18-747 Lecture 11:
High-Performance Memory Hierarchies

James C. Hoe
Dept of ECE, CMU
October 3, 2001

Reading Assignments: S&L Ch 3 82-107
Announcements: Midterm Exam on Monday 10/15
Handouts: Handout #7: HW1 Solution

Handout #8: Project 0 Solution
Graded HW1
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Wide Instruction Fetch Issues
¢ Average Basic Block Size

- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

¢ Three Major Challenges: 3
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A Typical Trace Cache Organization
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Trace Fill Unit

¢ Observe the dynamic execution sequence

¢ Gather instructions into a trace segment (or trace
cache block)

¢ Some simple heuristics for forming trace segments
- stop after collecting up to N instructions
(N is the trace cache block size)
- stop after B conditional branches
(B is the limit of the multi-branch predictor)
- stop after seeing an register-indirect jump
- Don't split basic blocks
- In some designs, unconditional and conditional branches
can be dropped from the traces
¢ Can include pre-decoded dependence information

¢ Can even dynamically re-order instructions (don’t

need an out-of-order core!!)
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Trace Selection/Prediction

¢ Basic
- find the trace that starts at the predicted next-PC
¢ Multiple cached traces may have the same starting PC
- difference is in the internal branch decisions
= need multi-branch predictors
¢ Partial Traces

- predicted next-PC points to the middle of a cached
trace (cached ABC, but predicted BC)

- multi-branch prediction may say not to use the entire
length of a cached trace (cached ABC, but only
needs AB)
= need alignment and collapsing buffer

So how is this better?
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Redundant Traces -

¢ Suppose B,C and D are
instructions in a loop

- 3 different traces of 3-instructions are
possible

- Which one should we keep in the trace
cache?

- How do we detect the beginning and
the end of basic blocks?

¢ Suppose A,B,C,D and E are basic
blocks
- don’t cache BC if BCD is cached
- what about CDB and CDE?
- what about ABC and DBC?

- How to cut down on redundant
instruction storage?

PO
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Next Trace Prediction

predicted branch path
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The Block-Based Trace Cache
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Wide-Fetch I-cache vs. T-cache

Enhanced Proposed
Instruction Cache Trace Cache
Fetch 1. Multiple-branch prediction 1. Next trace prediction
2. Instruction cache fetch 2. Trace cache fetch
3. Instruction alignment &
collapsing

Completlon 1. Multiple-branch predictor 1. Trace construction and fill
update
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Trace Cache Trade-offs

Trace cache:

Pros — Moves complexity to backend
Cons — Inefficient instruction storage

<«+—— |Instruction storage redundancy

Fetch time complexity ——»

Enhanced instruction cache:

Pros — Efficient instruction storage
Cons — Complexity during fetch time
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As Machines Get Wider (

1. Eliminate Stages
2 Relocate work to
the backend
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CPU-Memory Bottleneck

CPU| 4=——> | Memory

¢ Performance of high speed computers is usually limited
by memory performance, bandwidth & latency

¢ Main memory access time >> Processor cycle time
over 100 times difference!!

+ if m fraction of instructions are loads and stores
then average ‘1+m’ references per instruction

suppose m=40%, IPC=4@1GHz = 22.4 GByte/sec
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How to Incorporate Faster Memory J

Scratch CPU Main

Pad ﬁ <> | \Memory
(SRAM) RF (DRAM)

¢ SRAM access time << Main memory access time

¢ SRAM bandwidth >> Main memory bandwidth
= SRAM is expensive
= SRAM is smaller than main memory
¢ Programs exhibit temporal locality
- frequently-used data can be held in the scratch pad
- the cost of the first and last memory access can be amortized
over multiple reuse

¢ Programs must have a small working set (aka footprint)
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Caches: Automatic Management of
Fast Storage

16~32KB
1~2 pclk latency

CPU cache |« > Main
Memory
L2 L3 ley) Main
cache cache Me mo ry
~256KB ~4MB

~10 pclk latency
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Cache Memory Structures

Index

tag data

decoder

Indexed Memory

k-bit index
2% blocks

Associative Memory
(CAM)
no index
unlimited blocks
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N-Way
Set-Associative Memory
k-bit index
2k« N blocks
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Direct Mapped Caches
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Cache Block Size

¢ Each cache block or (cache line) has only one tag but
can hold multiple “chunks” of data
- reduce tag storage overhead
In 32-bit addressing, an 1-MB direct-mapped cache has 12
bits of tags
4-byte cache block = 256K blocks = ~384KB of tag
128-byte cache block = 8K blocks = ~12KB of tag

- the entire cache block is transferred to and from memory all
at once
good for spatial locality since if you access address i, you
will probably want i+1 as well (prefetching effect)

# Block size = 2°; Direct Mapped Cache Size = 2B+

MSB LSB
tag block index | block offset
\ J\_ J
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Large Blocks and Subblocking

+ Large cache blocks can take a long time to refill
- refill cache line critical word first
- restart cache access before complete refill
¢ Large cache blocks can waste bus bandwidth if
block size is larger than spatial locality
- divide a block into subblocks
- associate separate valid bits for each subblock.

[v] subblock [v] subblock | e e e e [v]subblock | tag |
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Fully Associative Cache -
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N-Way Set Associative Cache
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Cache Size = N x 2B+
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Principle Behind Hierarchical Storage

¢ Each level memoizes values stored at lower levels

+ Instead of paying the full latency for the “furthermost”
level of storage each time
Effective Access T, = h;t; + (1 - ;) T,,4
— where h; is the ‘hit’ ratio, the probability of finding the
desired data memoized at level i
— t;is the raw access time of memory at level i

¢ Given a program with good locality of reference
Sworking-set < Si = hiz1 = Tizti
¢ A balanced system achieves the best of both worlds
- the performance of higher-level storage
- the capacity of lower-level low-cost storage.

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel




