
18-747 Lecture 9:
Advanced Branch Prediction

James C. Hoe
Dept of ECE, CMU

September 26, 2001

Reading Assignments: S&L Ch3 82-107, MJ Ch4 and Ch5, McFarling paper

Announcements: Exam 1 on October 15th
Condor Job Queue

Handouts: Practice Exam 1

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 9-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

nPC to Icache

nPC(seq.) = PC+4
PCBranch

Predictor
(using a BTB)

specu. target

BTB
update

prediction

(target addr.
and history)

specu. cond.

FA-mux

nPC=BP(PC)

CMU 18-747
Lecture 9-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

A small “cache-like” memory in the instruction fetch stage

Remembers previously executed branches, their addresses,
information to aid prediction, and most recent target
addresses
Instruction fetch stage compares current PC against those
in BTB to “guess” nPC
- If matched then prediction is made else nPC=PC+4
- If predict taken then nPC=target address in BTB else nPC=PC+4

When branch is actually resolved, BTB is updated

Branch Target
(Most Recent)

Branch
History

Branch Inst.
Address (tag)

………….…….

Branch Target Buffer (BTB)

current
PC

CMU 18-747
Lecture 9-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Prediction accuracy approaches maximum with as
few as 2 preceding branch occurrences used as
history

Example Prediction Algorithm

TTT

N

T

NT
T

TNT
TN
T

NN
N

N

T

T

N

T
N

TT
T

last two branches

next prediction

CMU 18-747
Lecture 9-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Prediction Function
Based on opcode only (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
66 69 71 55 80 78

Based on history of branch
- Branch prediction function prediction F (X1, X2,)
- Use up to 5 previous branches for history (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
0 64.1 64.4 70.4 54.0 73.8 77.8
1 91.9 95.2 86.6 79.7 96.5 82.3
2 93.3 96.5 90.8 83.4 97.5 90.6
3 93.7 96.7 91.2 83.5 97.7 93.5
4 94.5 97.0 92.0 83.7 98.1 95.3
5 94.7 97.1 92.2 83.9 98.2 95.7

CMU 18-747
Lecture 9-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

N

T
N

N

T

TN
Tn?

T

t
T

N

N

T

TN
T

t?

T

T N

n?

tt?

N
N

nn

T N

Other Prediction Algorithms

Combining prediction accuracy with BTB hit rate
(86.5% for 128 sets of 4 entries each), branch
prediction can provide the net prediction accuracy of
approximately 80%. This implies a 5-20%
performance enhancement.

Saturation
Counter

Hysteresis
Counter

CMU 18-747
Lecture 9-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Exhaustive Search for
Optimal Predictors [Nair, 1992]

There are 220 possible state machines of 2-bit predictors
Pruning uninteresting and redundant machines leaves 5248
It is possible to exhaustively search and find the optimal predictor for a
benchmark

*

*

*

*

*

predict NT predict T
Benchmark Best Pred. %

spice2g6 97.2

doduc 94.3

gcc 89.1

espresso 89.1

li 87.1

eqntott 87.9

TN

Saturation Counter is near optimal in all cases!

CMU 18-747
Lecture 9-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Number of Counter Bits Needed

Branch history table size: Direct-mapped array of 2k entries
Programs, like gcc, can have over 7000 conditional branches
In collisions, multiple branches share the same predictor
Variation of branch penalty with branch history table size level out
at 1024

62.4 (0.142)82.5 (0.063)86.8 (0.048)88.3 (0.042)li

78.4 (0.049)82.9 (0.046)87.2 (0.033)89.3 (0.028)eqntott

58.5 (0.176)87.2 (0.054)89.1 (0.047)89.5 (0.045)espresso

50.0 (0.128)86.0 (0.033)89.1 (0.026)89.7 (0.025)gcc

69.2 (0.022)90.2 (0.004)94.3 (0.003)94.2 (0.003)doduc

76.6 (0.031)96.2 (0.013)97.0 (0.009)97.0 (0.009)spice2g6

0-bit1-bit2-bit3-bit

Prediction Accuracy (Overall CPI Overhead)Benchmark

CMU 18-747
Lecture 9-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Global Branch Prediction
So far, the prediction of each static branch instruction is
based solely on its own past behavior and not the
behaviors of other neighboring static branch instructions

00...00
00...01
00...10

11...10
11...11

1 1 1 1 0

Branch History Register
(shift left when update)

Pattern History Table (PHT)

PHT
Bits

Prediction

Branch
Resolution

index

FSM
Logic

old

new

CMU 18-747
Lecture 9-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

2-Level Adaptive Prediction [Yeh & Patt]

Two-level adaptive branch prediction
- 1st level: History of last k (dynamic) branches encountered
- 2nd level: branch behavior of the last s occurrences of the

specific pattern of these k branches
- Use a Branch History Register (BHR) in conjunction with a

Pattern History Table (PHT)

Example: (k=8, s=6)
- Last k branches with the behavior (11100101)
- s-bit History at the entry (11100101) is [101010]
- Using history, branch prediction algorithm predicts direction

of the branch

Effectiveness:
- Average 97% accuracy for SPEC
- Used in the Intel P6 and AMD K6

CMU 18-747
Lecture 9-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Nomenclature: {G,P}A{g,p,s}

To achieve 97% average prediction accuracy:
G (1) BHR: 18 bits; g (1) PHT: 218 x 2 bits total = 524 kbits
P (512x4) BHR: 12 bits; g (1) PHT: 212 x 2 bits total = 33 kbits
P (512x4) BHR: 6 bits; s (512) PHT: 26 x 2 bits total = 78 kbits

00...00
00...01
00...10

11...10
11...11

1 0 1 1 1

Branch History Shift

(shift left when update)

Pattern History Table (PHT)

PHT
Bits

Prediction

Branch Result

index

FSM
Logic

old

new
1 1 1 0 0

1 1 1 1 0

Register (BHSR)

PC

CMU 18-747
Lecture 9-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Global BHSR Scheme (GAs)

P
re

di
ct

io
n

Branch Address

Branch History
Shift Register (BHSR)

j bits

k bits

BHT of 2 x 2 j+k

CMU 18-747
Lecture 9-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Per-Branch BHSR Scheme (PAs)

P
re

di
ct

io
n

Branch Address

Branch History
Shift Register (BHSR)

BHT of 2 x 2 j+k

j bits

k bits

i bits

k x 2 i

Standard BHT

CMU 18-747
Lecture 9-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Gshare Branch Prediction [McFarling]

P
re

di
ct

io
n

Branch Address

Branch History
Shift Register (BHSR)

j bits

k bits

BHT of 2 x 2 max(j,k)

xor

CMU 18-747
Lecture 9-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Other Schemes
Function Return Stack
- Register indirect targets are hard to predict from branch history
- Register indirect branches are mostly used for function returns
⇒ 1. Push the return address onto a stack on each function call

2. On a reg. indirect branch, pop and return the top address
as prediction

Combining Branch Predictors
- Each type of branch prediction scheme tries to capture a

particular program behavior
- May want to include multiple prediction schemes in hardware
- Use another history-based prediction scheme to “predict” which

predictor should be used for a particular branch
You get the best of all worlds. This works quite well

CMU 18-747
Lecture 9-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

BTB for Superscalar Fetch

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

SFX SFX CFX FPU LSBRN

Buffer

icacheP
C

Branch
History
Table

Branch
Target

Address
Cache

+16

feedback

BTB input: current cache line
address

BTB output: what is the next
cache line address and
how many words of the
current line is useful

CMU 18-747
Lecture 9-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

PPC 604 Fetch Address Generation

instruction
cache BHT BTAC +2 +4

FA
R

Prediction Logic
(4 instructions)

Target Seq Addr

Prediction Logic
(4 instructions)

Target Seq Addr

Prediction Logic
(4 instructions)

Target Seq Addr

Exception Logic

PC

Target

+

fetch

decode

dispatch

branch
execute

complete

CMU 18-747
Lecture 9-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Control Flow Speculation

Leading Speculation
- Tag speculative instructions
- Advance branch and following instructions
- Buffer addresses of speculated branch instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3

CMU 18-747
Lecture 9-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Mis-speculation Recovery

Eliminate Incorrect Path
- Must ensure that the mis-speculated instructions produce no

side effects

Start New Correct Path
- Must have remembered the alternate (non-predicted) path

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3 tag3tag3

tag2

CMU 18-747
Lecture 9-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Mis-speculation Recovery

Eliminate Incorrect Path
- Use branch tag(s) to deallocate completion buffer entries

occupied by speculative instructions (now determined to be
mis-speculated).

- Invalidate all instructions in the decode and dispatch buffers, as
well as those in reservation stations

How expensive is a misprediction?

Start New Correct Path
- Update PC with computed branch target (if it was predicted NT)
- Update PC with sequential instruction address (if it was

predicted T)
- Can begin speculation once again when encounter a new

branch

How soon can you restart?

CMU 18-747
Lecture 9-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trailing Confirmation

Trailing Confirmation
- When branch is resolved, remove/deallocate speculation tag
- Permit completion of branch and following instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3tag3 tag3

tag2

CMU 18-747
Lecture 9-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Fast Branch Rewind and Restart:
Metaflow DRIS

Discard all DRIS entries
(and corresponding
operations) younger than
the mispredicted branches

Can restart immediately
from the corrected branch
target because the DRIS
has sufficient information
(rename & value) to
continue from where left off

Works with nested
mispredictions!!

youngest

oldest

misprediction

oldestoldestoldest

another miss

another miss

CMU 18-747
Lecture 9-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

To reinitiate renaming:
- wait for all instructions older than the rewind point to drain

clear of the pipeline and then reset register remapping to null
Long restart latency

- Reorder buffer has to remember how to restored the map
table to the point of the mispredicted branch

Complicated multi-cycle logic
- Cache rename map after branch prediction

Rewinding/Flushing of Rename Table
data busy tag

logical
register
name

ARF Map Table
data

RRF
rdy next to

free
next to
allocate

Operand Value/Tag

CMU 18-747
Lecture 9-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Impediments to Wide Fetching

Average Basic Block Size
- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

Branch Prediction Mechanisms
- must make multiple branch predictions per cycle
- potentially multiple predicted taken branches

Conventional I-Cache Organization
- must fetch from multiple predicted taken targets per

cycle
- must align and collapse multiple fetch groups per cycle

More to come: Trace Caching!!

