided 
(commonly by use of locking and change logging) against undesired interactions 
and failures. The strongest properties are those of serializable transactions with 
atomic update and permanence [8,9]. These transactions appear to run one after 
another in some order rather than interleaved and, in case of failures, either all 
or none of the actions of each transaction appear permanently in the database. 
Serializable atomic transactions are a powerful tool to maintain database con- 
sistency. If the actions of each transaction produce a consistent state and the 
database manager guarantees the above execution properties, then the database 
will always be consistent as each transaction begins. After recovery from most 
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failures (system, deadlock, etc.), transactions that did not complete because of 
the failure may simply be restarted from their beginnings. 

For some time there has been discussion about possible relationships between 
virtual storage, database management, and transaction facilities in an operating 
system [22-251. Operating systems that include low-level transaction facilities 
have appeared (e.g., Camelot [21] and LOCUS [26]). They suggest that transac- 
tions have applicability apart from traditional database management, as in 
distributed systems and in management of operating-system data such as direc- 
tories. 

With 801 we add the idea of hardware that automatically invokes the transac- 
tion mechanisms of locking and change logging, at relatively fine granularity, to 
simplify programming and enforce correctness. This is similar to the use of 
hardware page faults to implement virtual storage. Stonebraker [23] has also 
suggested a hardware approach to page locking. 

We simply accept that this background describes an attractive set of ideas and 
potential benefits. To us the important question is: can a system that combines 
virtual storage access to files with implicit transaction functions be implemented 
with competitive cost/performance ? Our research indicates a promising ap- 
proach. 

3. STORAGE ARCHITECTURE 

3.1 Segment Registers 

The 801 and many other contemporary micro- and minicomputers have 32-bit 
general-purpose or base registers and compute 32-bit storage addresses. We want 
to have all the programs, temporary data, and files of a process directly address- 
able in virtual space. Thirty-two-bit addresses may not be sufficient for even 
one process if it is accessing large databases. Therefore, the hardware provides 
16 segment registers to expand the virtual address space. 

As shown in Figure 1, the upper 4 bits of a 32-bit short address name a segment 
register. The register provides a segment id that replaces the 4 bits of short 
address to form a long virtual address. This effectively creates a single long- 
virtual-address space, as shown in Figure 2, with segment boundaries at multiples 
of 256 Mbytes. The RT PC has a 12-bit segment id (4096 segments) and a 40-bit 
long virtual address. A larger virtual space could be achieved with more segment 
id bits (wider segment registers). 

Each segment register also contains two bits called S and K that control storage 
protection for the segment. When the S bit is 1, the transaction locking mecha- 
nism is in effect for the segment, otherwise more conventional page protection 
applies. K is used only with page protection. More details are given later. 

A single segment size of 256 Mbytes was chosen for three reasons: First, even 
quite large files will fit in a single segment. Very large objects, for example, 
databases, may require multiple segments, but are usually managed by subsystems 
that expect to use multiple files anyway for composite objects, for example, data 
and indices. Second, having one maximum size simplifies segment allocation, 
even though it wastes addressing bits if most segments are much smaller. Third, 
only 16 registers are required in hardware logic. Also, this is a modest addition 
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Fig. 2. The single long-virtual-address space. 

to the state to be changed at process switch, when compared with 32 general 
registers of the prototype 801 plus floating-point registers and other state required 
in actual systems. 

Segments are a convenient unit of access control and sharing between pro- 
cesses, as fully discussed in [4]. In 801, load segment register is a privileged 
instruction, so the supervisor may limit access by segment id to processes with 
proper rights. If several processes are allowed to load the same segment id, they 
directly share data in the single large virtual space, even if they use different 
segment registers. This means that 801 permits aliasing by short addresses, but 
not by long addresses that uniquely name virtual storage and are used in address 
translation. 

An alternative to segments is a separate virtual space for each process and a 
page table for each space. The supervisor allows translation to real address only 
for pages containing data that a process has rights to access, but there are no 
segment boundaries in the virtual space. Sharing occurs when several processes 
have translations of the same or different virtual addresses to the same real 
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addresses. We think this approach has many drawbacks. As previously stated, a 
32-bit address space may not be sufficient for even one process. Allocation of 
variable sized areas to use this space efficiently is complicated, and such areas 
must be moved (change address) to expand. In general, it is not possible to 
coordinate virtual allocation between different processes. This complicates book- 
keeping for sharing and causes aliasing, which has two important consequences 
in hardware design [20]: Multiple entries for the same data in a translation 
look-aside buffer may reduce the hit ratio, and virtual addressing in a storage 
cache directory generally cannot be used. 

The expansion of addressing by segment registers is similar to that found in 
the Intel 80286 and predecessors, which expand a 16-bit address to 20 or 24 bits. 
However, they name the segment register by implication for some addresses or 
by specific bits in the machine instruction for others, rather than by bits of the 
computed address as in 801. The 801 approach has two advantages: First, a short 
parameter address passed to a subprogram implies which segment register to use. 
Second, two or more segments may be combined into one larger space, for 
purposes of address computation, by loading their segment ids into adjacent 
segment registers. 

The single large-virtual-address space (single space of segment ids) is similar 
to that of System/38, although the latter has two segment sizes (16 Mbytes and 
64 kbytes) and a longer virtual address (48 bits) than the RT PC. We chose a 
single larger segment size for reasons already given. Also, 801 long address 
generation is in the simple hardware spirit of RISC, while the System/38 
generates long addresses from machine instructions in microcode. By contrast, 
the hardware of Multics has multiple spaces of segment numbers (the software 
uses one space for each process). A shared segment can have different segment 
numbers in different spaces. This forces undesirable aliasing, as mentioned 
previously. 

3.2 Inverted Page Table 

Pages are a convenient unit of real storage allocation and disk I/O [4]. Only 
currently referenced pages, rather than whole segments, need be in real storage. 
The single virtual space with large segments, described above, however, would be 
less attractive if large page tables were needed for address translation. As in 
System/38, an inverted page table avoids this difficulty. The idea of an inverted 
page table is that each entry represents one page of real storage and contains the 
address of the virtual page currently allocated to that real page. Given a virtual 
address to be translated, hardware searches the table for that address and, if 
found, uses the table index of the matching entry as the address of the desired 
real page. 

Because hash searching is used, the inverted page table is really two tables, as 
shown in Figure 3, which must be in real storage. The page table has an entry 
for each real page. The hash table has a number of entries that is a power of two, 
equal to or greater than the number of page table entries. Translation uses the 
hash table and only the segment id, vpage, and chain fields of the page table. 
Remaining fields control locking and protection. A hash value is computed for 
each page table entry: the exclusive-or of the segment id and vpage fields. A hash 
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value selects a hash table entry that points to the first (maybe only) page table 
entry with that hash value. Page table entries with equal hash values are chained 
together. 

Figure 3 also shows an example of translation. Hash value h, computed from 
the long virtual address, is the index of a hash table entry. The value in the hash 
entry is i, the index of a page table entry. The segment id, vpage fields in this 
entry do not match those of the long virtual address, so the chain value j, the 
index of another page table entry, is used. This entry matches the long virtual 
address, so the value j becomes the rpage field in the real address. This translation 
requires three storage accesses. 

To avoid storage access for each translation, the hardware first searches a 
conventional translation look-aside buffer (TLB) [20]. If not found there, trans- 
lation by the inverted page table is attempted and, if successful, the translation 
is loaded into the TLB. If a null-value hash entry or chain field is encountered 
before a match is found, the hardware causes a page fault interrupt. 

Traditional page tables have size related to total virtual space, with an entry 
per virtual page containing the real page address. Such tables are often two-level 
trees, with a page table per segment, requiring only recently referenced tables in 
real storage and 2 storage accesses per translation. An inverted page table has 
size related to real space, independent of total virtual space, and table space 
management is unnecessary. Assuming a uniform random distribution of virtual 
addresses, the RT PC expects 2.5 storage accesses per translation. If hash table 
size were doubled, this would decrease to 2.25 storage accesses. 
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3.3 Transaction Locking and Protection 

When segment register S bit is 1 (Figure l), the transaction locking mechanism 
applies to the segment, controlled by a transaction id register and the tid, W, and 
lo&bits fields in each page table entry (Figure 3). The transaction id register 
must match the tid field to allow access in the page. The W bit determines if 
lockbits represent write locks or read locks. There is a lockbit for each line of 
128 bytes in the page. The 2 kbyte pages of the RT PC require 16 lockbits per 
page. Read access to (load from) line iz is permitted if lockbit is 1 or if W 
is 1. Write access to (store into) line lz is permitted only if lockbit and Ware 
both 1. If access is not permitted, by transaction id mismatch or by the lockbits, 
the hardware causes a lock fault interrupt. The read/only or read/write access 
permitted to line k may be summarized: 

tid compare lockbit w=o 1 

equal 0 - 40 
equal 1 do r/w 
unequal O/l - - 

Each page table entry contains the locks of one transaction in that page, identified 
by the tid field. Locks of other transactions in that page must be recorded 
elsewhere. Only the transaction id register must be changed when the currently 
running transaction changes. The required match with the tid field prevents the 
current transaction from accessing pages whose table entries contain the locks 
of others. When transaction mismatch interrupt occurs, software must switch 
the locks in the page table entry to those of the current transaction. 

Since there is only one lockbit per line, it is not possible to represent simulta- 
neously the read and write locks of a transaction in the same page. Therefore, 
when lockbits are write locks (W is l), the transaction may read any line, which 
is an implicit read lock on the whole page. Usual lock serialization prohibits 
granting any write locks in that page to other transactions. This means that a 
page may be shared by one writer and any number of readers whose read locks 
are disjoint from the write locks of the writer. Multiple writers in a page could 
be allowed if either lockbits per page or line size were doubled. We chose one 
writer to get 12%byte granularity with fewer lockbits. 

Stonebraker [23] has proposed somewhat different locking assist hardware. It 
provides page locking with 4 bits and a count field per page. An array of 2 of 
these bits for all pages must be swapped during process switch, and page 
differences must be computed to achieve a compact log. Our approach provides 
finer granularity locks, which also allow logging less than full pages, and only 
the transaction id register must be changed during a process switch. 

For segments that do not require transaction locking, for example, temporary 
storage, conventional page protection may be selected by setting segment register 
S bit (Figure 1) to 0. Segment register K bit and two PP bits in each page table 
entry (Figure 3) permit read/only or read/write access to pages as follows: 

PP = 00 01 10 11 

K=O r/w r/w r/w r/o 
K=l - r/o r/w r/o 
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4. STORAGE AND PROCESSES IN CPR 

Processes are separate units of program execution that do all the work in CPR, 
except for the limited functions in interrupt handlers of the supervisor and its 
extensions. The address space of each process is a subset of the segments in the 
single virtual address space of Figure 2 and is not limited to 16 segments. 

4.1 Working (Short Address) Storage 

Segment registers and a long virtual address are in the architecture to achieve 
adequate total virtual space. Use of short (32-bit) addressing where possible, 
however, remains very attractive. Space and time are saved if many storage 
references are to data and programs whose short addresses do not change. For 
these references, only short addresses need be remembered or passed in linkage, 
and no segment registers need be changed. 

CPR uses short addressing for working storage, that is, active programs and 
temporary data of each process that exist only for the life of the process, for two 
reasons: First, though results are application dependent, measurements indicate 
that references to working storage greatly predominate over references to file 
data. Second, we think that the working storage and protection domains required 
by most processes can be contained in a few 256 Mbyte segments. 

Protection domains are subsets of working storage with accessibility limited to 
subsets of all programs executing in a process. CPR provides three domains in 
each process: The supervisor accesses all working storage, the supervisor exten- 
sions (e.g., device drivers) access all working storage except that limited to the 
supervisor, and other programs access only working storage of the application 
domain. A few more domains could be added for subsystems, for example, 
database management. 

To achieve short addressing, CPR limits the working storage of each process 
to a few segments of the single virtual space (up to eight segments or 2 Gbytes 
in our prototype) and loads their segment ids into fixed segment registers 
whenever the process executes. Segments used primarily for the supervisor and 
its extensions are shared by all processes (the same segment ids and registers). 
The program loader copies programs to be executed from permanent files (created 
by compilers and binders) into working storage segments. Temporary data are 
allocated in various working storage segments according to the protection domain. 
A working storage segment can contain many loaded programs and temporary 
data allocations, a one-to-many relationship. 

In regard to working storage (not files), CPR is very similar to many widely 
used systems with virtual storage, such as DEC VMS and IBM MVS. Program 
and data addressing, including program linkage and parameter passing, occurs in 
a virtual space addressed by the 32-bit arithmetic of the processor. Each process 
has its own virtual space, divided into a few protection domains, with some 
domains shared by all processes. By contrast, Multics keeps each executing 
program and each separately allocated temporary data area in a separate segment 
of virtual space. The cost of this generality is that even nonfile addressing may 
fetch indirect address words from storage, sometimes cascaded, and may require 
segment register change. This is particularly evident in the Multics procedure 
call and parameter mechanisms described in [6]. 
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4.2 File (Long Address) Storage 

Files have multilevel names that are stored in a tree of file directories, as in 
Multics and now common in many systems. Directories contain information 
about each file, including a pointer to an external page table that contains the 
disk addresses of the file pages. When a file is first opened (a supervisor service), 
the authority of the calling process to open the file is verified. A segment of 
virtual storage (segment id) is allocated and associated with the file’s external 
page table. The storage manager later services page faults in the segment by 
reading pages of the file. If a file is aliieady open when open is called, and authority 
and compatibility with previous opens are verified, then the segment id already 
allocated is used to share the file. The relationship of segments to open files is 
one-to-one. 

Because only the supervisor can load segment registers, the segment ids of files 
are kept in supervisor-protected tables. A small storage block, called a refp 
(reference to persistent), is used to represent a file segment id. An empty refp is 
passed in the call to open a file. Open stores the index of a supervisor table entry 
in the refp, and stores the address of the refp and the allocated segment id in the 
supervisor table entry. The refp is later passed in a supervisor call to load segment 
register. The supervisor verifies that the caller can access the storage of the refp 
and that the index in the refp was stored at that address by open. Thus assured 
that the refp is not forged, the supervisor loads the file segment id into a caller- 
specified segment register used for files (one of up to six in our prototype). 

While a file segment id is in a segment register, a short address [sreg, offset] 
can access any byte in the file. Since a process may open many files and change 
the contents of segment registers to address them, however, programs must in 
general use a form of long address for file data [refp, offset]. 

Refps, which are capabilities to segment ids, are in working storage and subject 
to the protection domains previously described. If files are opened by the 
supervisor (directory files are a good example) using refps not in the application 
domain, then ordinary programs cannot access the refjx or the files. Thus, the 
protection of working storage domains extends to enforce file authorization by 
domain. 

The CPR treatment of files in virtual storage is essentially equivalent to 
Multics. Files have symbolic names and lifetimes independent of virtual address. 
When a symbolic file name is referenced, a virtual segment is allocated, and the 
entire file may then be accessed in it. Multics claims no distinction between file 
and virtual segment, but its make-known operation allocates virtual storage to 
files just as does open in CPR. In System/38, however, each file is assigned 
virtual storage when first created and retains the same address for its entire 
lifetime, even if no process is using that address. 

4.3 Process Address Space 

A process address space consists of a few working storage segments, whose ids 
are always in registers, and file segments, whose ids (represented by opened refps) 
may be loaded into registers. There are two language approaches to programming 
in this space, described in more detail later: First, given declarative language 
extensions, a compiler can manage the details of file segment register loading. 
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Programs are mostly independent of variable location, tile segment or not. 
Second, programs can explicitly manage file segment registers and use languages 
having pointers to address variables in file segments. 

The short address space of a process is determined by the contents of segment 
registers, as shown in Figure 4 for our CPR prototype. Working storage segments 
for the supervisor and extensions are in registers 0 and 1, shared by all processes. 
A private working storage segment for the application domain is in register 2. 
Additionally, there are five registers reserved for future implementation (more 
working storage, more protection domains for subsystems, e.g., database man- 
agement), six registers used for file segment ids, and two registers for hardware 
I/O space. 

To improve program sharing, as in Multics, CPR permits a read-only program 
section (instructions and constants) to be loaded separately from the read-write 
section (data). CPR shares read-only library subroutines (string move, copy, etc., 
the RISC analog of microcode) and read-only sections of other frequently used 
programs by loading them in the segments of registers 0 and 1 (Figure 4). Read- 
write sections are loaded in the segment of register 2, along with nonshared 
programs. 

The three protection domains mentioned previously do not correspond exactly 
to segment registers 0, 1, and 2. The read-only shared programs addressed by 
registers 0 and 1 are part of the application domain. Also, there is a small amount 
of data in the segment of register 2, private to each process, that is limited to the 
supervisor and extensions domains. These domains are enforced by the previously 
described page protection hardware; that is, each page is given a PP state, and 
segment register K bits are changed by the supervisor on call/return between 
domains. 

It is important to note that there is no individual limit on the number of 
segments in the address space of each process. If a process requires more working 
storage than is short-addressable with eight segment registers or if it wants to 
share working storage with a subset of other processes, then it may use temporary 
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file segments. The single virtual space of Figure 2 is a limit on the sum of all 
working storage and open file segments of all processes. If the single virtual space 
were extended (wider segment id and registers), this systemwide limit would 
increase to accommodate more processes, etc. Only storage manager programs 
would be affected by such an extension. All other programs use segment ids only 
indirectly through the refp mechanism, which can accommodate an essentially 
unlimited number of file segments in each process. 

4.4 Transactions and Database Storage 

A transaction in CPR is defined as all the storage actions by a process on a set 
of file segments, performed between two calls to commit (a supervisor service) 
for that set of segments. A transaction includes any storage actions of the 
supervisor, in directories or external page table segments, taken because com- 
mitted segments are created, erased, renamed, enlarged, etc. Each process has a 
unique transaction id, which the dispatcher loads into the transaction id register 
when the process runs, to allow hardware to identify storage actions of 
the process in file segments for which transaction locking is requested. This 
one-to-one process/transaction relationship was chosen only to simplify the 
CPR prototype. In a system with nested or distributed transactions [15], the 
hardware id per process could be used to identify actions of subtransactions that 
were allowed to proceed asynchronously. Storage manager software would under- 
stand the relationship of processes to transactions, implement lock inheritance 
and nested commit, etc. 

It is important that the transaction functions that CPR performs (locking, 
logging, etc.) are invoked implicitly, as a side effect of access to file segments by 
normal storage instructions. This allows CPR to assume correctness responsibil- 
ities (e.g., that objects are locked when referenced, that all updates are logged). 
If locking and logging were CPR services, called explicitly, then database man- 
agers would retain the major burden of transaction correctness, and little would 
be simplified. Our first idea for implicit transaction functions was that compilers 
could generate calls when data were referenced, based on declared attributes. 
However, this could be difficult to implement in many languages, performance 
might be poor, and subprograms would have to know if parameters were database 
or not. This led us to a hardware assist. 

By database storage we mean tile segments opened with options that cause the 
supervisor to assume responsibility for access serializability and/or atomic update 
in those segments. The user of database storage has two responsibilities: to use 
appropriate open options and to end each transaction by calling commit. Undo 
may instead be called, to back out any updates made by the transaction since the 
previous commit. A database manager or application in one process may otherwise 
access shared files without any explicit interaction with other sharing processes. 

4.5 File Open Options 

We first describe the options separately. Read or write (which also allows read) 
states the access intention of the opening process. Read-write share permits other 
processes to open the same tile for writing or reading. Without it, sharing is 
limited to read-only. Locks requests access serializability of both writes and reads. 
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Journal requests write serializability and atomic update. Replace requests writing 
a new file to atomically replace the old. Temporary creates a file that exists only 
while open. We do not discuss authorization, that is, the right to open a particular 
file with certain options. We do describe some possible combinations of open 
options and the resulting transaction properties. The following four combinations 
of options provide the strongest properties of serializability and atomic update: 

(1) The combination of read or write with read-write share, locks, journal requests 
the most general database storage. Other processes may open the file with 
these options at the same time. The transaction locking mechanism is used 
to provide serializability of access and atomic commit of updates by each 
process. 

(2) Write, journal requests atomic commit of updates by one process. Other 
processes are prevented from opening the tile. Transaction locking is used 
only to detect updates. 

(3) Write, replace causes creation of a new file by one process. Other processes 
are prevented from opening the file. Transaction locking is not used in the 
tile itself, but the file is written to disk and the directory is updated atomically 
to point to the new file, replacing the old if it exists. 

(4) Read, used alone, allows other processes to open the file, but only with read 
alone. Transaction locking is not used, but all stores are prevented. 

Weaker properties are provided by read or write with read-write share, journal. 
Other processes may open with these options. Transaction locking is used to 
serialize and atomically commit the writes of each process; but reads are uncon- 
strained, that is, not serialized with writes. Use of this combination for file 
directories is described later. 

Weakest is write of an existing file (without replace or journal) with or without 
read-write share. File updates may occur piecemeal prior to commit, and there is 
no access serializability. 

Temporary, write provides a file segment that exists only until closed. A file 
name is used to open, but is not recorded in the directory. With read-write share, 
other processes may open the same name and share the storage. With locks, 
transaction locking is used to provide access serializability, and commit only 
releases locks. 

5. PROGRAMMING LANGUAGE INTERFACE 

To realize the benefits of files in virtual storage, the main requirement for a 
programming language is to allow the same data types, structures, and compu- 
tations in files as in working storage. Also, the compiler should handle all 
addressing details, to simplify programming and avoid errors. However, to enable 
the compiler to handle these details and the differences between short and long 
addressing, a new storage class, persistent, and a new type, refp (reference to 
persistent), are added to PL.8. 

Variables declared to be any of the usual data types and structures may also 
be declared to be of persistent storage class. A persistent variable must be 
associated with a variable of type refp. This refp represents the storage (segment 
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debit-credit: proc; 

dcl ac-ref refp; 
dcl 1 accounts(100000) persistent(ac-ref), 

2 code integer, 
2 balance integer, 
2 branch integer, 
2 other-info char(ll6); 

/* other declarations */ 

$open(ac-ref, '/80l_bank/accounts_file', dbase-options); 
/* other initialization */ 

/* transaction processing main loop */ 
do while(tellers-active); 

/* get a transaction: account number, amount, teller *k/ 
do until(rc -= deadlock); 

call do-trans(account, amount, teller) exception( 
if rc = deadlock then $undo; 

end do; 
end do; 

/* procedure to perform one transaction */ 
do-trans: proc(ac, amt, tel); 

/* verify account number, sufficient teller balance, etc. */ 
if balance(ac) + amt >= 0 then 

balance(ac) = balance(ac) + amt; 

/* update teller, branch, transaction audit trail files *f 
$commit ; 

end do-trans; 

end debit-credit; 

Fig. 5. The debit-credit program. 

id) that contains a file that has been opened by calling the supervisor. Though a 
refp could be implied with a persistent variable, refps are made explicit in the 
language for generality with aggregates of files (details beyond this paper’s scope). 
Semantics of computation with persistent variables, depend only on type and are 
the same as with the working storage classes automatic (stack), static, and 
controlled (heap). 

5.1 Debit-Credit Example 

Further details are best explained by an example shown in Figure 5. This program 
has been abstracted from a debit-credit application that we use for performance 
evaluation. 

In the debit-credit program, each account record is an element in a persistent 
array accounts whose segment id is associated with ac-ref. The program calls 
supervisor service $open to find the actual accounts file and allocate a segment 
for it. The segment id is saved in the supervisor, and an index to it is stored in 
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ac-ref. When the program needs to address a variable in accounts, the compiler 
generates a call to the supervisor, with ac-ref as one argument and register 
number as the other, to load the segment id into one of the segment registers 
used for files (Figure 4). The compiler allocates these registers (six in our 
prototype) and optimizes loading of them, as with other address computation [3]. 

The procedure do-tram at the end of the example performs one transaction. 
The computation shown is independent of storage class, except that the compiler 
uses long address references to, balance, which read from and update directly in 
the accounts file. After similar updates to other files (not shown), the program 
calls supervisor service $comnit. The program uses database options (previously 
described) in calls to Sopen, so lock fault interrupts occur as files are referenced, 
and there is associated processing at commit time, described later. 

If deadlock occurs in this program, it is when do-trans references one of the 
shared files. The lock fault handler signals deadlock exception to a process chosen 
as victim. The PL.8 exception mechanism terminates the current procedure and 
looks in the call chain for an exception handler, indicated by an exception qualifier 
on the call statement. The example main loop handles exception return from 
do-trans, calls supervisor service $undo to back out partial updates when there 
is a deadlock, and repeats the call to do-trans until there is no deadlock. 

5.2 Other Language Issues 

PL.8 has other types more appropriate for database structures than the simple 
accounts array of the example. An entire file may be declared as an area of bytes 
of persistent storage class. Then, various structures may be allocated within this 
area to hold the records, index entries, etc., of a database. These structures may 
be intermixed and may contain offset pointers to form trees, etc. The program 
must allocate storage within the area, but the compiler loads segment registers 
as required. The persistent class also allows computation on very large aggregate 
types, exceeding 32-bit addressability, in storage provided by sets of files. 
Multidimensional arrays of structures or based structures in areas may be used. 
Generalized pointers are pairs [file, offset] where file identifies one of the set. 
The compiler handles addressing details. 

Persistent variables may be passed in procedure calls. However, the compiler 
cannot load segment registers for them in the caller and pass short addresses, 
because the called procedure might use the same registers for its own persistent 
variables. Therefore, any parameters of a called procedure, for which a caller 
might pass persistent arguments, must be declared persistent. Such parameters 
are passed by long address [address of refp, offset in segment], and the called 
procedure loads the segment registers. 

It is possible to write storage-class-generic procedures because a persistent 
parameter will accept a nonpersistent argument. In the caller, the compiler 
constructs a refp to represent the working storage segment that contains the 
argument, and then passes the refp and the offset in the segment of the argument. 
When this constructed refp is used by the called procedure to load a file segment 
register (Figure 4), the supervisor interprets it as a request to copy the segment 
id from a working storage segment register. This generality is overkill for many 
leaf and near-leaf procedures that do not declare any persistent variables. A 
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declared procedure attribute could be added to inform the compiler. Persistent 
arguments to these procedures could then be passed by short address, after 
loading segment registers for them in the caller. 

Note that no special language is required to achieve procedures that are 
independent of the open options of persistent variables passed to them. This is 
because transaction locking and logging are invoked by the hardware assist and 
require no programmer or compiler actions. By comparison, the language ap- 
proach in Camelot [21] includes a library of C routines that invoke primitive 
system transaction functions, to simplify programming (lock, read, modify) with 
recoverable objects. However, a subprogram must know to use these routines if 
operating on a passed recoverable object. Alternatively, the calling program can 
make the proper calls, providing it knows what the subprogram will do or did. 

Multics did not need the language additions we have described. Its compilers 
could treat addressing details for tiles, programs, and temporary data areas 
similarly because they each occupied separate virtual segments. We have already 
compared this approach with the short/long address distinction made in CPR. 

Languages like Pascal or C (and assembler) may address file storage even 
without extension. Refps may be constructed from existing structure types and 
passed to open as in PL.8. The program must allocate file segment registers 
(Figure 4), call the supervisor to load them, and then use 32-bit pointers that 
correspond to the loaded registers to address variables declared to represent the 
files. Other functions, including transactions, are as described for PL.8. 

6. STORAGE MANAGER IMPLEMENTATION 

6.1 Virtual Storage 

The CPR storage manager is a single implementation (using address translation, 
real storage, and disk storage) that provides virtual working and file (including 
database) storage. In addition to the inverted page table, two important data 
structures are the external page tables and the disk allocation maps. 

An external page table provides a mapping of a segment’s virtual pages to disk. 
Each table entry contains the disk address and other status bits for a page. 
Because segments may grow large or be sparsely used, an external page table is, 
in general, an unbalanced tree of pages. The tree contains only pages needed to 
map virtual pages of the segment actually used. For file segments that use only 
a few pages, the disk addresses are kept in the file directory, and there is no 
external page table. 

External page tables are themselves stored in segments. Tables can be large 
and are therefore made pageable. To prevent infinite recursion in page fault 
handling, there is special treatment of the table for a segment that contains other 
external page tables. This table is allocated in the segment that it maps, within 
a limited range of pages, and the pages that map that range are fixed in real 
storage. The recursion is programmed by backtracking, described later. Tables 
for file segments are kept in file segments and updated atomically, along with 
directories and the actual files, as described later. 

There are disk allocation maps for both temporary disk space and permanent 
file spaces, with 1 bit per disk block. In general, disk space is allocated as pages 
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are referenced. To improve sequential performance, a small group of consecutive 
blocks is reserved for a file and then allocated to it as needed. More groups are 
used as needed. The unused portion of a group is freed at file close. 

Pages are generally written to the disk addresses allocated and stored in the 
external page tables, the home location. This is constrained for existing pages in 
file segments opened with the journal option. These pages are only written to 
their home locations if their contents have been committed. If the storage 
manager insists on paging out such a page containing uncommitted data, it 
chooses a temporary disk address, saves it in a table, and writes the page there 
until commit. This constraint is a consequence of logging only afterimages of 
changes, as described later, but is not inherent in database storage. New (never 
committed) pages may be written to home. 

6.2 Backtracking and Careful Update 

Most data used by the storage manager are shared by all processes and must 
therefore be referenced in critical sections to maintain consistency. Backtracking 
and careful update are used in critical sections that could page fault when 
referencing external page tables or disk allocation maps. On entry to such a 
critical section, a backtrack state is saved, which is the current process registers 
at that time. This state implicitly includes the request (page fault, paging service, 
etc.) that caused entry to the critical section. Careful update means that shared 
data are not updated until all pages needed to complete the update are first 
touched without causing page fault. Since the critical section prevents page 
stealing, the update can then be successfully completed. 

If a page fault occurs, all computations since the backtrack state was saved 
(registers and automatic variables) are discarded, and the new page fault is 
handled. If paging I/O is necessary, the process leaves the critical section, and 
other processes may enter it, since shared data are consistent. When I/O finishes, 
the process reenters the critical section at the backtrack state to handle the 
original request from the beginning. 

To complete such a critical section without incurring a page fault, a few pages 
must be in real storage simultaneously (e.g., up to three pages of external 
page tables). This requirement is the same as that for atomic execution of one 
complex machine instruction (e.g., up to eight pages for Move Characters in 
IBM System/370). Experience indicates that demand paging (one page-in at a 
time, no page fixing) eventually meets this requirement without more formal 
guarantees. The only alternatives to backtracking and careful update that we 
know of are to page fix storage manager tables in real storage or to handle storage 
manager page faults serially with special logic. 

6.3 Locking 

Implementation of locking is based on the architecture, transaction definition, 
and open options previously described. Each transaction (process) has a unique 
id stored in the transaction id register when the process runs. If a tile is opened 
with the locks or journal options, locking is activated by setting segment register 
5’ bit (Figure 1) for the file segment. As transactions access this segment, the 
hardware causes lock fault interrupt whenever locks in the inverted page table 
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entry for a page (Figure 3) are not those of the current transaction or do not 
allow a specific load or store instruction. The storage manager of CPR searches 
a lock table, makes the transaction wait if there are conflicting locks, or grants 
and records the requested lock in the table. The manager then copies all locks of 
the current transaction in the referenced page to the inverted page table entry, 
so that the program that encountered lock fault may proceed. 

Locks are granted to and held by transactions until they commit: share for 
read and exclusive for write. It should be noted that such locking of arbitrary 
storage units (128 bytes) achieves transaction serializability [B] independently of 
the data structures and algorithms in programs that use the storage. If a file is 
opened with the journal option, but not the lo&s option, then only write locks 
are recorded in the lock table and used for conflict analysis. Read locks are 
granted freely and not recorded. 

The lock table contains entries called lockwords. Each lockword has fields 
similar to those of inverted page table entries (Figure 3), that is, segment id, 
vpage, tid, W, and lockbits. A lockword is allocated when a transaction first 
references a page following commit and is freed by commit. There is an allocated 
lockword for each page referenced by each transaction since its last commit. 
Each lockword is also on two lists: one a hash of segment id and vpage; the other 
by tid. Lock fault processing uses the hash to find all locks of any transaction in 
the referenced page, to detect conflicts and record locks granted or requested. 
Commit processing uses the transaction list to find all locks held by the commit- 
ting transaction in all pages. The lock table is pageable and is referenced in 
storage manager critical sections using backtracking and careful update, as 
previously described. 

6.4 Commit 

A call to commit atomically applies all updates of a transaction to three types of 
data: actual files to be committed, external page tables of those files (if disk 
blocks were allocated), and related file directories (for new files, erase, rename). 
Because we want to avoid deadlock in commit and other supervisor services, the 
external page tables and directories are treated specially. Their segments are 
opened with the previously described combination of options that provides 
hardware locking for write serializability and commit, but no read locking. To 
achieve full consistency, conventional software locks are acquired, in a deadlock- 
free order, before access to these two types of data in open, commit, etc., and are 
then released. Also, these data are updated only during commit, so the duration 
of write locking is very short. 

The log is written sequentially, in disk space separate from tiles. Since all three 
types of data to be committed are in segments that use lockbits, logging is simply 
copying to the log each 128-byte line of storage for which the transaction holds 
a write lock. An end-transaction record is added, the log is forced to disk, and all 
the transaction’s locks are released. This log force is the atomic commit. If the 
end-transaction record is not in the log after a failure, the transaction’s log 
records are discarded. Since uncommitted pages are not written to home disk 
locations, the files remain unchanged. The choice of only afterimage logging and 
not writing uncommitted pages is not required to implement database storage. 
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The architecture allows equally well the additional logging of beforeimages, and 
we could then write uncommitted pages to home. We made the choice to achieve 
a shorter log (approximately half) because of the technology trend to ever-larger 
real storage that can accommodate more uncommitted pages until commit. 

Undo is implemented by discarding uncommitted pages from real storage or 
from temporary disk, if any were written there. The previously committed 
versions of pages are reinstated. This is possible because, as described earlier, 
the lockbits only allow one writer in a page, we do not write uncommitted pages 
to home disk locations, and we chose to write committed pages to home disk 
immediately after commit. Frequently changed “hot” pages require special treat- 
ment to reduce disk writes. If a page is referenced while awaiting disk write, it 
causes a page fault, and a copy of the page is made for the new requester. If the 
new copy is updated and committed before the first write is performed, the new 
copy simply replaces the old on the disk write queue. Although updates in hot 
pages are always written to the log by commit, the pages themselves are not 
written for every commit. The first reference to a page after undo gets the latest 
committed version, either in real storage or from home disk. Periodic checkpoints 
force hot pages to disk, to limit the work of future redo. 

Redo from the log after system failure is accomplished by copying into per- 
manent file pages all afterimage log records of recently committed (since the last 
checkpoint) transactions. This is idempotent and therefore restartable if failure 
occurs during redo. Our CPR prototype does not implement recovery from disk 
media failures, for example, head crash or, with some disks, power loss during 
write. An archive of the log would provide backup sufficient for media recovery, 
since the log contains all data stored in logged files. The log could also be used 
for an alternative implementation of undo, which resembles redo. If committed 
pages were not immediately written to disk and subsequent transactions were 
allowed to update such pages without first making a copy, then, if undo were 
necessary, the committed versions could be reconstructed from home disk and 
recently committed afterimages. 

7. PERFORMANCE AND PROTOTYPE EXPERIENCE 

We first consider the cost and performance of the base storage facilities them- 
selves. The RT PC storage controller (MMU) is one chip of NMOS logic, 
including the address translation and protection facilities [12]. Less than 
10 percent of the area of this chip is devoted to the transaction locking mecha- 
nism. The storage manager of the CPR supervisor is less than 15,000 lines of 
mostly PL.8 programming, including file directories, simple access methods, 
virtual storage, real storage, disk storage, page and lock fault handlers, logging, 
open, commit, undo, erase, rename, etc. 

Approximate instruction counts of some supervisor functions that might be 
compared with analogous functions performed in a conventional buffer pool 
manager are given in Table I. The 1400 instructions for a page fault include 
about 350 instructions for a very simple disk driver in a one-disk system. It also 
includes returning to the process dispatcher because of the page fault and being 
redispatched when the disk read is complete. Locks associated with database 
storage are granted by an interrupt handler and, when there is no conflict for 
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Table I. Supervisor Path Lengths 

Function Instructions 

Page fault with disk read 1400 
No-conflict lock grant 250 
Load segment register SVC 25 

Table II. Debit-Credit File Sizes 

File Array size Size in kbytes 

Accounts 15,000 4,000 
Tellers 200 20 
Branches 8 4 
History 10,000 500 

Table III. Debit-Credit Performance 

System 

Lean and mean 
Fast 
Good 
Common 
CPR on RT PC 

Instructions 
(in thousands) 

20 
50 

100 
300 

22+ 

Disk I/O 

6 
4 

10 
20 

6+ 

the lock, the interrupted process continues execution after a cost of about 
250 instructions. A supervisor call (WC) is required to load a segment 
register because it is a privileged instruction and because it is necessary to verify 
authorization, as previously described. Because segment registers can be fre- 
quently loaded, this SVC was specially coded to avoid the overhead of CPR’s 
general SVC handler. 

We next give some performance figures for the debit-credit application that 
has been used to benchmark the performance of on-line transaction systems [7]. 
The database component of this transaction consists of debiting a bank account, 
updating a teller and branch balance, and writing to a history file a record of the 
transaction. In debit-credit we use four persistent variables: accounts, tellers, 
branches, and history. Each is declared as an array of structures as in the previous 
PL.8 example. Table II gives the actual sizes of the four files that could 
conveniently fit into our hardware, which has a single 37-Mbyte disk and special 
hardware for counting instructions executed. 

In an actual system, the branch and teller files are larger, but would still easily 
fit in real storage, whereas the accounts file in our example is larger than real 
storage. Consequently, in considering disk I/O, our example reasonably reflects 
the performance that would be experienced in a more realistic system. Table III 
gives the path lengths and disk I/O counts measured in CPR on the RT PC and 
for several other systems that have been reported [7]. 

The path length for CPR does not include the X.25 block terminal support 
that is included in the other systems. Also, the log is not duplexed in CPR; if it 
were, the disk I/O count would have been approximately 1 greater. The 
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Table IV. A Subset of the Dewitt Benchmarks (clasped time in seconds) 

Benchmark SQL/RT SQL/801 
SQL/801 
No locks 

1 percent select (unique) 
10 percent select (unique) 
1 percent select (secondary) 
10 percent select (secondary) 
JoinAselB 
JoinABprime 
JoinCselAselB 
sJoinAselB 
sJoinABprime 
sJoinCselAselB 
Insert one row 
Delete one row 

2.3 2.1 
11.2 19.1 
6.5 4.1 

48.8 28.9 
29.0 61.0 
31.2 85.0 
38.6 36.0 

120.0 84.5 
43.0 85.0 

141.4 57.0 
1.5 0.6 
1.4 0.5 

2.0 
18.0 
3.9 

28.0 
59.5 
83.0 
35.0 
78.0 
81.0 
55.5 

- 

figures given for CPR are averages for a range of levels of multiprogramming 
from 1 to 10. Deadlocks were a few percent at worst. Because of the limited 
disk configuration, however, no conclusions can be drawn about concurrency 
issues from this example. Indeed, these performance figures are only given to 
indicate that the cost of using database storage is not obviously too high to be of 
practical use. 

Attanasio [2] describes experiences with implementing SQL/801, a program 
that supports a large subset of the relational database language SQL (most verbs, 
views, n-way joins, some optimization, excluding subqueries and aggregate func- 
tions). The development of SQL/801 was greatly simplified because, with minor 
exceptions, it considers only a single user. It achieves multiuser concurrency by 
running in multiple processes using the shared database storage of CPR, and is 
coded in less than 15,000 lines of PL.8. Table IV gives some performance figures 
for SQL/RT and SQL/801 on a subset of the Dewitt benchmarks [5]. SQL/RT 
is a product, implemented with conventional database techniques, supporting 
SQL and running on the AIX operating system version 2.1. 

The timings in Table IV were all obtained on the same hardware configuration: 
an RT PC 6150 model 025 with 4 Mbytes of real storage and a 70-Mbyte disk. 
SQL/801 No Locks is the same as S&L/801, except that locking was turned off 
by opening all the segments without the lock and journal options. The difference 
between them is a measure of hardware and software locking cost. The select 
queries retrieve from relations having 10,000 tuples, each tuple having 16 fields 
and a length of 182 bytes. The join queries operate on the same relations or 
smaller ones with 1,000 tuples. Insert and delete involve the same lO,OOO-tuple 
relations that have one primary (unique) index and two secondary indices. The 
indices are on fields with integer attributes. Result tuples are inserted into a 
relation. Times shown are the wall clock time in seconds. Again, these figures 
are reported only to indicate that the cost of database storage is not obviously 
too high. 

8. SUMMARY AND CONCLUSIONS 

We have discussed 801 storage architecture, currently implemented in the IBM 
RT PC hardware, and a storage manager and language interface, which are parts 
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of the CPR prototype operating system. Together, they offer large virtual storage, 
access to files in storage with sharing, and the innovation of database 
storage, which provides serializable atomic transactions on files, implicitly 
as storage is used. 

Short (32-bit) addressing is chosen for most computation and program linkage. 
Longer virtual addresses are used for files and unusually large computations. 
This addressing distinction is efficient for the most frequent storage references 
and allows compatible extension of the addressing range, from small to very large 
machines. 

A novel hardware locking mechanism monitors the read and write references 
of individual transactions to 128-byte lines of database storage. Lock fault 
interrupts invoke the storage manager to grant locks, and later, when a transac- 
tion commits, the storage manager writes log records of changed storage. This 
achieves correct serializability and atomic update in linear byte files, without 
explicit calls from programs that access storage and independently of superim- 
posed data organization or access pattern. 

The PL.8 programming interface to storage provides uniform access to an 
essentially unlimited number of variables, of any type and structure, some of 
which may be files. The language hides most distinctions between short and long 
addressing, except for declaration of storage class. The compiler manages ad- 
dressing details, including loading of segment registers when necessary. 

Experience with our prototype indicates that these storage facilities can greatly 
simplify the programming of database subsystems and applications, and offer 
good performance for the workloads studied thus far. Implementation cost is 
modest for hardware and software. More work is needed, with adequate I/O 
configurations and workload variety, to explore properly the limits and parame- 
ters of performance. 

References [22]-[25] have raised issues about database management with 
virtual storage and/or operating-system transactions, for example, that LRU 
replacement and entry-per-page mappings of virtual storage may not be best for 
files and that coordination of components may be required to prevent writing 
virtual pages to disk until log records are written. CPR addresses these issues by 
providing paging hint calls and by integrating the implementation of storage and 
logging. Compact mappings of files to extents could certainly be added. These 
same references have also noted that locking based on units of storage accessed 
seems incompatible with techniques used in some database systems to improve 
performance and concurrency; for example, locking and logging only data changes 
(effects on indices implied), and releasing some locks before commit. Similarly, 
database storage prevents operations like increment/decrement from proceeding 
without locks, as is done in IMS Fast Path. These topics and their importance 
in practical performance should be studied. 

Database storage is a new way to implement certain storage management 
functions in an operating system, built on and similar in spirit to virtual storage. 
Both are very general, transparent, and rather monolithic approaches to storage 
management-one for storage hierarchy, and the other for storage concurrency 
and recovery. We believe that database storage will perform well for a wide range 
of applications and that the simplicity it offers is too attractive to dismiss. As in 
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the early days of virtual storage, the challenge is to understand and exploit its 
characteristics. 
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