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Wide Instruction Fetch Issues

Average Basic Block Size
- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

Three Major Challenges:

- Multiple-Branch Prediction

- Multiple Fetch Groups

- Alignment and Collapsing

Instruction
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Cannot be solved with just longer cache blocks
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A Typical Trace Cache Organization
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Trace Fill Unit
Observe the dynamic execution sequence 
Gather instructions into a trace segment (or trace 
cache block)
Some simple heuristics for forming trace segments
- stop after collecting up to N instructions  

(N is the trace cache block size)
- stop after B conditional branches 

(B is the limit of the multi-branch predictor)
- stop after seeing an register-indirect jump
- Don’t split basic blocks
- In some designs, unconditional and conditional branches 

can be dropped from the traces 

Can include pre-decoded dependence information 
Can even dynamically re-order instructions (don’t 
need an out-of-order core!!)
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Trace Selection/Prediction
Basic
- find the trace that starts at the predicted next-PC

Multiple cached traces may have the same starting PC
- difference is in the internal branch decisions
⇒ need multi-branch predictors

Partial Traces
- predicted next-PC points to the middle of a cached 

trace (cached ABC, but predicted BC)
- multi-branch prediction may say not to use the entire 

length of a cached trace  (cached ABC, but only 
needs AB)
⇒ need alignment and collapsing buffer

So how is this better?
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Redundant Traces
Suppose B,C and D are 
instructions in a loop
- 3 different traces of 3-instructions are 

possible
- Which one should we keep in the trace 

cache?
- How do we detect the beginning and 

the end of basic blocks?

Suppose A,B,C,D and E are basic 
blocks
- don’t cache BC if BCD is cached
- what about CDB and CDE?
- what about ABC and DBC? 
- How to cut down on redundant  

instruction storage?
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Replicated Block Cache
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What about fragmentation?
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Predict and Fetch Trace

Trace Table

Global History

Final Collapse

Fetch Buffer
16

Fetch Cycle

Predict Cycle

Block Cache

More efficient: redundancy is in the trace table and not the block cache
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Next Trace Prediction
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The Block-Based Trace Cache
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1. Next trace prediction
2. Trace cache fetch

Proposed
Trace Cache

Enhanced
Instruction Cache

Fetch

Completion

Execution Core

1. Multiple-branch prediction
2. Instruction cache fetch
3. Instruction alignment & 

collapsing

1. Multiple-branch predictor 
update

Execution Core

Wide-Fetch I-cache vs. T-cache

1. Trace construction and fill
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Trace Cache Trade-offs

Fetch time complexity

Trace cache:

Enhanced instruction cache:

Pros → Moves complexity to backend
Cons → Inefficient instruction storage

Pros → Efficient instruction storage
Cons → Complexity during fetch time

Instruction storage redundancy
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As Machines Get Wider (… and Deeper)
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Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data 

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow



CMU 18-747
Lecture 11-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CPU-Memory Bottleneck

Performance of high speed computers is usually limited 
by memory performance, bandwidth & latency
Main memory access time >> Processor cycle time 

over 100 times difference!!
if m fraction of instructions are loads and stores 

then average ‘1+m’ references per instruction
suppose m=40%, IPC=4@1GHz ⇒ 22.4 GByte/sec 

CPU Memory
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How to Incorporate Faster Memory

SRAM access time << Main memory access time
SRAM bandwidth >> Main memory bandwidth
⇒ SRAM is expensive

⇒ SRAM is smaller than main memory

Programs exhibit temporal locality
- frequently-used data can be held in the scratch pad
- the cost of the first and last memory access can be amortized 

over multiple reuse

Programs must have a small working set (aka footprint)

CPU Main
Memory
(DRAM)RF

Scratch
Pad

(SRAM)
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Caches: Automatic Management of 
Fast Storage

CPU cache
Main
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CPU L2
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Main
Memory
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cacheL1

16~32KB
1~2 pclk latency

~256KB
~10 pclk latency ~50 pclk latency

~4MB
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Cache Memory Structures
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Direct Mapped Caches
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Each cache block or (cache line) has only one tag but 
can hold multiple “chunks” of data
- reduce tag storage overhead

In 32-bit addressing, an 1-MB direct-mapped cache has 12 
bits of tags

4-byte cache block ⇒ 256K blocks ⇒ ~384KB of tag
128-byte cache block ⇒ 8K blocks ⇒ ~12KB of tag

- the entire cache block is transferred to and from memory all 
at once

good for spatial locality since if you access address i, you 
will probably want i+1 as well (prefetching effect)

Block size = 2b; Direct Mapped Cache Size = 2B+b

Cache Block Size

tag block index    block offset
LSBMSB

B-bits b-bits
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Large Blocks and Subblocking

Large cache blocks can take a long time to refill
- refill cache line critical word first 
- restart cache access before complete refill

Large cache blocks can waste bus bandwidth if 
block size is larger than spatial locality
- divide a block into subblocks
- associate separate valid bits for each subblock.

tagsubblockvsubblockv subblockv
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N-Way Set Associative Cache
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Principle Behind Hierarchical Storage

Each level memoizes values stored at lower levels
Instead of paying the full latency for the “furthermost” 
level of storage each time

Effective Access Ti = hi• ti + (1 - hi)•Ti+1
− where hi is the ‘hit’ ratio, the probability of finding the 

desired data memoized at level i
− ti is the raw access time of memory at level i

Given a program with good locality of reference 
Sworking-set < si ⇒ hi≈1   ⇒ Ti≈ti

A balanced system achieves the best of both worlds
- the performance of higher-level storage
- the capacity of lower-level low-cost storage.


