
18-747 Lecture 7:
More Modern Micro-Dataflow 

James C. Hoe
Dept of ECE, CMU

September 19, 2001

Reading Assignments: MJ Ch7, Monday’s handout
“Microarchitecture of Superscalar Processors”

by Smith and Sohi

Announcements: PS1 and Project 0 due 2:30 Friday 

Handouts:

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 7-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Out-of-Order Machine State

R7 ⇐ D
R4 ⇐ E

R8 ⇐ G
R3 ⇐ H

R4 ⇐ E
R3 ⇐ F
R8 ⇐ G
R3 ⇐ H

R3 ⇐ A

R8 ⇐ C
R7 ⇐ D

R3 ⇐ A
R7 ⇐ B
R8 ⇐ C
R7 ⇐ D
R4 ⇐ E
R3 ⇐ F
R8 ⇐ G
R3 ⇐ H

Architectural
State:

Look-ahead
State:

Inorder
State:

Instruction
Sequence:

gray=dispatched but not yet executed instructions



CMU 18-747
Lecture 7-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Dispatch Buffer

Reservation

Dispatch

Complete

Stations

Compl. Buffer

Branch

Reg. File Ren. Reg.

Forwarding
results to
Res. Sta. &

Allocate
Reorder
Buffer
entries

Reg. Write Back

rename

Managed as a queue;
Maintains sequential order
of all Instructions in flight
(“takeoff” = dispatching;
 “landing” = completion)

(Reorder Buff.)

Integer Integer Float.- Load/
Point  Store

registers 

Elements of Modern Micro-dataflow
in

or
de

r
ou

t-o
f-o

rd
er

in
or

de
r

CMU 18-747
Lecture 7-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Metaflow Datapath

ICache

issue

DRIS
(Renaming + Reservation
Stations + Reorder Buff.)

Retire

Scheduler

Register File

Branch Pred.

Speculative State

In-order State



CMU 18-747
Lecture 7-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Logical vs. Physical Organization: 
Metaflow Example

Lock1 RN1 ID1
Source 1

Lock2 RN2 ID2
Source 2

latest RD Data
Destination

Dispatched Fxn Unit Executed
Status

PC

Rename
Registers

(RAM)

Reorder Buffer (RAM/FIFO)

Reservation Stations

(CAM)
forward

(RAM)(CAM)
issue

(CAM)
inverse

map
table

CMU 18-747
Lecture 7-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Elements of Register Renaming

A pool of extra registers
- managed as temporary, single-assignment registers  

(eliminates WAW and WAR)
- logically separate from architectural registers named in ISA
- many physical organizations are possible

An allocation and mapping mechanism
- given a logical/architectural register name, where is its 

current definition (value, location, ready or not)
- given a logical/architectural destination register name, 

1.  how to find an unused rename register
2.  how to establish a new mapping for later references

- when to reclaim a mapping? when to reclaim a register?



CMU 18-747
Lecture 7-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Map Table 
with Separate Architectural and Rename Registers

data busy tag

logical
register
name

ARF Map Table

data

RRF

rdy next to
free

next to
allocate

Operand Value/Tag

Issues:
How large is RRF?
How to manage RRF?
How to recover the Map Table  

on br. mispredict. & exceptions?Pentium-Pro

CMU 18-747
Lecture 7-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

How to recover the Rename Map
Metaflow DRIS: remembers everything about all outstanding 
instructions
- associative lookup always gives the right answer from the 

perspective of the youngest instruction

Map Table: rename history of a logical register is overwritten after 
each WAW
Solutions:
1. Discard all speculative state and revert to default ARF mapping
2. Record the rename history

- add another field to RRF to remember the last rename 
register mapped by the same logical register

- map table can be rebuilt by tracing backwards sequentially in 
the active RRF region  (recall RRF is “program-ordered”)

3. Take snapshots of the entire rename table at strategic times, i.e. 
when predicting branches           What about exceptions?



CMU 18-747
Lecture 7-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Map Table 
with unified Physical Registers

tag

logical
register
name

Map Table

data

PRF (holds both inorder &
speculative state)

rdy

Operand Value/Tag
Issues:
How large is PRF?
How to manage PRF?
How to recover the Map Table  

on br. mispredict. & exceptions?R10000, P4

CMU 18-747
Lecture 7-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Allocation and De-allocation of PRF
When speculative register state is committed, no 
copying is required (in fact, not much happens)
PRF registers are not de/allocated in order     Why?
Freelist - stores a pool of unused registers
When to recycle a physical register?
i.e. when do we know a register is no longer referred 
to (by logical name or by physical name)

tag

logical
register
name

Map Table

data

PRF

rdy

2 4 1

Freelist (FIFO)

recycle
freed 

registers

Is every PR referenced by some 
data structure?  What if it is not?



CMU 18-747
Lecture 7-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

How to recover the Rename Map
Map Table: rename history of a logical register is overwritten after 
each WAW
Solutions:
1. Discard all speculative state and revert to default ARF mapping
2. Record the rename history

- add another field to RRF to remember the last rename 
register mapped to the same logical register

- map table can be rebuilt by tracing backwards, one at a time
- Rename history must be stored with instruction entries in 

ROB
Also useful for reclaiming physical registers for reuse!

3. Take snapshots of the entire rename table at strategic times, i.e. 
when predicting branches

What about exceptions?

CMU 18-747
Lecture 7-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Reservation Stations /
Instruction Queues

A place where instructions can wait for dataflow 
resolutions 
- unresolved operand values are represented by a unique tag 

(usually the name of the “renamed” operand register or the 
instruction to produce the operand value, sometimes 
synonymous)

- a completing instruction can forward is result to all reservations 
holding the right tags

Management policies
- single vs. multi buffers
- random access or FIFO
- age-prioritized
- value vs. tag only
- when to deallocate

Reservation stations for Ld/St units are more complicated



CMU 18-747
Lecture 7-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Queue Organizations

distributed
queues reservation

stations

statically 
aligned
(inorder)

Int

FP

Mem

[Smith and Sohi]

CMU 18-747
Lecture 7-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Dataflow Dependence & Scheduling

OpA Rdy

or

=

=
=

write 
dest1
write 
dest2
write 
dest3

OpB Rdy OpC Rdy

and request

grant

To PRF read ports

priority
scheduler



CMU 18-747
Lecture 7-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Reorder Buffer
An program-ordered record of all outstanding (out-of-
order) instructions
- delay update of in-order program state by instructions 

completing out-of-order
- allow inorder commit of in-order program state

in-order
reg file

Reorder
Buffer

in-order update out-of-order result

operand lookup
Don’t forget about PC
and memory writes!!

CMU 18-747
Lecture 7-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

backup 2
backup 1

backup 0

Tracking the Three States: Other Options
Keeping history to rewind and restart execution
- rewinds to special points (i.e. branch instructions) in the 

program by checkpointing
- rewinds to arbitrary points (incremental history and recovery)

reg file

Checkpoint Stack

reg file regfile
write 

history
(FIFO)

out-of-order
writeback

operand lookup discard history
of completed inst’s

in FIFO order

out-of-order
writeback displaced

reg name 
& values

sequential restoration



CMU 18-747
Lecture 7-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

MIPS R10000 circa 1996

4-way superscalar 
(fetch, decode, dispatch and complete)

5 execution pipelines (2 Int, FP Add, FP Mult, Ld/St)
Micro-dataflow instruction scheduling 

(16+16 instruction window)
Register renaming + memory renaming
64 physical integer registers to hold 33 logical registers + 

renamed registers

Speculative execution pass 4 unresolved branches
Precise Interrupts

CMU 18-747
Lecture 7-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Design Choices

Register Renaming
- map table lookup + dependency check on simultaneous dispatches  
- unified physical register file
- 4-deep branch stack to backup the map table on branch predictions
- sequential (4-at-a-time) back-tracking to recover from exceptions

Instruction Queues
- separate 16-entry floating point and integer instruction queues
- prioritized, dataflow-ordered scheduling

Reorder Buffer
- one per outstanding instruction, FIFO ordered
- stores PC, logical destination number, old physical destination 

number Why not current physical destination number?



CMU 18-747
Lecture 7-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

MIPS R10000

4xinst decode

map table 

pre-decoded I-cache

8x4 entries 
Active List

(ROB)

16-entry 
int. Q
(R.S.)

ALU1 ALU2

64-entry
Int GPR
7R3W

LD/ST

64-entry
FPR

5R3W

ALU1 ALU2

16-entry 
FP. Q
(R.S.)

map table(16R4W)

CMU 18-747
Lecture 7-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data 

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow


