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Anatomy of Engineering Design

Specification: Behavioral description of “What does it do?”
Synthesis: Search for possible solutions; pick the best one.
Implementation: Structural description of “How is it 

constructed?”
Analysis: Figure out if the design meets the specification.

“Does it do the right thing?”  + “How well does it perform?”
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Instruction Set Architecture
ISA, the boundary between software and hardware
- Specifies the logical machine that is visible to the 

programmer
- Also, a functional spec for the processor designers

What needs to be specified by an ISA
- Operations

• what to perform and what to perform next
- Temporary Operand Storage in the CPU

• accumulator, stacks, registers
- Number of operands per instruction
- Operand location

• where and how to specify the operands
- Type and size of operands
- Instruction-to-Binary Encoding
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Dynamic-Static Interface

DSI = ISA 
= a contract between the program and the machine.
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Anatomy of a Modern ISA
Operations
simple ALU op’s, data movement, control transfer

Temporary Operand Storage in the CPU
Large General Purpose Register (GPR) File

Number of operands per instruction
triadic A ⇐ B op C

Operand location
load-store architecture with register indirect addressing  

Type and size of operands
32/64-bit integers, IEEE floats

Instruction-to-Binary Encoding
Fixed width, regular fields

Exceptions: Intel x86, IBM 390 (aka z900)
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“Iron Law” of Processor Performance

Processor Performance  =
Wall-Clock Time

Program

Architecture  → Implementation → Realization
Compiler Designer         Processor Designer        Chip Designer

Instructions Cycles

Program Instruction

Time

Cycle

(code size)                (CPI)             (cycle time)

= X X
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Pipelined Design 
Motivation: Increase throughput with 

little increase in hardware

Bandwidth or Throughput = Performance
Bandwidth (BW) = no. of tasks/unit time
For a system that operates on one task at a time:

BW = 1/ latency
BW can be increased by pipelining if many operands 
exist which need the same operation, i.e. many 
repetitions of the same task are to be performed.
Latency required for each task remains the same or 
may even increase slightly.
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Pipeline Illustrated:

Gate
Delay

Comb. Logic
n Gate Delay

Gate
DelayL Gate

DelayL

L Gate
DelayL Gate

DelayL

L BW =  ~(1/n)

n--2
n--2

n--3
n--3

n--3

BW =  ~(2/n)

BW =  ~(3/n)
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Performance Model

Starting from an unpipelined 
version with propagation delay T
and BW = 1/T

Ppipelined=BWpipelined = 1 / (T/ k +S )

where
S = delay through latch

T
S

S

T/k

T/k

k-stage 
pipelinedunpipelined
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Hardware Cost Model

Starting from an unpipelined version 
with hardware cost G

Costpipelined = kL + G

where 
L = cost of adding each latch, and
k = number of stages

G
L

L

G/k

G/k

k-stage 
pipelinedunpipelined
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Cost/Performance: 
C/P =  [Lk + G] / [1/(T/k + S)] = (Lk + G) (T/k + S)

=  LT + GS + LSk + GT/k

Optimal Cost/Performance: find min. C/P w.r.t. choice of k

Cost/Performance Trade-off 
[Peter M. Kogge, 1981]
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“Optimal” Pipeline Depth (kopt)
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Pipelining Idealism
Uniform Suboperations
The operation to be pipelined can be evenly 

partitioned into uniform-latency suboperations
Repetition of Identical Operations
The same operations are to be performed 

repeatedly on a large number of different inputs
Repetition of Independent Operations  
All the repetitions of the same operation are mutually 

independent,  i.e. no data dependence 
and no resource conflicts

Good Examples: automobile assembly line
floating-point multiplier
instruction pipeline???
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Instruction Pipeline Design
Uniform Suboperations  ...  NOT! 
⇒ balance pipeline stages

- stage quantization to yield balanced stages
- minimize internal fragmentation (some waiting stages)

Identical operations ... NOT! 
⇒ unifying instruction types

- coalescing instruction types into one “multi-function” pipe
- minimize external fragmentation (some idling stages)

Independent operations ... NOT!
⇒ resolve data and resource hazards

- inter-instruction dependency detection and resolution
- minimize performance lose
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The Generic Instruction Cycle

The “computation” to be pipelined

1. Instruction Fetch (IF)
2. Instruction Decode (ID)
3. Operand(s) Fetch (OF)
4. Instruction Execution (EX)
5. Operand Store (OS)
6. Update Program Counter (PC)
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The GENERIC Instruction Pipeline (GNR)

Based on Obvious Subcomputations:

IF

ID

OF

EX

OS

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction 

Store
Operand 

Execute

1.

2.

3.

4.

5.
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Balancing Pipeline Stages

Without pipelining
Tcyc≈ TIF+TID+TOF+TEX+TOS

= 31

Pipelined
Tcyc ≈ max{TIF, TID, TOF, TEX, TOS}

= 9

Speedup= 31 / 9

Can we do better in terms of 
either performance or 
efficiency?

IF

ID

OF

EX

OS

TIF= 6 units

TID= 2 units

TID= 9 units

TEX= 5 units

TOS= 9 units
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Balancing Pipeline Stages

Two Methods for Stage Quantization:
- Merging of multiple subcomputations into one.
- Subdividing a subcomputation into multiple 

subcomputations.

Current Trends:
- Deeper pipelines (more and more stages).
- Multiplicity of different (subpipelines).
- Pipelining of memory access (tricky).
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Granularity of Pipeline Stages
Coarser-Grained Machine Cycle: 
4 machine cyc / instruction cyc

Finer-Grained Machine Cycle: 
11 machine cyc /instruction cyc
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Hardware Requirements

Logic needed for each 
pipeline stage
Register file ports needed 
to support all the stages
Memory accessing ports 
needed to support all the 
stages
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Pipeline Examples 

IF

RD

IF

ID

OF

EX

OS

ALU

MEM

WB

1

2

3

4

5

IF

ID
OF

EX

OS

PC GEN.PC GEN

PC GEN.Cache Read

PC GEN.Cache Read

PC GEN.Decode

PC GEN.Add GEN
PC GEN.Read REG

PC GEN.Cache Read

PC GEN.Cache Read

PC GEN.EX 1

PC GEN.EX 2

PC GEN.Write Result
PC GEN.Check Result

1

2
3
4

5

6
7
8

9

10
11

12

MIPS R2000/R3000 AMDAHL 470V/7
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Unifying Instruction Types

Procedure:
1. Analyze the sequence of register transfers 

required by each instruction type.
2. Find commonality across instruction types and 

merge them to share the same pipeline stage.
3. If there exists flexibility, shift or reorder some 

register transfers to facilitate further merging.
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Coalescing Resource Requirements
The 6-stage TYPICAL (TYP) pipeline:

WR. MEM.

ID

RD

ALU

MEM

WB

1

2

3

4

5

IF

6

I-CACHE
PC

DECODE

RD. REG.

ALU OP.

ADDR. GEN.

I-CACHE
PC

DECODE

RD. REG.

I-CACHE
PC

DECODE

RD. REG.

I-CACHE
PC

DECODE

RD. REG.

WR. REG. WR. REG.

IF:

ID:

OF:

EX:

OS:

LOAD STORE BRANCHALU

RD. MEM.

ADDR.GEN. ADDR. GEN.

WR. PC
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Interface to Memory Subsystem

I-CacheD-CacheDa
ta

A
d
d

Memory

Da
ta

A
d
d

I-CacheI-Cache

r

r

ALU

RD

IFIF

ID

RD

ALU

MEM

WB
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Pipeline Interface to Register File:

ALU

RD

IFIF

ID

RD

ALU

MEM

WB

D

S1

S2

W/RWData

RData2

Register
File

RAdd2
RData1

WAdd

RAdd1
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6-stage TYP Pipeline

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF
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ALU Instruction Flow Path

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF
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Load Instruction Flow Path

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF
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Store Instruction Flow Path

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF

What is wrong in this figure (from p2-31 S&L)?
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Branch Instruction Flow Path

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF
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Pipeline Resource Diagram

I6

I7

I8
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t10

I5
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I8

I9

I10

t9

I4I3I2I1WB

I5I4I3I2I1MEM

I6I5I4I3I2I1ALU

I7I6I5I4I3I2I1RD

I8I7I6I5I4I3I2I1ID

I9I8I7I6I5I4I3I2I1IF

t8t7t6t5t4t3t2t1t0
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F

MEM

Pipelining: Steady State 

IF ID RD ALU MEM
IF ID RD ALU MEM

IF ID RD ALU MEM
IF ID RD ALU

t0 t1 t2 t3 t4 t5

IF ID RD ALU
IF ID RD

IF ID

Insti
Insti+1
Insti+2
Insti+3
Insti+4

WB
WB

WB
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Instruction Dependencies

Data Dependence
- True dependence (RAW)

Instruction must wait for all required input operands
- Anti-Dependence (WAR)

Later write must not clobber a still-pending earlier read
- Output dependence (WAW)

Earlier write must not clobber an already-finished later write

Control Dependence (aka Procedural Dependence)
- Conditional branches cause uncertainty to instruction 

sequencing
- Instructions following a conditional branch depends on the 

resolution of the branch instruction 
(more exact definition later)
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Example: Quick Sort on MIPS R2000
bge $10,    $9,      $36
mul $15,    $10,    4
addu $24,    $6,      $15
lw $25,    0($24)
mul $13,    $8,      4
addu $14,    $6,      $13
lw $15,    0($14)
bge $25,    $15,    $36

$35:
addu $10,    $10,     1
. . .

$36:
addu $11,    $11,      -1
. . .

# for (;(j<high)&&(array[j]<array[low]);++j);
# $10  =  j; $9  =  high; $6  =  array; $8  =  low
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Instruction Dependences 
and Pipeline Hazards

Sequential Code Semantics

i1: 

i2: 

i3: 

The implied sequential precedences are 
overspecifications. It is sufficient but not
necessary to ensure program correctness.           

A true dependence between 
two instructions may only 
involve one subcomputation
of each instruction.         

i1: xxxx

i2: xxxx

i3: xxxx

i2

i1

i3
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Necessary Conditions for Data Hazards

i:rk←_

j:rk←_ Reg Write

Reg Write

iOj

i:_←rk

j:rk←_ Reg Write

Reg Read

iAj

i:rk←_

j:_←rk Reg Read

Reg Write

iDj

stage X

stage Y

dist(i,j)  ≤ dist(X,Y) ⇒ ??
dist(i,j)  > dist(X,Y) ⇒ ??

WAW Hazard WAR Hazard RAW Hazard

dist(i,j)  ≤ dist(X,Y) ⇒ Hazard!!
dist(i,j)  > dist(X,Y) ⇒ Safe
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Hazards due to 
Memory Data Dependences

----------write reg.write reg.6. WB

PC<-br. addr.write mem.read mem.-----5. MEM

addr. gen.
cond. gen.

addr. gen.addr. gen.ALU op.4. ALU

read reg.read reg.read reg.read reg.3. RD

decodedecodedecodedecode2. ID

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

1. IF

Branch inst.Store inst.Load inst.ALU Inst.Pipe Stage
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Hazards due to 
Register Data Dependences

----------write reg.write reg.6. WB

PC<-br. addr.write mem.read mem.-----5. MEM

addr. gen.
cond. gen.

addr. gen.addr. gen.ALU op.4. ALU

read reg.read reg.read reg.read reg.3. RD

decodedecodedecodedecode2. ID

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

1. IF

Branch inst.Store inst.Load inst.ALU Inst.Pipe Stage
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Hazards due to 
Control Dependences

----------write reg.write reg.6. WB

PC<-br. addr.write mem.read mem.-----5. MEM

addr. gen.
cond. gen.

addr. gen.addr. gen.ALU op.4. ALU

read reg.read reg.read reg.read reg.3. RD

decodedecodedecodedecode2. ID

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

1. IF

Branch inst.Store inst.Load inst.ALU Inst.Pipe Stage


