THE GF-11 SUPERCOMPUTER

John Beetem
Monty Denneau
Don Weingarten

Reprinted from the proceedings of the 12th Annual International
Symposium on Computer Architecture, held Boston, Massachusetts,
June 17-19, 1985

The GF11 Supercomputer

John Beetem, Monty Denneau, and Don Weingarten

IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

GF11 is a parallel computer currently under construction
at the Yorktown Research Center. The machine incorporates
576 floating-point processors arranged in a modified SIMD
architecture. Each processor has space for 2 Mbytes of
memory and is capable of 20 MFLOPS, giving the total ma-
chine a peak of 1.125 Gbytes of memory and 11.52
GFLOPS. The floating-point proecessors are interconnected
by a dynamically reconfigurable non-blocking switching net-
work. At each machine cycle any of 1024 pre-selected per-
mutations of data can be realized among the processors. The
main intended application of GF11 is a class of calculations
arising from quantum chromodynamics, a proposed theory of
the elementary particles which participate in nuclear inter-
actions.

Introduction

GF11 is a parallel computer conceived primarily for the
numerical solution of problems in quantum chromo-
dynamics (QCD), a proposed theory of the class of particles
which participate in nuclear interactions. A typical calcu-
lation in QCD, for example an evaluation of the masses of
the proton, neutron and a few related particles, is estimated
to require 3 x 10" arithmetic operations [1]. With a 100
MFLOP machine (such as the Cray I) this calculation would
take 100 years. By a parallel application of its 576
processors, GF11 is capable of 11.5 GFLOPS peak and
about 10 GFLOPS sustained performance for QCD. The
mass calculation can be completed in about 1 year.

Although QCD is the main target of GF11, the machine’s
architecture is sufficiently flexible that arithmetic in the
range of 3 to 10 GFLOPS can probably be delivered for a
fairly wide range of problems in science and engineering.

Several innovations in hardware technology were essen-
tial to realizing this performance. The first is the existence
of high-speed single-chip floating point processors, viz. the
Weitek WTL1032 floating point multiplier and WTL1033
floating point ALU. Each of these chips can perform 5
million 32-bit computations/second in pipelined mode; this
performance previously required a whole board of logic.
However, the raw processing power of these chips is
wasted unless operands and results can be transmitted fast
enough. This is done in GF11 using a very high-speed reg-

0149-7111/85/0000/0108$01.00 © 1985 IEEE

108

ister file implemented in ECL. By storing intermediate re-
sults and smoothing pipeline delays, the register file effects
92% utilization of the processors for typical QCD compu-
tations.

The other major hardware innovation of the GF11 is the
processor interconnection. Rather than a fixed intercon-
nect, such as a two-dimensional mesh, GF11 connects the
processors through a full Bene$ network [2], a non-
blocking switch capable of realizing any permutation of the
processors and instantaneous reconfiguration. Using the
switch, GF11 can be ‘organized in many different
topologies, such as a rectangular mesh of any dimensional-
ity and size, any torus, a hexagonal mesh, or some irregular
organization fitted to a single problem. In addition, the full
permutation allows spare processors to be swapped in to
replace failed processors.

For discussion of a related but distinct architecture for a
parallel computer for QCD calculations see ref. [3].

Architecture

The GF11 architecture is shown in Figure 1. There are
576 20-MFLOP processors, of which some number are
spare processors to be enabled if a primary processor fails.
A typical partition is 512 primary processors and 64 spares.
The processors are interconnected through a three stage
Bene$ network, called the Memphis switch. Data is sent
bytewise through the Memphis switch. A central controller
broadcasts instructions to all of the processors and the
switch, and also communicates with a 3084 host computer.

GF11 is a modified Single-Instruction Multiple-Data
(SIMD) machine: all processors receive the same instruc-
tion at the same time. A SIMD architecture has a variety
of advantages:

1. The machine is simpler to design, understand, pro-
gram, and debug.

2. SIMD improves performance by eliminating synchro-
nization overhead.

3. There is one common instruction memory for the
whole machine. This store can be made much larger
than would be possible if each processor had its own
instruction memory.

4. Ttis very difficult to build a general-purpose processor
which can keep up with a 20 MFLOP non-vector
floating point unit. There are no microprocessors
(and few mainframes) fast enough. In GF11, only one
such processor is needed (the central controller) -- for
a MIMD equivalent 576 processors would be needed.

Of course not all problems can efficiently utilize a set of
processors receiving a single instruction stream. Fortu-
nately a large class of scientific problems, and QCD in par-
ticular, do not encounter this difficulty. We will return to
this topic later.

The GF11 Processor

One of the 576 processors comprising GF11 is shown in
Figure 2. The heart of the processor is a 20 MFLOP 32-bit
floating point unit and a 20 MIP 32-bit fixed point unit.
Neither arithmetic unit requires data to be organized in
vectors for full performance. The floating point unit con-
tains four Weitek 32-bit IEEE floating point chips: two
multipliers and two ALU’s.! Each Weitek chip is capable
of 5 MFLOPs in pipelined mode. The fixed point unit, im-
plemented in TTL, includes a 32-bit barrel shifter and a
general-purpose ALU supporting addition, subtraction,
and all logic operations. GF11 can run fixed point code at
11.5 GIPS, or can use the fixed point unit in floating point
applications for field extraction from floating point num-
bers and address calculations.

Each processor has a considerable amount of local data
memory: 64 Kbytes of high-speed static RAM, to be used
to store frequently accessed data, and 256 Kbytes (ex-
pandable to 2 Mbytes) of dynamic RAM, used to store long
term data. The entire 576 processor GF11 thus has 36
Mbytes of static RAM and 144 Mbytes to 1.125 Gbytes of
dynamic RAM. Both RAMs are fully random access --
vectored data is not required.

The static RAM alone does not have enough memory
bandwidth to keep the arithmetic units busy continuously.
This limitation is softened using a 256 word 12.5ns register
file, implemented in ECL. On each 50 ns microcycle, the
register file is used four times: Two register file operands
are sent to the fixed or floating point unit, a fixed or float-
ing point result is stored, and a word is transferred between
static RAM and the register file. The register file reduces
memory bandwidth by retaining operands which are used
multiple times as well as acting as a “scratch pad” for
intermediate results. It also smooths out the pipeline delays

! The ALU can add, subtract, take absolute values, and convert
between fixed and floating point. There is no built-in division.
However, quotients can be computed efficiently by making an
initial estimate and improving it using two adds and three multi-
plies.

109

associated with the arithmetic units thereby simplifying
code generation for the GF11.

The processor has two external data ports. One of these
is a transceiver port for communicating with other
processors through the Memphis switch. The transmitter
takes a 32-bit word from the static RAM and sends it to the
Memphis switch. The receiver accepts a word from the
Memphis switch and stores it in the register file. Thus a
processor can fetch operands from its own or a neighbor’s
SRAM. The other port is a 32-bit data path for communi-
cating global data to and from the central controller over
backplanes. Data from the processors is conditionally
ORed to combine data for the whole array.

Finally, the processor has some special functions which
circumvent some of the limitations of SIMD. These are:

1. A set of 256 base registers to relocate static RAM ad-
dresses. Each processor can have a different base
value so that each processor can be processing a dif-
ferent variable or array.

2. A set of 8 condition code bits which are set as a result
of fixed or floating point computations. These condi-
tion codes can selectively control processors based on
the result of previous computations. For example, an
operation A op B can be inhibited to instead produce
the result A. Selection between local and neighbor
operands is also conditional, to allow irregular
boundary conditions. All data stores are conditional.

A GF11 processor is controlled by a 180-bit horizontal
microcode word which controls each subfunction inde-
pendently. This maximizes the flexibility and utilization of
the processor and simplifies code generation. Since the
same control word is broadcast to all 576 processors, the
cost of a wide microcode word is quite small on a per
processor basis.

The Memphis Switch

The GFI11 processors are interconnected through a
high-speed, pipelined, non-blocking three stage Bene$
network, shown in Figure 3. Each stage of the Memphis
switch consists of 24 24-input crossbar switches. The
middle stage is connected to the outer stages by “perfect
shuffle” fixed interconnections. By suitable configurations
of the crossbars it is possible to realize any permutation of
the 576 inputs. In addition, it is possible to realize map-
pings more general than permutations: for example, any
input can be broadcast to all outputs.

All data paths in Figure 3 are nine bits wide: 8 data bits
plus a parity bit. The data rate on each path is 20
Mbytes/sec; for 576 processors the aggregate data rate is
11.5 Gbytes/sec. The 24-24 crossbar switching is accom-
plished using a high-speed semicustom CMOS gate array
chip designed by the authors and manufactured by LSI

Logic Corporation. 18 of these chips are used per crossbar;
1296 are needed to implement the entire Memphis switch.

For most expected GF11 applications, only a few switch
configurations are required. For example, if the application
involves a two dimensional mesh where only nearest
neighbors are important, just four configurations are
needed: send north, send south, send east, and send west.
A four dimensional torus requires only eight. The Memphis
switch allows up to 1024 distinct configurations, enough to
cover a wide variety of applications and allow easy com-
munication with non-adjacent neighbors.

Every 200 ns the Memphis switch receives a new word
of data from each board and is assigned a new configura-
tion from among the 1024 preloaded possibilities. It takes
considerably longer, however, to compute and load a com-
pletely new configuration. For most applications, it is ex-
pected that the configurations will be loaded at the
beginning of the run and will remain constant throughout
the whole execution of the problem.

The GF11 Controller

Since GF11 is a quasi-SIMD machine, a single central
control is adequate for controlling all aspects of machine
execution. The controller (Figure 4) has several functions:

1. Storage and broadcast of GF11 instruction streams.
2. Address relocation and remap.

3. Communication with the host CPU.

4. Status and error checking.

The foremost requirement for the GF11 controller is
speed -- the GF11 microcycle is 50 ns and the controller
must be able to broadcast instructions, addresses, and data
at that rate. This eliminates the possibility of using a
microprocessor or even a group of several microprocessors
as the central controller. It is conceivable to build a spe-
cialized controller out of high-speed bit-slice elements, but
this would reduce flexibility and possibly reduce the range
of future applications beyond QCD.

The controller design which was finally adopted uses a
very large memory to store horizontal microcode for the
processors and switch. This microcode is computed by the
host and loaded into the controller prior to probiem exe-
cution. The Control RAM can broadcast instructions, ad-
dresses and data to the GF11 array at a rate of one 256-bit
word every 50ns. In addition, it can receive result data
from the GF11 array at the same rate.

The depth of the Control RAM is 512 Kwords, expand-
able to 4 Mwords. GF11 uses microcode quite rapidly,
however, and as a result the total microcode store repres-
ents only 25 to 200 milliseconds of execution. Since
microcode generation is too time consuming to be done on
the fly, sustained operation is possible only by reusing at

110

least some microcode sequences a large number of times.
This turns out possible in the QCD applications we have
considered. The time consuming sections of these algo-
rithms all consist of a large number of iterations of an inner
loop which uses the same instruction sequence on each
pass.

GF11 treats microcode sequences as subroutines to be
called by the host. Although the instruction sequence of a
subroutine is fixed, it is necessary that different invocations
of a subroutine can pass different variables and arrays as
arguments. GF11 has two mechanisms to accomplish this:

1. Static RAM addresses can be relocated within the
controller by one of 1024 relocation registers. These
relocation registers are loaded from the host between
microcode subroutine invocations.

2. There is a very general “‘re-map”’ mechanism for
mapping any relocated static RAM address into any
other by table lookup. This is used to implement
gather/scatter, periodic arrays, or virtually any unu-
sual mapping required by a future application.

These mechanisms, along with the per-processor relocation
mentioned earlier, ‘provide powerful address manipulation
and allow massive re-use of microcode subroutines.

While microcode subroutines are very fast, they do not
have any decision-making capability. In particular, they
have no conditional branching and do not allow further
levels of subroutine calls. The intelligence of the GF11 lies
in the Control CPU, which lies between the microcode
generators and the host. The Control CPU decides which
sequence of microcode is to be executed next, sets up the
necessary relocation and remap values, and starts the next
sequence when the previous one finishes. Deciding what
to do next can be based on results from previous subrou-
tines, or status bits. In addition, the Control CPU contains
hard disk storage, to act as a buffer between the host and
the GF11 processor array and to store machine checkpoints
for error recovery during very long computations.

The machine currently acting as the Control CPU is an
IBM PC/AT. Provided that the microcode subroutines are
long enough (i.e. several thousand instructions), the
IBM PC/AT has enough time while a microcode subroutine
is executing to set up the next one.

Software Development

The GF11 software strategy is to provide adequate pro-
gram development tools in as simple a way as possible.
GF11 is essentially impossible to program by hand at the
microcode level -- the processor function is too rich? and
the pipelines are too complex -- thus some sort of high level
language is needed. However, we did not want to create a

2 For example, there are 59 microcode fields.

new language and compiler at this time -- we want to get
more experience with the hardware and initial applications.
The approach we have taken is to use Pascal in an unusual
way for software development.

There are two parts to GF11 software: the microcode
subroutines and the master program which calls them. The
master program, which runs on the IBM PC/AT, is a con-
ventional Pascal program which can take advantage of all
features of the language. To call microcode subroutines,
the master program invokes several predefined procedures
to (1) set up relocations values, (2} invoke a microcode
subroutine, and (3) transfer instructions and data between
the IBM PC/AT and the Control RAM.

The microcode subroutines are also written in Pascal,
but in a special way. The purpose of running the Pascal
microcode subroutine is not to generate a numeric result,
but rather to obtain the sequence of GF11 operations
needed to generate the result. The Pascal microcode sub-
routine does not use the conventional Pascal operations like
+ and * Instead, the Pascal subroutine calls predefined
code-generation procedures such as ADD and MULT.
Then, when the Pascal subroutine is compiled and exe-
cuted, instead of numeric results, the code generation pro-
cedures generate the graph of operations to be executed by
GF11.

For example, the microcode Pascal statement:
COMPUTE (A,MULT(B,C))

does not produce the matrix product of B and C, but rather
the GF11 code which computes B*C and stores the result
in A. It is important to note that all the address calculations
are performed when the Pascal microcode is processed by
the host. GF11 does not incur the significant overhead of
array address calculations.

After the initial GF11 code has been produced in the
form of an operation graph, an optimizer compacts it as
tightly as possible into GF11 horizontal microcode. When
appropriate, the operations are reordered to ensure a tight
fit; 92% utilization is typical for QCD algorithms. This
microcode can then be combined with other microcode
subroutines and loaded into the Control RAM.

Implementation

GF11 is implemented using conventional vendor tech-
nology. Except for the gate array used in the Memphis
switch, all ICs are off-the-shelf vendor components, mostly
Fairchild FAST TTL logic. Fairchild 100K ECL is used for
very high-speed sections such as the register file, and for
driving cables (all of which are differential pair). The total
chip count for the GF11 is approximately 400,000.

GF11 is housed in standard 19" and 24" equipment
racks. The 576 processors occupy 20 racks, including air
cooling and power supplies. The Memphis switch occupies

it

5 racks; two of these are used only for the cables connect-
ing successive stages. The central controller fits in two
racks. The total power consumption is approximately
200,000 watts.

Application

The main intended application of GF11, as we have al-
ready mentioned, is the numerical evaluation of some of the
predictions of quantum chromodynamics. We will now give
a brief overview of QCD, the mathematical tasks involved
in obtaining predictions, and how these calculations can be
done on GF11.

QCD is a theory of the particles which participate in nu-
clear interactions. Among these are the proton, neutron,
delta baryon, pion and rho. According to QCD, these par-
ticles are composed of still more elementary objects called
quarks and antiquarks bound together by the action of
something called the chromoelectric field. In a similar way,
the electrons and nucleus of an atom are bound together
by the electromagnetic field. QCD provides a formula for
the probability that any specified configuration of quarks
and field at one instant of time will arrive, at some later in-
stant, at another specified configuration. Given such tran-
sition probabilities between any initial configuration and
any final configuration, relatively simple formulas can then
be used to extract a variety of testable predictions. The
masses of the proton, neutron and delta baryon can be ob-
tained, for example, from transition probabilities for three
quark systems.

A mathematically well-defined expression for transition
probabilities is provided by a formulation of QCD [4] in
which space and time are approximated by a four-
dimensional hypercubic lattice of points. Predictions for
the real world are obtained by taking the limit of the lattice
theory’s predictions as the lattice spacing goes to zero and
lattice volume goes to infinity. There is some evidence that
a reasonable approximation to the real world can be ob-
tained on lattices as small as 6x6x6x6. Quite accurate
predictions are expected from a lattice 16 x16x16x16. In
the fattice theory the chromoelectric fieid is represented by
a 3x3 complex matrix U(x,p) assigned to each link (xy)
of the lattice joining a pair of nearest neighbor sites. In
addition, each site of the lattice carries a 12 component
complex vector ¢(x) which, in a sense, may be thought of
as a quark field. Using the lattice formulation, any transi-
tion probability T,y between configurations A and B can
be expressed as an integral, over all U(x,y) and ¢(x), of a
function F,4(U, ¢) which depends on the transition con-
sidered multiplied by a second universal function

exp[S(U, ¢)] :

Tag = fd#(U’ 0) Fap(U, ¢) exp[SU, ¢)] (1)

If such integrals can be evaluated with sufficient accuracy,
any testable prediction of QCD can be extracted. For a
6x6x6x6 lattice, the integral is over 72,576 real dimen-
sions. For a 16x16x16x 16 lattice, the integral is over
3,670,016 dimensions. The simplest methods of numerical
integration, such as use of the trapezoidal rule, would re-
quire astronomical amounts of time to evaluate eq. (1) even
using GF11.

A Monte Carlo method which is capable of evaluating
eq. (1) on GF11 was suggested in ref. [5] To do the integral
of eq. (1) following ref. [S], a random sequence of lattice
configurations of the U and ¢ variables is generated with
differential probability

du(U, ¢) exp[S(U, ¢)] (2)

This is a well defined probability distribution since, it turns
out, S(U, ¢) is real while du(U, ¢) is defined in such a way
that the total integral of the quantity in eq. (2) is necessar-
ily one. The function F,4(U, ¢) is then found on each
random configuration, and this set of values is averaged.
The result is T .

To execute the algorithm of ref. [5] for an 8x8x8x§
lattice, GF11 is configured as an 8x8x8 array of 512
processors with nearest neighbor connections through the
switch. This uses only 6 of the 1024 available switch set-
tings. Each processor manages all the data for a line of sites
with a single value of lattice coordinates x, , x,, and x,, and
values of x, running from 1 to 8. To generate the sequence
of random U and ¢, some starting configuration is chosen
and then successively modified site by site. The modifica-
tion at a single lattice site x consists of making a random
trial change in either U(x,y) or ¢(x) at that site, then keep-
ing or rejecting this change with a probability determined
by the shift AS(U, ¢) in the function S(U, ¢) to which the
trial field update gives rise. The trial modification of fields
at a site and final determination whether to keep or reject
the change, once AS(U, ¢) has been found, require only a
tiny fraction of the total operation count for the algorithm.
These operations are carried out one site at a time by disa-
bling stores back into memory in all but one processor. The
difficult step is evaluating AS(U, ¢) . This is done in par-
allel on all 512 processors.

Essentially all the work in the evaluation of AS(U, ¢) is
spent in the solution of a linear equation

U0 = DMy () + xi0) 3)
by

for an auxiliary 12 component complex vector ¥,(x) on
each lattice site x. The matrix M{(x,y) is nonvanishing
only for x and y which differ by a single lattice spacing and
is a simple function of U(xy). The source vector x,(x) for
a site x, on the other hand, is a simple function of the quark

112

field ¢,(x) at the same site. Eq. (3) is solved iteratively by
choosing some convenient initial ¥,(x) at each x, and then
successively calculating better approximations to y,(x) by
evaluating the right side of eq. (3) using the best preceding
approximation. Each of the 512 active processors operate
in parallel to evaluate this expression for y,(x} for the 8
values of x it has been assigned. The arithmetic operations
needed at each site are identical so the single instruction
stream sent out by the central controller is adequate. The
evaluation of this expression for the 12 components y,(x)
at a single x takes about 2500 operations. This calculation
requires about 200 words of data through the switch from
nearest neighbor processors. The resulting rate of about
'/t» word through the switch per arithmetic operation is a
factor of 3 lower than the peak rate of '/, word per opera-
tion which the switch is capable of delivering.

The iterative solution of eq. (3) converges fastest if the
sites which are updated simultaneously in different
processors are not coupled by the matrix MY(x,y) and
therefore are not nearest neighbors in the space-time
lattice. This presents a problem for the SIMD architecture
we have chosen if the 8 site line carried by each processor
is put into memory in the same way. Since each processor
receives the same data addresses from the central control-
ler, nearest neighbor processors would wind up acting si-
muitancously on nearest neighbor sites. Instead of
addressing identically in each processor we therefore place
data associated with site x, in the processor with coordi-
nates x, , x,, x, at the location which homogeneous ad-
dressing would have used for the site

4)

Xyg=(x; + x, + % + x;) mod 8.

A single address broadcast by the central controller then
corresponds to physical sites, in nearest neighbor process-
ors, which differ by at least 2 units of lattice spacing. By
assigning the physical lattice periodic boundary conditions
in all directions and making appropriate use of the address
remap capabilities of the central controller, the iteration of
eq. (3) for the address pattern of eq. (4) can be driven by
microcode nearly identical to the microcode which would
have been required for homogeneous addressing.

Addressing according to eq. (4) and its generalizations
is also useful for Monte Carlo calculations in which distinct
processors update distinct sites in parallel. Monte Carlos
of this sort arise in approximate versions of QCD and for
lattice systems in condensed matter physics. For such cal-
culations again it is often necessary to insure that sites
which are physical neighbors are not acted on simultane-
ously.

The combination of hardware, software and algorithms
which we have chosen, we expect will yield a sustained
performance of 10 GFLOPS. For the calculations we an-

ticipate a total consumption in the neighborhood of
3 x 10" operations will be required. As pointed out in the
introduction, this will use 1 year on GF11. The time re-
quirements for such calculations on other present and pro-
posed computers in shown in Table 1.

Finally, it may be useful to mention that performance
comparable to what GF11 is expected to deliver for QCD
can probably also be obtained for a variety of other scien-
tific and engineering applications. The main feature of
QCD which makes it amenable to treatment using our
modified SIMD architecture is that the theory governs a
physical system (fields on space-time) composed of a large
number of individual constituents (field values at individual
sites) each obeying the same law. A second feature of the
QCD calculation, somewhat less important than the first
but still a help, is that nearly all the detailed arithmetic, for
example in updates by eq. (3), involves at least some
chaining. This permits the register file on each processor
to compensate for limited memory bandwidth. Both of
these features are present in a wide range of problems in
solid state physics, in the physics of fluids, and in design
simulation.

Table 1
Machine CPU time

VAX 11/780 30,000 years

Cosmic cube {6] 3,000 years

Cray 1 100 years

Columbia [3] 10 years

GF11 1 year
References
[1] D. Weingarten, “Algorithms for Monte Carlo

Calculations with Fermions”, IBM Yorktown
Technical Report, 1984,

2] V. Bene§, “Optimal Rearrangeable Multistage
Connecting Networks”’, Bell System Technical
Journal, vol 43, no 4, Part 2 (July 1964), pp.
1641-1656.

[3] N. Christ and A. Terrano, “A Very Fast Parallel
Processor””, IEEE Transactions on Computers,
vol C-33, no 4, April 1984, pp. 344-350.

[4] K. Wilson, “Confinement of Quarks”, Phys.
Rev., vol D10, 1974, p. 2445.

13

(5]

(6}

D. Weingarten and D. Petcher, “Monte Carlo
Integration for Lattice Gauge Theories with
Fermions”, Phys. Letters, vol 99B, no 4, Feb
1981, pp. 333-338.

C. Seitz, “Experiments with VLSI Ensemble
Machines”, Journal of VLSI and Computer Sys-
tems, vol 1, no 3, Computer Science Press, 1984,

I————— 576 Processors———]

Memphis Switch

576 -> 576
Permutation Network

9 1 1 g
7 2 . 2 7
RN eElve 1R
° o]] °
o + +
° w % %) °
576 576
p o o o P
2 ¥q 576 61 ey o ey
. Address, Data, Control, Status .

o e switen. Control i ...
Central Host Figure 1
contro1 | L

GF11 Architecture
From Memphis Sw1tch‘@ Addl"ess
Relocate
Register Static Dynamic Eéé
File Memory Memory |} -
256 x 12 64K bytes 256K Dytes |-

: Tt i [Shifter i
E Weltek wWeltek Weitek Weltek ; | i
VI MPY L ALU b MPY | ALU e
P T I PEL ALU
Floating T T T ixed
Point Point
Unit I unit
V4 AV4
Condition
Codes

T

T > To backplane

— Sl

Figure 2

Memphts Switch

20 MFLOP Processor

14

Stage 1 Shuffle Network Stage 2 Shuffle Network Stage 3
T ===

24 . . 24
Inputs ¢ AL 1 | BL s tf CLls outputs
e . L]
| A2 | .| B2 |3 o c2 s
= e
D A3 GCERE il €3
- i R . . . —_‘.E
- | A24l; - | B24t: s | cealf:
Total number of inputs and outputs 1s 576.
Each square 1s a 24 - 24 crossbar switch. F 1 gure 3
A1l 1ines represent 9 bit data paths. MemDh1 S SW] tCh

Control
CPU Instruction o processors
Microcode ? “and Switeh
L Address Address
M1crocode Relocation | > To processors
Host
Control Data + Status Communication N
—>To GFll array
Interface and switen
Figure 4

GF11 Controller

1s

