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Uniprocessor Load and Store Semantics
The programmer (or compiler) believes memory reads 
and writes are going to be executed in program order
Given Wi( a, v ) << Rj( a ) 
Rj(a) must return v if there does not exist another Wk
such that         

Wi( a, v ) << Wk( a, v’ ) << Rj(a)
In short, a read should return the value of the “last” write 
to the same memory address
Processors can guaranteed this semantics by obeying 
the ordering of memory data dependent operations
- RAW: W(a, v) << R( a )
- WAW: W(a, v’ ) << W(a, v )
- WAR: R( a ) << W( a, v’ )

(“<<“ means precedes)
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Uniprocessor Reordering of Loads & Stores

Reordering of memory Op’s to different addresses
Buffered stores  (some stores may never show up in memory)

Load forwarding and load bypassing
Note: one should not be able to write a program to 

differentiate this from a true program-ordered execution! 
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Memory Ordering for 
Shared Memory Multiprocessors

Consider these two programs running on two processors 
that communicate via shared memory locations X and Y

Can the orders of Loads and Stores be swapped during 
dynamic execution?
Can the two programs perceive different order of events?

Proc A:
Y is initially 1
……
compute V
Store (X, V)
Store (Y, 0)
……

Proc B:
……
do {

lock=Load Y
} while (lock)
data = Load X
……
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Simplified Multiprocessor/Memory Arch.

P1 P2 P3 Pn

Memory

Ignore caches for now
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Multiprocessor Memory Consistency
A memory consistency model tells the programmer 
for each load which store operation bound the value 
to be returned
Intuition:  a load should return the value of the “last” 
store to the same memory address
In multiprocessor, each processor performs a stream 
of reads and writes
. . . . . . . . . . . . . . .  . . . . . . . . . . . . WP1(x) . . . . . . . . . . . . . . . 

. . . . . . . WP2(x),WP2(y), RP2(x), RP2(y) . . . . . . . . . . . . .
. . . . . . .WP3(x). . . . WP3(y). . . . . .WP3(x) . . . . . . . . . . . . 

Who performed the last write to x before R(x) by P2?

How do you establish a global ordering of memory 
operations?  Do you need a global ordering?
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Sequential Consistency (SC)
What if every one can agree on a single point of 
serialization, for example at the memory bus?
Sequential Consistency [Lamport]
- a thread on a processor perceives its own memory ops in program 

order
- memory ops from different processors can be interleaved arbitrarily 

(different interleaving are allowed on different runs)
- For each run, all threads on all processors must agree on the 

same total ordering
- i.e. execution of a parallel program appear as some interleaving of 

the execution of parallel processes on a sequential machine”
Example:  Concurrent tasks T1 and T2 and shared variables X and Y
(initially X = 0, Y = 0)

T1: ……… T2: ……. 
Store(X,  1); Y’ = Load(Y);
Store(Y,  1); X’ = Load(X);

SC says ⇒ Y’ and X’ may be assigned different values from run to 
run, but if Y’ is 1 then X’ cannot be 0
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Implementation Implications of SC
SC requires a processor to 
preserve the following 
program-specified orderings 
at the common point of 
serialization

Ri(x) < Rj(x)
Ri(x) < Rj(y)

Ri(x) < Wj(x) RAW
Ri(x) < Wj(y)

Wi(x) < Rj(x) WAR
Wi(x) < Rj(y)

Wi(x) < Wj(x) WAW
Wi(x) < Wj(y)

Memory

core
Store
Buf

core
Store
Buf

Shared location X and Y initially 0

T1: Store(X, 1)

print X Y

Is it possible that T1 prints “1 0” but 
T2 prints “0 1”?

T2: Store(Y, 1)

print X Y
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Performance Implications of SC
SC memory model places sever restrictions on the 
applicability of high-performance memory flow 
techniques from Lecture 12
Solutions are
- disallow reordering of memory operations (not good enough)
- speculatively reorder memory operations and repair if it made 

an “observable” difference (MIPS R10000)
e.g.  allow a load to issue as early as possible without 

violating uniprocessor dependence.  If no other 
processors issue any memory operations between the 
time of advanced load and the would be time of the in-
order load, then no problem,  else “rewind and reload”

- support weaker memory models (PowerPC)
• Only a small minority of the processors sold will be used 

in shared-memory systems
• SC is not always needed even in parallel applications
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By default, WC processors only obey basic uniprocessor 
memory dependence        Ri(x)<Wj(x), Wi(x)<Rj(x), Wi(x)<Wj(x)

A special barrier instruction lets SW explicitly serialize 
memory operations when it matters
Bi < Rj(y)
Bi < Wj(y)
Bi < Bj
Ri(x) < Bj
Wi(x) < Bj

You rarely need to serialize so we can use a low-cost 
(low-performance) implementation, i.e. on a sync, stop all 
instructions from issuing until all earlier instructions have 
finished 

Other models, between SC and WC, have been used

Weak Consistency (WC)

Proc A:
Y is initially 1
……
compute V
Store (X, V)
Sync
Store (Y, 0)

Proc B:
……
do {

lock=Load Y
} while (lock)
Sync
data = Load X
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Memory Coherence
If P1 writes to X, “later” P2 reads X, and no one else 
writes to X in between,  P2 should read the value 
written by P1
Example:

Under WC interpretations, Load X by P2 occurs after 
Store(X, V) by P1, P2 should get V
This is absolutely unambiguous if there is only one 
place where the value of memory location X is kept

P1:
Y is initially 1
……
compute V
Store (X, V)
Sync
Store (Y, 0)
……

P2:
……
do {

lock=Load Y
while (lock)
Sync
data = Load X
……
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Multiprocessor/Cache/Memory Arch

The Goal of Cache Coherence is to make all the processors 
believe they are connected to the same memory directly? 

(warning: slightly oversimplified statement)

P1 P2 P3 Pn

$1
$2

Memory

$1
$2

$1
$2

$1
$2
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Extreme Solutions to Cache Coherence
Disallow caching of shared variables
Only allow only one copy of a mem location at a time
- If location X is cached in one cache then it is not valid in 

memory or another cache
- Another processor must have a way to find out who has 

location X and take over ownership before reading or writing
- thus, can only have one reader/writer per location

Allow multiple copies, but make sure they all have the 
same value at all time
- update to one copy must be visible to all copies where ever 

they might be (memory and all of the caches)
- thus, can have multiple readers and writers at once

A cache coherence protocol is the “rules of conduct” 
between caches to enforce a particular policy
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CC Protocol for Bus-based Systems
Bus is a broadcast medium, bus “snooping” allows 
every cache to see what everyone else wants to do
A cache can even intervene in another cache’s bus 
transaction, e.g. a cache might ask another cache to 
“retry” the transaction later or respond in place of the 
memory
Besides the usual status bits, additional information 
might have to be recorded with each cache line, aka 
cache coherence states, e.g.
- Invalid: cache line does not have valid data
- Modified: cache line has been written to since it was brought in 
- Shared: valid line, but other caches may have copies 

(presumably all identical and unchanged from memory)
- Exclusive: valid line, unchanged from memory but no other 

cache has a copy
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Example: Multiple Identical Copies
A cache line can be either Valid or Invalid
Based on a write-through scheme
- a cache issues a read transaction on a read or write miss
- a cache issues a write transaction to memory whenever the 

cache line is changed by the processor 
- a cache do not need to write back when a line is displaced 

All writes are write-through so the writer’s cache is 
coherent with memory
All caches “snoop” the bus for other’s write transactions
- Check if the write is to a currently cached location
- If a write goes to a cached location, overwrite the old (aka stale) 

value with the new snooped value
- else do nothing

A read miss can fetch directly from memory (always 
current)
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Example: One Copy at All Time
A cache line can be either Valid or Invalid
Based on a write-back scheme
- a cache issues a read transaction on a read or write miss
- a cache issues a writes-back to memory when a line is 

displaced 

All caches “snoop” the bus for other’s read transactions
- If a cache observes a request to a currently cached line then 

respond with a value in place of memory, mark its own copy 
Invalid

- Alternatively, a cache can also ask the requester to retry later
and, in the meanwhile, write-back its copy to memory

Why don’t caches need to snoop for write-back 
transactions?
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MESI Cache Coherence Protocol
An efficient policy for single-writer/multi-reader usage
- Allow multiple read-only copies (all identical)  (Shared)
- Allow only a single writable copy (Exclusive, Modified)
- Minimizes the number of bus transactions

Based on a write-back scheme
- On a read miss, issue a read transaction for a read-only copy
- On a write miss, issue a “read-with-intent-to-modify” for an 

exclusive copy
- On a write hit to a read-only copy, issue a “invalidate” transaction
- When displacing a “clean” line, do nothing
- When displacing a Modified line, write the dirty value back to 

memory

All caches “snoop” the bus for other caches’ read, 
RWITM and invalidate transactions

What happens on a snoop hit is kind of complicated 
to describe in words . . . . . 
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Cache A Cache B

Memory

Modified in Cache A
Cache A Cache B

Memory

Shared in Cache A

Cache A Cache B

Memory

Exclusive in Cache A
Cache A Cache B

Memory

Invalid in Cache A

M S

E I

data valid data invalid data valid don’t care

data validdata invalid

data valid data invalid data invalid don’t care

don’t caredata valid

MESI States

Given the state of an address in one cache, what can one infer about 
the possible state of the same address else where?

except that it 
must be valid
somewhere

shared or
invalid


