18-747 Lecture 11:
High-Performance Memory Hierarchies

James C. Hoe
Dept of ECE, CMU
October 3, 2001

Reading Assignments: S&L Ch 3 82-107
Announcements: Midterm Exam on Monday 10/15
Handouts: Handout #7: HW1 Solution

Handout #8: Project 0 Solution
Graded HW1

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747

A ENGiNERRvE Leour 112
Wide Instruction Fetch Issues
¢ Average Basic Block Size

- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

¢ Three Major Challenges: 3

) o Instruction
- Multiple-Branch Prediction Cache

A 4

- Multiple Fetch Groups Branch Fetch
Prediction
_ ; ; Instruction
Alignment and Collapsing Buffer

Dispatch

v
CannOt be SO/Ved Wlth -IUSt longer Céghﬁﬂlp\gnég§c Hoe, CMU and John P. Shen, Intel

il




«3 Electrical & Computer CMU 18-747
ENGINEERING Lecurs 1123

J. C. Hoe

A Typical Trace Cache Organization

predicted PC FIITTTITTTTTT] l
,7)
Next Trace Cache I-Cache
Trace
Predict.
Hist. ml Fetch Buffer ]
Hash
Execution
Core
L Fill Unit
Completion
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel
A ENGINEERRE Coue 4
Trace Fill Unit

¢ Observe the dynamic execution sequence

¢ Gather instructions into a trace segment (or trace
cache block)

¢ Some simple heuristics for forming trace segments
- stop after collecting up to N instructions
(N is the trace cache block size)
- stop after B conditional branches
(B is the limit of the multi-branch predictor)
- stop after seeing an register-indirect jump
- Don't split basic blocks
- In some designs, unconditional and conditional branches
can be dropped from the traces
¢ Can include pre-decoded dependence information

¢ Can even dynamically re-order instructions (don’t

need an out-of-order core!!)
Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel




CMU 18-747

(U' Eﬁ%tl‘i&?ﬁlﬁm beguﬁol 15
Trace Selection/Prediction

¢ Basic
- find the trace that starts at the predicted next-PC
¢ Multiple cached traces may have the same starting PC
- difference is in the internal branch decisions
= need multi-branch predictors
¢ Partial Traces

- predicted next-PC points to the middle of a cached
trace (cached ABC, but predicted BC)

- multi-branch prediction may say not to use the entire
length of a cached trace (cached ABC, but only
needs AB)
= need alignment and collapsing buffer

So how is this better?
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Comput CMU 18-747

A ERGiNERRNG Cecture 1.6

Redundant Traces -

¢ Suppose B,C and D are
instructions in a loop

- 3 different traces of 3-instructions are
possible

- Which one should we keep in the trace
cache?

- How do we detect the beginning and
the end of basic blocks?

¢ Suppose A,B,C,D and E are basic
blocks
- don’t cache BC if BCD is cached
- what about CDB and CDE?
- what about ABC and DBC?

- How to cut down on redundant
instruction storage?

PO

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel




V0t ghout fragmentation?.

€ EiNeERve

) ENGNEERRG
Replicated Block Cache
Instructions from
Wc')\r/gl?ies the fi‘ll unit
block_id [ [{ FA] i1] i2 ib]
(n'bL»% - & Block Cache
© | direct mapped cache
N [sp] <
b inst > > >
Q Q. (o
81|88
! J J v
\ Final Collapse __/
16
| Fetch Buffer |

CMU 18-747

Lecture 1

Predict and Fetch Trace
Global History

Predict Cycle,/’
k Trace Table ol
»|

o ” Fetch Cycle

’

e
’
7

-,
|
-,

L, Block Cache

>

— >
> >

] e W
i \ Final Collapse /
‘ 161

| Fetch Buffer |

1-8

More efficient: redundancy is in the fracedable and not the blpck sache




CMU 18-747
Lecture 11-9

& Comy
) ENGiNEERING
J. C. Hoe

Next Trace Prediction

predicted branch path

|b ido| b id1] b idd b id3 | global history |
Next trace id [ tag | index ] Trace Table

v tag 1 2 .- w

+ block_ids
I | I |I |I I |

/é) w pred. block_ids
Hit to the block cache
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 11-10

{U. Electrical & Com
ENGINEERING
J. C. Hoe

The Block-Based Trace Cache

. ]
block_ids l_v_| l_v_|
Trace ock Cac
Table | pre-collapse

<+ |-Cache

trace_id \ Final Collapse/

v
% Fetch Buffer |
Rename|  Fill —Lore
Table Unit

Completion

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel




((.; Electrical & Computer CMU 18-747
ENGINEERING Lecure 11441

Wide-Fetch I-cache vs. T-cache

Enhanced Proposed
Instruction Cache Trace Cache
Fetch 1. Multiple-branch prediction 1. Next trace prediction
2. Instruction cache fetch 2. Trace cache fetch
3. Instruction alignment &
collapsing

Completlon 1. Multiple-branch predictor 1. Trace construction and fill
update
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel
a, Electrical & Computer CMU 18-747
() ENGNERRIE Ceciure 1112

J. C. Hoe

Trace Cache Trade-offs

Trace cache:

Pros — Moves complexity to backend
Cons — Inefficient instruction storage

<«+—— |Instruction storage redundancy

Fetch time complexity ——»

Enhanced instruction cache:

Pros — Efficient instruction storage
Cons — Complexity during fetch time

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel




CMU 18-747
Lecture 11-13
J. C. Hoe

. and Deeper)

Electrical & Computer

) ENGINEERING
As Machines Get Wider (

1. Eliminate Stages
2 Relocate work to
the backend

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 11-14
J. C. Hoe

€O

Y
Branch <_|£|'CH
| Predictor i
CIIITT[ITTITIT] Buffer
[ DEcope '
P
@‘“ Integer Floating-point ¥ Media Memory
- ==
§ § ] v Vv v
§ EXECUTE y é v
\\\\\\\ m\\\\\\@@ Re?frder |
Buffer LTI T I I TIIITID)
Register (ROB)
Data COMMIT
Store D-cache
v v |

Flow
Queue
L
Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

ENGINEERING
Flow Path Model of Superscalars

.,
/ ™~




CMU 18-747

(U. Electrical & Computer
ENGINEERING Lacurs 1115

CPU-Memory Bottleneck

CPU| 4=——> | Memory

¢ Performance of high speed computers is usually limited
by memory performance, bandwidth & latency

¢ Main memory access time >> Processor cycle time
over 100 times difference!!

+ if m fraction of instructions are loads and stores
then average ‘1+m’ references per instruction

suppose m=40%, IPC=4@1GHz = 22.4 GByte/sec

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747

{U. Electrical & Compurer
ENGINEERING Ceciure 1116
. C. Hoe

How to Incorporate Faster Memory J

Scratch CPU Main

Pad ﬁ <> | \Memory
(SRAM) RF (DRAM)

¢ SRAM access time << Main memory access time

¢ SRAM bandwidth >> Main memory bandwidth
= SRAM is expensive
= SRAM is smaller than main memory
¢ Programs exhibit temporal locality
- frequently-used data can be held in the scratch pad
- the cost of the first and last memory access can be amortized
over multiple reuse

¢ Programs must have a small working set (aka footprint)

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel




CMU 18-747
Lecture 11-17
J. C. Hoe

A ENGINEERING _
Caches: Automatic Management of
Fast Storage

16~32KB
1~2 pclk latency

CPU cache |« > Main
Memory
L2 L3 ley) Main
cache cache Me mo ry
~256KB ~4MB

~10 pclk latency

Copyright 2001

~50 pclk latency

Jam: H MU an hn P._Shen, Intel

rical & Computer
A ERGiNERRNG

CMU 18-747
Lecture 11-18
J. C. Hoe

Cache Memory Structures

Index

tag data

decoder

Indexed Memory

k-bit index
2% blocks

Associative Memory
(CAM)
no index
unlimited blocks

Copyright 2001

N-Way
Set-Associative Memory
k-bit index
2k« N blocks

James C. Hoe, CMU and John P. Shen. Intel




«3 Electrical & Computer CMU 18-747
ENGINEERING Lacure 1119

Direct Mapped Caches

block index
pd T~

tag [ idx| b.o.
1
|
QL_) 1
5 3 |
© o 1
o b} I
8 © 1
'c 1
1
1
1
)
»O» . cl
v Tag Ly Multiplexo Tag
Match match

Copvyright 2001, Jam: _H MU an hn P, Shen. Intel

{{} Electrical & Compurer CMU 18-747

ENGINEERING Leciure 1120

J. C. Hoe

Cache Block Size

¢ Each cache block or (cache line) has only one tag but
can hold multiple “chunks” of data
- reduce tag storage overhead
In 32-bit addressing, an 1-MB direct-mapped cache has 12
bits of tags
4-byte cache block = 256K blocks = ~384KB of tag
128-byte cache block = 8K blocks = ~12KB of tag

- the entire cache block is transferred to and from memory all
at once
good for spatial locality since if you access address i, you
will probably want i+1 as well (prefetching effect)

# Block size = 2°; Direct Mapped Cache Size = 2B+

MSB LSB
tag block index | block offset
\ J\_ J

Y Y,
B-b Itgouvriaht 2001 Jameg)aqg%mu and John P. Shen, Intel




«’ Electrical & Computer CMU 18-747
ENGINEERING Lecurs 1121

Large Blocks and Subblocking

+ Large cache blocks can take a long time to refill
- refill cache line critical word first
- restart cache access before complete refill
¢ Large cache blocks can waste bus bandwidth if
block size is larger than spatial locality
- divide a block into subblocks
- associate separate valid bits for each subblock.

[v] subblock [v] subblock | e e e e [v]subblock | tag |

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

({} Electrical & Computer CMU 18-747
ENGINEERING Ceciure 1122

Fully Associative Cache -

[ tag [blk.offset]
[

Tag

AR 240

Associative
L » Multiplexor Search

v

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel




-al & Comy
) ENGiNEERING

CMU 18-747
Lecture 11-23

N-Way Set Associative Cache
| talg [index]| BOJ
5 : S,
R : g
3 Associative
© search

L > (Multiplexor
v

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Cache Size = N x 2B+

O EEREEANG o
N-Way Set Associative Cache
a way (bank) a set
tag idx| b.o. A
( )

E E =

p—S » 3 :

» 8 8 ]

© © 1
p—Tag A Tag
A v "\ match v v "Imatch

5 s Multiplexop”~
! l
(1

!

i = B+b
Copyright 2001 ﬁa%@s%hﬁe %%%d?oh’r}!?)éhe% Intel




«3 Electrical & Computer CMU 18-747
ENGINEERING Leoturo 1125

J. C. Hoe

Principle Behind Hierarchical Storage

¢ Each level memoizes values stored at lower levels

+ Instead of paying the full latency for the “furthermost”
level of storage each time
Effective Access T, = h;t; + (1 - ;) T,,4
— where h; is the ‘hit’ ratio, the probability of finding the
desired data memoized at level i
— t;is the raw access time of memory at level i

¢ Given a program with good locality of reference
Sworking-set < Si = hiz1 = Tizti
¢ A balanced system achieves the best of both worlds
- the performance of higher-level storage
- the capacity of lower-level low-cost storage.

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel




