120

Chapter 43
Parallel Operation in the Control Data
6600!

James E. Thornton

History

In the summer of 1960, Control Data began a project which
culminated October, 1964 in the delivery of the first 6600
Computer. In 1960 it was apparent that brute force circuit
performance and parallel operation were the two main approaches
to any advanced computer. ‘

This paper presents some of the considerations having to do
with the parallel operations in the 6600. A most important and
fortunate event coincided with the beginning of the 6600 project.
This was the appearance of the high-speed silicon transistor,
which survived early difficulties to become the basis for a nice
jump in circuit performance.

System Organization

The computing system envisioned in that project, and now called
the 6600, paid special attention to two kinds of use, the very large
scientific problem and the time sharing of smaller problems. For
the large problem, a high-speed floating point central processor
with access to a large central memory was obvious. Not so
obvious, but important to the 6600 system idea, was the isolation
of this central arithmetic from any peripheral activity.

It was from this general line of reasoning that the idea of a
multiplicity of peripheral processors was formed (Fig. 1). Ten such
peripheral processors have access to the central memory on one
side and the peripheral channels on the other. The executive
control of the system is always in one of these peripheral
processors, with the others operating on assigned peripheral or
control tasks. All ten processors have access to twelve input-
output channels and may “change hands,” monitor channel
activity, and perform other related jobs. These processors have
access to central memory, and may pursue independent transfers
to and from this memory.

Each of the ten peripheral processors contains its own memory
for program and buffer areas, thereby isolating and protecting the
more critical system control operations in the separate processors.

*AFIPS Proc. FJCC, pt. 2, vol. 26, 1964, pp. 33—40.

The central processor operates from the central memory with
relocating register and file protection for each program in central
memory.

Peripheral and Control Processors

The peripheral and control processors are housed in one
chassis of the main frame. Each processor contains 4096 memory
words of 12 bits length. There are 12- and 24-bit instruction
formats to provide for direct, indirect, and relative addressing.
Instructions provide logical, addition, subtraction, and condi-
tional branching. Instructions also provide single word or
block transfers to and from any of twelve peripheral channels,
and single word or block transfers to and from central memory,
Central memory words of 60 bits length are assembled from
five consecutive peripheral words. Each processor has instrue-
tions to interrupt the central processor and to monitor the cen-
tral program address.

To get this much processing power with reasonable economy
and space, a time-sharing design was adopted (Fig. 2). This design
contains a register “barrel” around which is moving the dynamic
information for all ten processors. Such things as program
address, accumulator contents, and other pieces of information
totalling 52 bits are shifted around the barrel. Each complete trip
around requires one major cycle or one thousand nanoseconds. A
“slot” in the barrel contains adders, assembly networks, distribu-
tion network, and interconnections to perform one step of any
peripheral instruction. The time to perform this step or, in other
words, the time through the slot, is one minor cycle or one
hundred nanoseconds. Each of the ten processors, therefore, is
allowed one minor cycle of every ten to perform one of its steps. A
peripheral instruction may require one or more of these steps,
depending on the kind of instruction.

In effect, the single arithmetic and the single distribution and

assembly network are made to appear as ten. Only the memories
are kept truly independent. Incidentally, the memory read-write
cycle time is equal to one complete trip around the barrel, or one
thousand nanoseconds.
‘ Input-output channels are bi-directional, 12-bit paths. Ope
12-bit word may move in one direction every major cycle, or 1000
nanoseconds, on each channel. Therefore, a maximum burst rate
of 120 million bits per second is possible using all ten peripheral
processors. A sustained rate of about 50 million bits per second
can be maintained in a practical operating system. Each channel
may service several peripheral devices and may interface to other
systems, such as satellite computers.

Peripheral and control processors access central memory
through an assembly network and a dis-assembly network. Since

85

S

Chapter 43 | Paraliel Operation In the Control Dets 889 731

ntral 4096 WORD 4096 WORD 4096 WORD 4096 WORD
CORE MEMORY CORE MEMORY CORE MEMORY CORE MEMORY
PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL
& CONTROL & CONTROL & CONTROL & CONTROL
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
one
mory w076 WORD 6600 CENTRAL MEMORY press—

) CORE MEMORY CORE MEMORY
cflon PERIPHERAL 6600 CEMNTRAL PROCESSOR PERIPHERAL
sing. & CONTROL & CONTROL
gndn- PROCESSOR 4600 CENTRAL MEMORY PROCESSOR

or
inels,
nory.
§ R 4096 WORD 4096 WORD 4096 WORD 4096 WORD

rom CORE MEMORY CORE MEMORY CORE MEMORY CORE MEMORY
struc- PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL
: cen- 4 CONTROL & CONTROL & CONTROL & CONTROL
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
nomy
lesign
namic Fg. 1. Control Data 6600.
ogram
nation
te trip
nds. A
stribu- TIME-SHARED
PROCESSOR - PROCESSOR
of any REGISTERS INSTRUCTION - MEMORIES
1 other CONTROL
or one
fore, is
teps. A
READ PYRAMID WRITE PYRAMID gy
: steps, I(éO) ’ (60)
—
(48)
jon and (36)
smories CENTRAL 24 CENTRAL
mor MEMORY =1 D @4 — MEMORY
d-write (€0) (12) (12) (60)
,orone
iS. ?“n; (‘2)
orl . REAL TIME
1rst rate
g I3 I 53 5N I 6 A
second EXTERNAL EQUIPMENT

channel .
to other

memory :
k. Since | i

-
L,

Fig. 2, 6600 peripheral and control processors.

86

732 Part 3 | Computer Classes

five peripheral memory references are required to make up one
central memory word, a natural assembly network of five levels is
used. This allows five references to be “nested” in each network
during any major cycle. The central memory is organized in
independent banks with the ability to transfer central words every
minor cycle. The peripheral processors, therefore, introduce at
most about 2% interference at the central memory address
control.

A single real time clock, continuously running is available to all
peripheral processors.

Central Processor

The 6600 central processor may be considered the high-speed
arithmetic unit of the system (Fig. 3). Its program, operands, and
results are held in the central memory. It has no connection to the
peripheral processors except through memory and except for two
single controls. These are the exchange jump, which starts or

interrupts the central processor from a peripheral processor, and
the central program address which can be monitored by a
peripheral processor.

A key description of the 6600 central processor, as you will see
in later discussion, is “parallel by function.” This means that a
number of arithmetic functions may be performed concurrently.
To this end, there are ten functional units within the central
processor. These are the two increment units, floating add unit,
fixed add unit, shift unit, two multiply units, divide unit, boolean
unit, and branch unit. In a general way, each of these units is a
three address unit. As an example, the floating add unit obtains
two 60-bit operands from the central registers and produces a 60
bit result which is returned to a register. Information to and from
these units is held in the central registers, of which there are
twenty-four. Eight of these are considered index registers, are of
18 bits length, and one of which always contains zero. Eight are
considered address registers, are of 18 bits length, and serve to
address the five read central memory trunks and the two store
central memory trunks. Eight are considered floating point

PERIPHERAL AND
CONTROL PROCESSORS

CENTRAL PROCESSOR

10 ADD
L
sl le MULTIPLY
=P v
B sl le UPPER | MULTIPLY
BOUNDARY !
71 le | DIVIDE
i
. 24 LONG ADD
o> OPERATING
-1 5 CENTRAL SHIFT
MEMORY
] . BOOLEAN
=
- 311 le LOWER INCREMENT
- BOUNDARY
- o 2 ’ INCREMENT
’ 11 e BRANCH
12 INPUT
OUTPUT CHANNELS
Fig. 3. Block diagram of 6600.

registers, are of 60 bits length, and are the only central registers to
sccess central memory during a central program.

In a sense, just as the whole central processor is hidden behind
central memory from the peripheral processors, so, too, the ten
functional units are hidden behind the central registers from
central memory. As a consequence, a considerable instruction
efficiency is obtained and an interesting form of concurrency is
feasible and practical. The fact that a small number of bits can give
meaningful definition to any function makes it possible to develop
forms of operand and unit reservations needed for a general
scheme of concurrent arithmetic.

Instructions are organized in two formats, a 15-bit format and a
30-bit format, and may be mixed in an instruction word (Fig. 4).
As an example, a 15-bit instruction may call for an ADD,
designated by the fand m octal digits, from registers designated
by the j and k octal digits, the result going to the register
designated by the i octal digit. In this example, the addresses of
the three-address, floating add unit are only three bits in length,
each address referring to one of the eight floating point registers.
The 30-bit format follows this same form but substitutes for the k
octal digit an 18-bit constant K which serves as one of the input
operands. These two formats provide a highly efficient control of
concurrent operations.

As a background, consider the essential difference between a
general purpose device and a special device in which high speeds
wre required. The designer of the special device can generally
improve on the traditional general purpose device by introducing
wme form of concurrency. For example, some activities of a

4 -m i) [}
3 3 3 3 3 15 011S
“ l_‘_.J °
OPERATION
CODE
40 mrS RESULY
[RG.
Q(ols)
it OPERAND
REG .
e ®
1
2nd OPERAND
REG.
(Wol 8
Fg. 4. Fitteen-bit instruction format.

T ——

www|mwnhhwmlm !‘ ’ !»

housekeeping nature may be performed separate from the main
sequence of operations in separate hardware. The total time to
complete a job is then optimized to the main sequence and
excludes the housekeeping. The two categories operate concur-
rently.

It would be, of course, most attractive to provide in a general
purpose device some generalized scheme to do the same kind of
thing. The organization of the 6600 central processor provides just
this kind of scheme. With a multiplicity of functional units, and of
operand registers and with a simple and highly efficient address-
ing system, a generalized queue and reservation scheme is
practical. This is called the scoreboard.

The scoreboard maintains a running file of each central register,
of each functional unit, and of each of the three operand trunks to
and from each unit. Typically, the scoreboard file is made up of
two-, three-, and four-bit quantities identifying the nature of
register and unit usage. As each new instruction is brought up, the
conditions at the instant of issuance are set into the scoreboard. A
snapshot is taken, so to speak, of the pertinent conditions. If no
waiting is required, the execution of the instruction is begun
immediately under control of the unit itself, If waiting is required
(for example, an input operand may not yet be available in the
central registers), the scoreboard controls the delay, and when
released, allows the unit to begin its execution. Most important,
this activity is accomplished in the scoreboard and the functional
unit, and does not necessarily limit later instructions from being
brought up and issued.

In this manner, it is possible to issue a series of instructions,
some related, some not, until no functional units are left free or
until a specific register is to be assigned more than one result.
With just those two restrictions on issuing (unit free and no
double result), several independent chains of instructions may
proceed concurrently. Instructions may issue every minor cycle in
the absence of the two restraints. The instruction executions, in
comparison, range from three minor cycles for fixed add, 10 minor
cycles for floating multiply, to 29 minor cycles for floating divide.

To provide a relatively continuous source of instructions, one
buffer register of 60 bits is located at the bottom of an instruction
stack capable of holding 32 instructions (Fig. 5). Instruction words
from memory enter the bottom register of the stack pushing up
the old instruction words. In straight line programs, only the
bottom two registers are in use, the bottom being refilled as

- quickly as memory conflicts allow. In programs which branch back

to an instruction in the upper stack registers, no refills are allowed
after the branch, thereby holding the program loop completely in
the stack. As a result, memory access or memory conflicts are no
longer involved, and a considerable speed increase can be had.
Five memory trunks are provided from memory into the central
processor to five of the floating point registers (Fig. 6). One
address register is assigned to each trunk (and therefore to the

838

I3

1 INSTRUCTION
1 REGISTERS
INSTRUC TION _
STACK t
8 0-81
WORDS 1
i
BUFFER REGISTER
FROM CENTRAL MEMORY —3
Fig. 5. 6600 instruction stack operation.
OPERANDS
(60-BIT)
X0
x1
|" =
OPERANDS =
L X4
X5
RESULTS — x
ADDRE SSES {18-81T) - x
AQ
Al
A2
CENTRAL A3 1 10 FUNCTIONAL
MEMORY ADDRESSES —T* UNITS
A5
RESULT AS
ADIE)RESSES " -~ INCREMENT INSTRUCTION
(18-81T) REGISTERS '_}
80
[
82 INSTRUCTION
R STACK
B4 {UP TO 8 WORDS
85 60-81T)
B6
87
INSTRUCTIONS ¥

Fig. 6. Central processor operating registers.

89

floating point register). Any instruction calling for address register
result implicitly initiates a memory reference on that trunk. These
instructions are handled through the scoreboard and therefore
tend to overlap memory access with arithmetic. For example, a
new memory word to be loaded in a floating point register can be
brought in from memory but may not enter the register until all
previous uses of that register are completed. The central registers,
therefore, provide all of the data to the ten functional units, and
receive all of the unit results. No storage is maintained in any unit.
Central memory is organized in 32 banks of 4096 words.
Consecutive addresses call for a different bank; therfore, adjacent
addresses in one bank are in reality separated by 32. Addresses
may be issued every 100 nanoseconds. A typical central memory
information transfer rate is about 250 million bits per second.

As mentioned before, the functional units are hidden behind
the registers. Although the units might appear to increase
hardware duplication, a pleasant fact emerges from this design.
Each unit may be trimmed to perform its function without regard
to others. Speed increases are had from this simplified design.
As an example of special functional unit design, the floating
multiply accomplishes the coefficient multiplication in nine minor
eycles plus one minor cycle to put away the result for a total of 10
minor cycles, or 1000 nanoseconds. The multiply uses layers of
aarry save adders grouped in two halves. Each half concurrently
forms a partial product, and the two partial products finally merge
while the long carries propagate. Although this is a fairly large
complex of circuits, the resulting device was sufficiently smaller
than originally planned to allow two multiply units to be included
in the final design.

To sum up the characteristics of the central processor, remem-
ber that the broadbrush description is “concurrent operation.” In
other words, any program operating within the central processor
utilizes some of the available concurrency. The program need not
be written in a particular way, although certainly some optimiza-
tion can be done. The specific method of accomplishing this
oncurrency involves issuing as many instructions as possible
while handling most of the conflicts during execution. Some of the
essential requirements for such a scheme include:

1 Many functional units
2 Units with three address properties

3 Many transient registers with many trunks to and from the
units

4 A simple and efficient instruction set

Construction

v Si!t'uits in the 6600 computing system use all-transistor logic (Fig.
~ silicon transistor operates in saturation when switched

unapter 43 | Paraliel Operation in the Control Dl'th

-

- b AN A it ot om0 @ 4 20

—
e
SE
et
-
i
Eaar
g
NG

Fig. 7. 6600 printed circuit module.

“on” and averages about five nanoseconds of stage delay. Logic
circuits are constructed in a cordwood plug-in module of about 244
inches by 2% inches by 0.8 inch. An average of about 50
transistors are contained in these modules.

Memory circuits are constructed in a plug-in module of about
six inches by six inches by 2% inches (Fig. 8). Each memory
module contains a coincident current memory of 4096 12-bit

Fig. 8. 6600 memory module.

g0

Fig. 9. 6600 main frame section.

words. All read-write drive circuits and bit drive circuits plus
address translation are contained in the module. One such module
is used for each peripheral processor, and five modules make up
one bank of central memory.

Logic modules and memory modules are held in upright hinged
chassis in an X shaped cabinet (Fig. 9). Interconnections between
modules on the chassis are made with twisted pair transmission
lines. Interconnections between chassis are made with coaxial
cables.

Both maintenance and operation are accomplished at a pro-
grammed display console (Fig. 10). More than one of these

Fig. 10. 6600 display console.

consoles may be included in a system if desired. Dead start
facilities bring the ten peripheral processors to a condition which
allows information to enter from any chosen peripheral device.
Such loads normally bring in an operating system which provides
a highly sophisticated capability for multiple users, maintenance,
and so on.

The 6600 Computer has taken advantage of certain technology
advances, but more particularly, logic organization advances
which now appear to be quite successful. Control Data is
exploring advances in technology upward within the same com-
patible structure, and identical technology downward, also within
the same compatible structure.

References

E\llard, Wolf, and Zemlin [1964]; Clayton, Dorff, and Fagen
1964).

91

which
evice.
yides
1ance,

10logy
7ances
ata is
» com-
within

Fagen

" WPENDIX 1 ISP OF CDC 6600 PERIPHERAL AND CONTROL PROCESSOR

PC6E00{process} : #21 := E } = A[id] + am, 1 ADC - Add dm
begin #51 := A = A[id +{us) 1 ADM - Add (m + (d))
M.PCP[index(1d)],
t ISP of the CDC 6600 Peripheral and Control Processor, Barrel distributor, #52 := A[id] = A[lu] us) 1 SBM - Subtract (m + (d))
) and 1/0 channels. Initial version by Gary teive (ca. 1978) M.PCP[index({id)], R
#10 := DECODE d<&> => ! SHN - Shift d
1 Although the 6600 has 10 identical Peripheral and Control processors, the egin
! ISP for a single processor is shown. An identifying parameter is utilized 0 := A id] = A{id sir d,
! to specify which of the ten processors is active during simulation. The CDC 1 := Alid] = A[id] sr0 (not d)
t 6600 Peripheral and Control processors each possess & 4096 word 12 bit local end,
t mewory. The ISP shows only one 4098 word memory which is used by all the #11 := A[i4]<5:0> = A[id]<5:0> ! LMN - Logical difference d
1 "processors®, xor d,
#12 := A[id) = A[id] and d, ! LPN - Logical procuct d
esChannel.State** #13 := A[1d]<5:0> = A[i1d]<5:0> t SCN - Selective clear d
and (not d).
CHAN[0:11]<11:0>, 1 1/0 channels R #33 = A[id]<11:0>= A[iQJK11:02 ! LMD - Logical difference (d)
cuctEo:n <>, 1 Channel active indicator xor M.PCP[d].
cfulf0:11jO 1 Channel full indicator #43 = A[id)<11:00= A[id}<11:0> ! LMl - Logical difference ((d))
. xor M.PCP[M.PCP[d]],
.ol
Barrel.State 92 s AEid% = A%id% and dm, ! LPC - Logital product dm
#23 := A[id] = A[id] xor dm ! LMC - Logical difference d
19K17:0>, t Barrel A register ! . 9 ce dm
Hoainie | Barrel P redisrers #53 = A[id]<11:0> . 1 LMM - Logical difference
Qfo:0]<i1: 0>, ! Barrel @ registars A[id]<11:0> xor M.PCP[index(id)], ! (m +{d))
£{0:9)<8:0>, 1 Barrel K registers #35 := M.PCP[d] = A[id] = AE‘:]PCP[;]RAD - Replace add (d)
espCP.Memory.State*® #38 := H.PCP[d]PEPA‘[’;d] ' D - Replace add one (d)
+ .
W.PCP0:40967¢11:0>, 1 Only one PCP memory 5 shown #37 := M.PCP[d] = A[id] ! SOD - Replace subtract one (d)
ruc[< 1 Read pyramid = M.PCPEd] - 1,
2d<69:0> 1= read[0:4]<11:0>, #45 := "~"C|’["'['1?f‘3"[g]mI pcp[nd;cp[]] I - Replace add ((d))
writef0:43<11:00, | Write pyramid
c[vrigl(ﬂ 05 i+ write[0:41<11:0), #46 = N-PCP[= sg:[d];c;[: ;d] . 1 AOI - Replace add one ((d))
= i1,
eopCP.Instruction.Format®® #47 := M_PCP[M.PCP[d]] = A[id] 1 SOI -~ Replace subtrace one
= Q.PCPSM PCP[d 1-1, 1 ({d))
pir<23:0>, ! PCP Instruction register #55 := "APCP["‘“‘ = Al id ! RAM - Replace add (m + (d))
f € 6:0> :» pir<23:18>, ALid] + M. PCP[mdex(i 3N
@ < 6:0> := pird17:12>, #56 := H.PCP[mcex] = A[id ! AOM - Replaco add one
®» <11:0> = pir<11:0), = M.PCPLindex(id)] + 1. ! (m + (d})
om<17:0> = pirc17:0), #57 := M.PCP{index] = A[id ! SOM - Replace subtract one
= M.PCP[index(id)] - 1, ! (m + (d))
s*pddressing.Calculation®*{us) #03 := P[ide = (P[id] - 1) + d, ! UIN - Unconditional jump d
#04 := IF A id] eqlfus 0 => ! ZIN - Zero Jump d
index(1€<3:0>)<11:0> := t Indexed addressing d) = (P "d] T 1)+ 4,
begia #05 := IF A[id] neq(usg = ! NJN - Nonzero jump d
DECODE d eql 0 => d] = (P w] Tl
begin #06 := IF A[id] geq(us 2> l PIN - Plus jump d
0 := begin P(id] = (P “d] - 1)+
index = m + M.PCP[d]; #07 := IF A[w] ’Ist(usE I.I.JN - Minus jump d
PLid) = PLid] + 1 id] = (P 'd] - 1)+
end, #01 := P[id] = index(id), 1L - tong jump to m + {d)
1 :+ index = m #02 := begin
end M. PCP[xndcx(id)]-P[id]#z next! RIM - Return jump to m + (d)
end, P[id] = index +
end,
**Barrel . Execution®® #26 := begin
. WAIT (xjf eqv '0) next | EXN - Exchange Jump
darrel{main} := xja = Agid]: xjf = 1
begin end,
pep(0) mext t Activate processor 0 7 = A[id] s pc, 1 RPN - Read program address
pcp(1) next ! Activate processor 1 #60 :=
pep(2) next ! Activate processor 2 c rua = NP[A[id] next ! CRD - Central resd d = (A)
pcp(3) next 1 Activate processor 3 M.PCP[d+0] = read E next
pep(4) next ! Activate processor 4 M.PCP[d+1] = read[1] next
pcp{6) next ! Activate processor § M.PCP[d+2] = readf2] next
pcp(B8) next ! Activate processor 6 M.PCP[d+3] = read[3] next
pep{7) next ! Activate processor 7 M.PCP[d+4] = read[4
pcp{8) next t-Activate processor 8 end,
pcp(9) next 1 Activate processor 9 #61 := begin
RESTART barre} t Do it a11 again M.PCP[0] = P[id] + 1 next ! CRM - Central read (d)
end, :'["i‘d] = m; Q[1d] = d next ! words from (A) tom
0 :=
**PCP . Execution®®{oc) begin
c.read = MP{A[id]] next
pep{id<3:0>) := M.PCP{P[id]+0] = read[0] next
begin N.PCPEP id]+1] = read[1] néxt
Ppir<23:12> = M PCP[P[id]] next M. PCP{P[id]+2] = read[2] next
Plid] = P[id] + 1 next M.PCP{P[id]+3] = read[3] next
m = #.PCP[P[id]}: M.PCP[P[id]+4] = read[4] next
K[1d]<6:0> 2 1} P[id] = P[id]} + 6:
Q[id] = d next A[id] = A[id} + 1:
DECODE X[1d] => [m = ofid] - 1 next
begin E\d] neq 0 #> RESTART CRMO
[#00,#24 .#425):= no. op(), ! PSN - Pass ,. next
#14 Al id . 1 LON - Load d into a P[id] = M.PCP[D]
Af[1d] = #77778(not d), | LCN - Load compliment d end.
Afid] = m.PCP[d]. ! LDD - Load (d) #62 = begin
:['i’g']’[‘} " ,,E,,[,], o 1SI0 D Store :)) vrileEO} . n.PCPEd#D next | CWD - Central write (A) = d
H.PCPIN. PCPLd]]) = A[id] 1 STI - Store ((d)) write[1] = M.PCPLd+1] next
beg { LDC - Load dm "‘!:GEQ = :{g‘;%g:g “":
- id1=P[id]+1 write =M. nex
:["’] dm: P[1d]=P[1d] write[4] = M.PCP[d+4] next
A[id]} = M.PCP[index(id)]. ! LOM - Load (m + (d)) MP[A[id]] = c.write
M. PCF[mdu(m)] = A[id], ! STM - Store (m + (d)) end,
A = A[id] +{us a. ! ADN - Add d #63 := begin
A id = Afid] -{us 1 SBN - Subtract d L PCP[O] = P[id] + 1 next ! CWM - Central write (d)
afid] = A idJ+{us) n PCP[d].! ADD - Add (d) E ="m; to (A) from m
A[id] = w {us) M.PCP{d].! SBD - Subtract (d) Qlid] = d next
A[id = A us ! ADI - Add CWMD :=
n P p[u PCPLd]]. begin
#42 = A[id]) = A[\d] -{us - Subtract ((d)) wr1teE0% = M.PCP(P[id]+0] next
M. PCP[X.PCP[d]], write[1] = M.PCP[P[id]+1] next

92

s ¢ = Section 4 |

APPENDIX 1 (cont'd.)

write[2] = M.PCP[P[id]+1] next IF cact[d] =
write[3] = M.PCP{P[id]+1] next beg
-riu 4] = M.PCP{P[id]+4] next n PCP[P[id]] = cm\u[u] next ! input
P| % di + 5; P ! increment address
Al id] + 1; = Al id - l next ! decrement count
0[\0 = 0 id] - % IF A id] neq 0 => R[STARI IAMO
IF Q ld] neq 0 => RESTART CuWMo
end nex end
P[M] = M. PCP[O] P[id] = H.PCP[O] 1 restore program counter
end,
#64 := DF.CODE cactfd] => 1 AJM - Jump to m if channel #72 := CHAN[d] = A[id]., t OAN - Output from A
begin . H d is active ! on channel ¢
6 = PE d] = P{1d) + 1, 73 :=
1 := Plid) = m u PCP[O] = P[id] + 1 next ! OAM - Output (A) words
cnd. P[id] = m next ! from m on channel ¢
#65 := DECODE cact[d] => 1 IJM - Jump to m if channel OAM) :=
begin 1 d is inactive .
0 := P{id] = =, N begin .
1 := P '¢} = P[§d] + 1 If c:ct[d] and (A[id] neq 0) =>
d -1
#66 = n:cooz cful[d) => | FIM - Jump to m if channel CHA"[d] = M.PCP[P[id]] next ! output
begin ! d¢ is ful) P[id] = P[id] + 1; ! increment address
0 := P[id] = P[id] + 1, A{id] = A[id] - 1 next { decrement count
1 := P[id} = m RESTART OAMD
end, end
#67 := DECOD(cful[d] = ! EJM - Jump to m if channel end next
! d is empty P[id] = M.PCP[0] ! Restore program counter
0 = P id] = m, end,
1 s Plid] = P[in] +1 #74 := cact{d] = 1, t ACM - Activate channel d
#75 := cact[d] = O, t DCN - Disconnect channel d
#70 := A[id] = CHAI[d]. 1 IAN - Input A from CHAN d #76 := CHAN[d] = A[id]. 1 FAN -~ Function (A) on CHAN ¢
#71 := begin #77 := Dbegin
M.PCP[D] = P{id] + 1 next 1 IAM - -Input (A) words to m CHAISd = m; t FNC - Function m on CHAN d
P{id] = = next H from channel d P[id] = P[id] + 1
IAMO . : = end
begin end
IF A[id] neq 0 => M.PCP[P[id]] = 0 next ! clear next end
and } €nd CDC 6600 Peripheral and Control ‘processor

93

Mress

rter

rds
anel ¢

ddress
ount

mter

wnel d
wonel d
on CHAN d

n CHAN ¢

RPPENDIX 2

|

ISP OF THE CDC 6600

[—— L W

{0C6600{process}

1
1
1
1
!
!
]
]
!
!

begin
ISP of the CDC 6600
Floating point instructions are not described.

The central processor and centra) memory are described in this
ISP. An auxillary ISP (PC6600.1SP) describes the peripheral
processors and contro) barrel execution.

The ten functiona) units are described and allow parallel
simylation.

Instructions are processed from an instruction stack. Instruction
conflicts are resolved by keeping a "scorecard” containing utilization
information on all registers and all functional units.
Reservation control decodes an instruction to determine register
utilization. Source and destination registers are allocated

if they are not being used as destinations of another functional
unit, If the required fuactional unit is free and if both the
source and destination registers are available, the instruction

is released to the unit for execution. If the resources are

not available, reservation control holds the instruction until

the resources become available.

At the completion of execution by a functional unit, the resources
are released by marking the scorecard.

The following page by page index of the ISP is provided to aid
in Tocating CDC 6600 architectural features.

**Central Memory.State*® defines the Central Memory.
Processor.State defines central processor carriers.
Instruction.Format defines instruction fields,
Impiementation.Declarations** defines ISP related variables.
Reservation.Control.State defines variables used by
reservation control. These declarations constitute the
resource allocation "scorecard”.

Describe the reservation control execution.
**Instruction.fetch®* describes the instruction stack
control and instruction fetch processes.
Central.Memory.Access describes the instruction read
and the register associated memory access processes.
Exchange.Jump is the processor interrupt facility.
**Instruction.Cycle*® is the main instruction processing
cycle. Instruction execution is initiated by issuing
the instructions to the appropriate functional unit,

The functional units are:

Branch Unit,
Boolean Unit.
Shift Unit.

Add Unit.

Long Add Unit.
Multiply Unit 0.
Multiply Unit 1.
Oivide Unit.
Increment Unit 0.
Increment Unit 1.

macro not.described := [no.op()],
**Reservation.Control.State*®

abusy[0:7]¢>,
arw [0:7]C0,
bbusy[0:7]<>,
brw [0:7]CO,
xbusy[0:7]<O,
xrw {0:7)0

PR L F 5

fbusy[0:9]<>,

19)<2:00,
19]€,
:9]<2:0>,
9]0,
9]K2:0>,
:19]<,

unit<3: 0>,

Reservation.Control{us}

source{)<> :=
begin
source = 0 next
DECODE fm =>
begin
#01 := IF (i. eq) #1) or (.
{1IF fbu[un1t] and
fofunit) =

source =

j.: fbu[unit] = §;
IF (not bbusy(j.]) and (not brl[j H =

registers busy bits
registers raad(D)/vrit.(l)
registers busy bits
registers raad(o)/uritc(l)
registers busy bits
registers read(0)/write(1)

Functional) Unit busy bits

The following tables are

used to deallocate the

resource assigaments either

in the event of confliict during
allocation, or during deallocation
at instruction completion.
f??U<> indicates usage of the
registers by a unit.

1 = used, 0 = not used
Functional Unit A register
A register usage
functional Unit 8 register
B register usage
Functional Unit X register
X register usage

Temporary for arith unit number

! Source register allocation

eq) #2) =>
{fo[unit] eql j.) => source = 1 next

bbusy[j

**Central Memory.State*®

MP[0:4095]<59: 0>,

**Processor.State®*

jp[0:151<69: 0>,

xjac16:0>,

xJf<r,

pr<19:0>,
PCC17:0> 1= px<19:2>,
1¢<1:0> = px<1:0>,
isC<4:0> := px<4:0)>,

AREG[0:7]<17:0),
BREG[0:7]<17:0>,
AREG[0:7]<59:0>,
RACMC17:
FLOMC17:0),
RAECSC23:0,
FLECSC23:0>,
EMC17:0),

nAC17:0>,

**Instruction.Format®®

K2e:0>,
10<14:0> :
i1<14:0>

1€29:16>,
I<14:0>,

f. <2:0>

1<29:27>,

~

~

o

v
IAREREER]

i5[0:71¢<59:0>,
ism[0:31 <14 LM
ishic1 [u 3
i$10¢17: 0>
isac2: 0y,

Iaplementation.Declarat jonse®

Stop.bite),

Use only 4k of 60 bit memory

Exchange Jump Package
Exchange Jump Address
Exchange Jump Flag

Pseudo program counter
Program counter
Instruction length count
Instruction stack counter
A registers

B registers

X registers

Ref Address {centra) memory)
Field length of program
Reference Address for ECS
Field length for ECS
Program exit mode

Monitor exchange

Instruction register
Short instruction (15 bit)
Long instruction extension

! Instruction stack

1= 18[0:7]¢69:0>,

High address Vimit in stack
Low address limit in stack
Stack insert counter

Stop fiag

[#02,#04:#07,#22]:= (IF fbufunit] Aud {fb[unit] eql i,) => source = 1 next
fo[unit] = i.: foulunit] =
IF (not bbusy[l]) and (not br-[i 1 =
source = bbusy[i.] = 1),
[#04:#07 .#23:#27,
#51 #56:#57 ,#61,
#66:#67 .#71,
#76:#77]:= (IF fou[unit] and {fb[unit]} oq] J.) *=> source = 1 next
fblunit] = j.; fou[unit] =
IF (not bbusy[j.]) and (not brv[j 1 =
source = bbusy[j.] = 1
[#53:#57 ,#63:#67]:= (IF fbufunit] nnd (fb[un1t] nql k.} => source = 1 next
fo[unit} = k.; fbufunit] = 1;
IF (not hbusy[k 1) and (not bbusy[k D=
source = bbusy[k.] = .
(#50,#54,#55 #60,
#64 . #65.#70,474,
#76]:= (IF fuu[un\t] and (fafunit] oq] j.) => source = 1 next
fafenit] = j.; faufunit] =
IF (not abusy[j.]) and (not lr-[; 1) =
source = bbusy[j.] »
[#03.#10]:= (IF fxu[unit]) lnd (fx[unit] uq! i.} => source = 1 next
fx[unit] = i.; fxufunit] =
IF (not lbusy[\]) and (not xrv[i N =
source = xbusy[i.] = .
[#11:#13,#15:#17,
#30:#A2 452 #53,
#62.#63.#72,#73):= (IF fxufunit] nnd {fx[unit] oql J.) => source *= 1 next
fx[unit] = j.: fxufunit] =
IF (not lbusy[J 1) and (nnt xru[j 1 =
source = xbusy[j.] = 1),
[#11:#17 #22:#27,
#30:¥42 Ma4 446,
#47):= (IF fxufunit] and (fx[un1t] eql k.) => source = 1 next

fx[unit] = k.; fxufunit] =
If (not xbusy[k.]) and (nnt lrw[k 1 =
source = xbusy[k.] =
otherwise := source = 1
ond
end,

dest{)<> :=
begin
dest = 0 next
DECODE fm =>

! Destination register allocation

begin
[#10:#4
#47 . #70:#77]:= (fx[unit] = i.; fxufunit] = 1;
If not xbusy{i.] => dest = xbusy[i.] = xrw[i.] = 1),
#50:#57 := (fafunit] = i,; fau[unit] = 1;
If not abusy[i.] => dest = abusy[i.] = arw[i.] = 1),
{w24:#26,
#60:#67]:= (fbfunit] = 4.; fbufunit] = 1;
. IF not bbusy[i.] => dest = bbusy[i.] = brw[{i.] = 1),
otherwise := dest = 1
end,
mark := ! Mark stack as invalid
begin
islo = ishi = PC
end,

dealloc(dunit<3:0>){critical) :=
begin

! Deallocate resources

94

l,. l ‘ APPENDIX 2 (cont'd.)

fousy[dunit] = 0; rai(peic17:0>)<59:0> := ! Read next instruction
1F fau[dunit} => {fau[dunit] = abusy[fa[dunit]] = arw[fa[dunit]] = 0): begin
IF fbu[dunit] (fbu[dunit] = bbusy[fb[dunit]] = brw[fa[dunit]] = 0): IF not range(pci) => rni = MP[RACM + pci}
IF fxu[dunit] => (fxu[dunit] = xbusy[fx[dunit]] = xew{fa[dunit]] = 0) end,
end,
resarv := aref(reg<2:0>,val<17:0>) := t A register forced
begin begin ! memory access
unit = 15 next ! Mark as "no unit”® AREG[reg] = val next
DECODE fm =) range(val) next
begin DECODE reg =>
#00:#07 := unit = 0, ! Branch Unit :39‘" no.0p()
: i= uait = 1, { Boolean Unit i . .
[.zg;"o “ = :ni: N ;. 1 Snif: Unit #1:#5 := (IF range => (XREG[reg] = MP[0] next LEAVE aref) next
i unit = 3, t Add Unit XREG{reg] = MP[AREG[reg] + RACM]),
= unit = 4, ! Long Add Unit #6:#7 := (IF range => LEAVE aref next
#40:#42 ;< DECODE fbusy[5] => ! Multiply Units end MP[AREG[reg] + RACM] = XREG[reg])
bagin .5, end,
fousy[6] => unit = 6
Exchange.Jump{us}
#44:#47 := unit = 7, ! Divide Unit
#50:#77 := DECODE fbusy[8) => ! Increment Units ! Exchange jump is the central processor‘s interrupt mechanism.
begin t Exchange jump is initiated by power on or by one of the ten
0 := unit = 8, ! peripheral processors. All of the central processor's state
1 :< IF not fbusy[9] => unit = 9 ! (including al} registers) is exchanged with 16 words of central
end t memory. The central memory starting address is provided by
end next ! the “interrupting™ peripheral processor. The ceantral memory
IF unit neq 15 => ! words are formatted such that all of the state can be extracted
begin . ! and loaded into the appropriate registers.
DECODE fbusy[unit] => ! This implementation uses a 16 word holding area {xjp) to format and
begin ! temporarily preserve the old state until the new state is loaded.
0 := DECODE (not dest()) or (not source()) => .
begin xj :=
0 := fousy[unit] = 1, begin
1 := begin xjp[00] = PC @ AREG[0] @ #000000;
dealloc{unit) next xjp[01] = RACM @ AREG[1] @ BREG[1];
RESTART reserv xjp[02] = FLCM @ AR[GEZ] @ BREG[2];
end x)p[03] = M @ AREG[3] @ BREG[3]:
end, x]p[04] = RAECS @ AREG[4] @ BREG[4]:
1 := begin xjp[05] = FLECS @ AREG[S] @ BREG[5]:
WAIT (not fbusy[unit]) next xJp{06) = MA @ AREG[6] @ BREG[6]:
RESTART reserv xjp[07] = AREG[7] @ BREG[7];
end xjp[08] = XREG[0]:
end xjp[09] = XREG[1};
end xjp{10] = XREG[2]:
end, xjp[11] = XREG[3]:
Iastruction.Fetch{us} : : :g = :::g g]
! Instruction fetch is always from the instruction stack. If xjp[14] = XREG(6]:
! the stack is empty (initia) power on or branch out of stack), xjp[15] = XREG(7] next
! or if there are less than three instruction words left in the PC @ AREG[O = MPLxja + 00]<53:18>;
! stack, fetch reloads the stack before obtaining an instruction. RACM @ AREG{1] @ BREG[1] = MP[xja + 01];
¢ Instructions may be 15 or 30 bits long and aligned on any 15 bit FLCM 8 AREG[2] @ BREG[2] = MP[xja + 02]:
! boundry. Fetch obtains 15 bits of an instruction then determines EM @ AREG[3] @ BREG[3] = MP[xja + 03]:
! if a second 15 bits are required. RAECS @ AREG[4] @ BREG[4] = MP[xja + 04];
FLECS @ AREG(5] @ BREG[5] = MP{xja + 05];
fetch := MA @ AREG[6] ® BREG[6] = MP[xja + 06]:
begin AREG[7] @ BREG[7] = MP[xja + 077;
IF (PC ¥ss islo) or (PC gtr ishi) => mark() next XREG[0] = MP[xja + 08];
B (ishi - PC) leq #2 => XREG[1] = MP[xja + 09]:
bagin XREG{2] = MP[xja + 10];
isTo = PC + isa next XREG[3} = MP[xja + 11]:
sfetch := XREG[4] = MP[xja + 12]:
begin XREG[5] = MP[xja + 13]:
is[isa] = rni(PC + isa) next XREG[6] = MP{xja + 14]:
ishi = PC + isa next XREG[7]) = MP[xja + 157 next
isa = isa + 1 next MP[xja + 00] = xjp[00]:
1F (ishi - PC) Tss #7 => RESTART sfetch MP[xja + 01] = xjp[01];
end MP{xja + 02] = xjp[02];
end next MP[xja + 03] = xjp[03);
10 = ism[isc] next MP(xja + 04} = xjp[04];
px = px + 1 next MP[xja + 05] = xjp[05]:
DECODE fm => f Check for 30 bit instructions MP[xja + 06] = xjpf06]:
bagin MP[xja + 07]) = xjp[07]);
[#00:#01,#04:#07, MP{xja + 08] = xjp[08];
#30:#37 .45 52, MP[xja + 09] = xjp[o09
WE0:#62.#70:#72]:« (i1 = ism[isc] next MP(xja + 10] = xjp[10]:
px = px + 1), MP[xja + 11] = xjpf11];
otherwise := no.op() MP[xja + 12] = xjp[12]:
end MP(xja + 13] = xjp[13]:
end, MP[xja + 14] = xjp[14];
Contral.Memory.Access{oc}) :;’ li!n’ 15] = x)p[156] next
! Centeral memory is always accessed indirectly by a user program. end,
! The Read Next Instruction (RNI) routine is used to load the °
! instruction stack. Touching the A reg¥sters 1 through 7 causes **Instruction.Cycle**
! the corresponding X register to be loaded (A[1:5]) from memory
! or stored (A[6:7]) in memory. start{main) := L
begin ! Initialization
range(rel<17:0>)<> := ! Address range fault check, WAIT (xjf) next ! Wait for exchange jump
begin stop.bit = 0 next ! Clear stop bit
range = 0 next mark() next ! Instruction Stack empty
IF re) geq (FLCM - 1) => run = ! Main cycle
begin . begin
range = 1; ! Fault IF x3f => xj{) next ! Check for exchange jump
DECODE EM<12> => ! Address exit select IF stop.bit => RESTART start next
begin IF not range =>
0 :x 1 = MP{0], ! Not selected begin
1 := begin fetch() next ! Get an instruction
MP[RACM)<53:48> = MP[RACM]<53:48> or #010000; reserv() ! Reservation controt
MP[RACM]<47:30> = rel + 1 next end next ! will not return until
I = MP[RACM]: PC = 0 next range = 0 next ! all usage conflicts are
STOP() ! Stop the processor ! resolved.
end exec{) next ! Issue the instructicn
end RESTART run
> end end
- end, end,

95

APPENDIX 2 (cont'd.)
v @xec :* ! The instruction is issued
begin ! te the appropiate execution
DECODE unit => !ounit.
begin
0 BRANCH.UNTT(I),
1 BOOLEAN UNIT(I),
2 SHIFT.UNIT(I),
3 ADD.UNIT(I),
4 LONG . ADD . UNIT(I},
5 MULTIPLY .UNIT O(1),
[3 MULTIPLY.UNIT.1(1).
7 := DIVIDE.UNIT(I),
8 := INCREMENT .UMIT.O(I},
9 := INCREMENT.UMIT.1(I)
end

end,

1 The remainder of the ISP describes the ten arithmetic processing
t units. These units will function in parallel much as they do
1 in the real CDC 6600.

1 mote that floating point instructions are decoded but this ISP
1 does not describe their actual execution.

Branch.Unit

BRARCH.UNIT({i<29:0>){process; critical} :=
begin

**Branch.Declarations®®

fm <5:0> :x i<29:24),
i €2:0> = i<23:2D),
j. €2:0> := i<20:18>,
k. o€2:0> := i<17:18),

Branch.Execution{oc}

branch{main} :=
begin
DECODE fm @ i. =>
begin
#0077 := PS := stop.bit = 1,
#0106 := RJ := (NP[k1<RACM] = #04008(PC+1)<17:0>8#000000
PC = k1 + 1; mark({)}.
#0277 := JP := (PC = k1 + BREG[i.]: mark{)),
IR

#030 := = If XREG[j.] eq? D => PC = kI,

#031 := MZ := If XREG[j.] neq 0 => PC = k1,

#032 := PL = If not XREG[j.)<59> => PC = k1,

#033 ;= NG := IF XREG[j.]<B9> => PC = ki

2038 ;= IR := IF not {{XREG[j.]<59:48> eql{us} #3777)

0000 next

ofr

(XREG[j.1<53:48> eql{us} #4000)) => PC = k1.

#035 := OR, := I

=l

(XREG[j.1¢<59:48> eql{us) #3777)

or

(XREG[j.]<53:48> eql{us) #4000) => PC = kI,

#036 = OF := 1

=

a0t ((XREG[j.]<59:48> eql{us) #1777}
(XREG] j.]<59:48> eql{us} #6000)) => P

#037 := 1D = IF (XREG[j.1¢59:48> eq1{us) #1777)

or
C = ki1,
or

(XREG[j.]<63:48> eql{us) #6000) => PC = k1,

#0477 := EQ := IF BREG[1.] eqi{us) BREG[j.] => PC = k1
#0577 := NE := 1F BREG{i.] neq{us) BREG[j.) => PC = k1
#0677 :x GE :x IF BREG[i.] geq{us} BREG[j.] => PC = ki
#0777 = L1 := 1f BREG[i.} iss{us} BREG[j.] => PC = k1
end next
1f (PC ¥ss{us) isto) or (PC gtr{us) ishi) => mark() next
dealloc{0)

end
and,

**Boolean.Unit*®

BOOLEAN . UNIT(i<29:0>)(process: critical} :=
begin

**Boolean.Declarations®®

fm (5:0> = 1€28:24>,
i, <2:0> := i<23:21>,
5. €2:0> i3 i€20:18,
k. <2:0> i= i<17:16>,

**Boolean.Execution®*{us)

boolean{main} :=

begin
OtCODE fm => ! A1l instructions are "BXi"
begin
#10 := XREG[i.] = XREG[j.%.
#11 := XREG[i.] = XREG[j.] and XREG[k.].
Le XREG[4.] = XREG[j.] or xn(c[x.}.
= XREG[i.] = XREG[].] sor XREG[k.].
XREG[i.] = mot XREG[k.J.
XREG{i.] = XREG[j.] and (not xnzs[ki}),
6 := XR[G%i.] = XREG[j.] or (mot XREG[k.1).
#17 = XREG[i.] = XREG{j.] xor (mot KREG[k.])
and next
dealloc(1)
end

end,
**Saift.Unit®*

ﬂﬂr1,uﬂlf(i<29:0>)(process; critical} :=

begin
**Shift.Declarations®®
fm <5:0> := i<29:24>,
i. €2:8> i€23:21>,
j. <2:0> := i<20:18),
k. <2:0> := i<17:16>,
3k <5:0> := i<20:16>,

*sShift.Execution**{us}

shift{main} :=
begin
DECODE fm =>
begin
#20 := XREG[i.] = XREG[i.] s1r jk, (et
#21 :x XREG[4.] = XREG[i.] srr jk, 1 OAXS
#22 := DECODE BREG{j.]<17> => 1oL
begin
0 := XREG[i.] = XREG[k.] sir BREG[j.}<6:0>,
1 := DECODE {not BREG[j.]<10:6>) eql '00000 =>
begin
0 :s XREG[i.] = O,
1 := XREG[i.]
= xREG{k.] sr¢ {not BREG[j.1<10:0>)
end
end,
#23 := DECODE BREG[j.]J<17> => ! AXi
begin
0 := DECODE BREG[j.}<10:6> eql '00000 =>
begin
0 := XREG[i.] = 0,
1 := XREG[i.] = XREG[k.] srd BREG[j.)
end,
1 := XREG[i.] = XREG[Kk.] sir (not BREG[j.J)<5:0>)
end,
#24 := not.described, tONXi
#25 := not.described, 1IXi
#26 := begin 1 ouxi
XREG{1.] <+ XREG[k.]<59> @ XREG[k.]<47:0>;
BREG[j.] <= #2000 -{us) XREG[k.]<58:48>
end,
#27 := begin t PXi
XREG[1.]<47:0> = XREG[k.]<47:0>;
XREG[i.71¢569> = XREG[k.]<59>;
DECODE XREG[k.J<58> =>
begin
0 :- XREG[4.]<58:48> = not BREG[j.}<10>
@ BREG[j.]<9:0>,
1 := XREG[i.]<58:48> = BREG[j.]<10>
@ not BREG[j.]<8:0>
and
end,
#43 := begin 1 MXi
XREG[i.] = 0 next
XREG[1.]<59> = (jk neq 0) next
XREG[i.] = XREG[i.] srd (jk -{us) 1)
end
end next
dealloc(2)
end

end,
**Add.Unit®

ADD.URIT(i<
begin

29:0>){process;: critical} :»

**Add.Declarations®®
**Add.Execution®*{oc}
add{main} :=
begin
DECODE fm =>
begin
#30 := not.described, tFXi =) (Xj + Xk)
#31 := not.described, toEXE -> (X) - Xk)
#32 := not.described, ! DX3 -> (X} + Xk)
#33 := not.described, t OXi -> (Xj - Xk)
#34 := not.described. Y RKi <> (X) + Xk)
#35 := not.described ! RXd => (X§ - Xk)
end next
deatloc(3)
end
end,
*sLong.Add.Unite®
LONG.ADD.UNIT(i<29:0>){process; critical) :=
begin
**Long.Add.Declarations*®
fm <5:0> := 1<29:24>,
i, <2:0> = i<23:21>,
§. €2:0> := 1€20:18>,
k. €2:0> := i<17:16>,
**Long.Add.Execution®*{oc}
ladd{main} :=
begin

]
DECODE fm =>

begin
#36 := XREG[1.] = XREG[j.] + XREG[K.].

1 OIKE => Xj + Xk
#37 := XREG(i.] = XREG[j.] - XREG[k.].

tIXE > Xj - Xk

otherwise := no.op{)

dea
and

end,
**Muitiply.

MULTIPLY.UN
begin

**Multiply.

end next
Hloc(4)

Unit.0**
IT.0(<29:0>){process; critical} :=

0.Declarations**

T

B e Lk

G

&

T

epGsefiori

g A e

APPENDIX 2 (cont'd.)

DI ® r

fm <6:0> := i€20:24>,
emyttiply.0.Execution®{oc}
»pyO{main} :
VFXi 5> Xj ® Xk

! RXi -> X3 * Xk
1 DXi -> Xj * Xk

end next
dealloc(5)
end
end,

*sMultiply.Unit.1°®

MULTIPLY .UNIT.1{i<29:0>){process: critical) :=
begin

soMyltiply.1.Declarations®®
o <5:0> := i<29:24)>,
sMultiply.1.Execution®{oc)

mpyl{main) :»

begin

DECODE fm =>
begin
#40 := not.described,
#41 := not.described,
#42 := not.described
end next

dealloc(6)

ond

1 FXi -> Xj * Xk
! RXi > X * Xk
1 DXi ~> XY * Xk

end,
Divide.Unit

DIVIOE .UNIT(i<28:0>){process; critical} :
begin

**pivide.Declarations*®

tm <5:0> := i<20:24>,
m. €2:0> := i<28:24),
i. H i® i423:2D,
3. := i€20:18),
k. < 1= i<17:18)>,
k1<1 = 1€17:0),
xcnt(5 0). ! Counter for CXi

espivide.Execution®*{oc}

div(main} :
begin
DECODE fm =>
begin
#44 := not.described, 1 FXi => X9 = Xj / Xk
#45 not.described, 1 RXG > Xi = X§ / Xk
#46 N0 := no.op{).
#47 := CXi
:= begin
xcnt = 03
XREG[i.] = 0 next
cXi, ¢
EG[\ * XREG[1. % +{us) XREG[k.]<0> next
xREG[k] = XREG[K.] ser 1;
xcnt = xcnt + 1 next
IF xcnt 1ss{us) B0 => RESTART CXi.
and
end
end next
deatloc(7)
end
ond,

**Increment.Unit.0°*

INCREMENT .UNIT 0(i<29:0>){process: critical}) :=
begin

ssIncrement .0 .Declarations®®

fm <5:0> := i<29:24>,
m. <2:0> := €26:248)>,
i, <2:0> = i<23:20>,
j. €2:0> := €20:18>,
K. <2:0> := i<17:15D>,
k1<17:0> := i<17:0>,

esIncrement.0.Execution®®{oc}
‘ncrn(-atn)

begin
DECODE fm =>
begin
#50:#57 := SAi
:= begin
DECODE . =

t Increment

#0 := aref(i..AREG[j.]
;= aref(i.,BREG[].]

#2 := aref(i.,XREG[].]<17: 0+ k1),
tx aref(i..XREG[]. %<17 10> + BREG[K.]).
= aref(i..AREG[].] + BREG[k.])

aref{i..BREG[j.] + BREG[k.

aref(i..AREG[§.] - BREG[K.]).
aref(i..BREG[].] - sntc[u,i%'

end,
#60:#67 := SBi

= begin
DECODE m. =>
begin
W0 := BREG[i.] = AREG[j.] + ki,
#1 := BREG[i.] = BREG[j.] + k1,
#2 := BREG[3.] = XREG[j.]<17:0> + k1,
#3 := BREG[i.] = XREG{i.J<17:0> + BREG[K.],
#4 :x BREG[i.] = AREG[j.] + BREG[k.].
#5 := BREG[4.] = AREG[j.] - BREG[K.],
#6 = BREG[i.] = BREG[j.] + BREG[k.],
#7 := BREG[i.] = BREG[j.] - BREGEK
end
end,
#70:#77 := SXi
:= begin
OECODE m. =>
begin
#0 := XREG[i.] <= AREG[j.] + k1,
#1 := XREG[i.] <= BREG[j.] + ki,
#2 = XREG[1.] <* XREG[}.J<17:05 +
#3 = XREG{i.] <= XREG[j.J<17:0> + BREG{k 1,
W4 ;= XREG[V.] <= AREG[J.] + nnzc
#5 :» XREG[1.] <= AﬁEG[J. ~ BREG[k
#8 = XREG[i.] <= an[s[;. + sn[s
#7 := XREG[i.] <= BREG[j.] - BREGK.
end
end
end next
dealioc(8)
end
end,

**Increment.Unit.1°°

INCREMENT . UNIT.1(i<29:0>)(process: critical} :
begin

Increment.l. Declarations

fm ¢6:0> := 1€29:24>,

LB tx iC26:24>,
i, :x i€23:21>,
j. 1= §€20:18),

€2:0> := 1<17:18),
k1<17 0> = ¥K17:0),

s*Increment.1.Execution®**{oc})

incri{main} :=
begin
DECODE fm =>
begin
#50:#57 := SAi
:= begin
DECODE m. =>

! Increment

#0 :x aref(i..AREG[j.] + k1),

:= aref(i..BREG[j.] + k1),

= lref(i.‘XREGEj. <17:0> + k1),

ie aref(i..XREG[]-]<17:0> + BREG[K.]),
#4 := aref(i.,AREG[].] + BREG[k.]).

. lrof(i..AREGEj.i - BREG{K.]).

= 1

+ BREG[K.]).
-~ BREG[K.J)

lrnf(\Z BREG

#60:#67 :=
= .7 = AREG[j.] + k1.
=] = BREG[J.] + ki,
B 2] = XREG[j.J<17:0> + k1,
ix 1] = XREG[j.]<17:0> + BREGLK.],
= '] = AREG[j.] + BREG[K.].
e i.] = AREG[j.] - BREG[k.],
= .] = BREG[j.) + BREG[k.
#7 := BREG[i.] = BREG[J.] - BREG[k.
end
end,
#70:#77 := SXi
:= begin
OECODE m. =>
begin
#0 := XREG i.] <= AREG[j.] + k1,
#1 := XREG[i.} <= BREG[j.] + k1,
#2 := XREG[i.] <= XREG[].]<17:0> + ki,
#3 := XREG[i.] <= XREG[j.]<17:0> + BREG{k.].
#4 := XREG[i.] <= AREG[j.] + BREG[k.],
#5 := XREG[i.] <= AREG[j.] - BREG[k.],
#6 := XREG[i.] <= BREG[j.] + BREG[k.
#7 := XREG[i.] <= BREG[j.] - BREG[k.]
end
end
end next
dealloc(9)
end
end,
REQUIRE. ISP |PC8600.1sp]. 1 Peripheral Processor Description
and ! End CDC 8600

—

97

@

