
18-747 Lecture 5:
Register Renaming and Dataflow 

James C. Hoe
Dept of ECE, CMU

September 12 , 2001

Reading Assignments: S&L Ch3 pp57-82, MJ Ch6, today’s handout

Announcements: Problem Set 1 and Project 0 due 2:30pm, 9/21

Handouts: “The Metaflow Architecture”
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How to Increase Performance?

Pipelining reduces cycle time
Superscalar increases IPC (instruction per cycle)
Both schemes need to find lots of ILP in the program

Must simultaneously consider increasing number 
of instructions and allow increasing degree of not 
only parallel but also out-of-ordered operations

r1 ⇐ r2 + 1
r3 ⇐ r1 / 17
r4 ⇐ r0 - r3
r11⇐ r2 + 1
r13⇐ r11 / 17
r14⇐ r0 – r13

ILP=2

r1 ⇐ r2 + 1
r3 ⇐ r1 / 17
r4 ⇐ r0 - r3

ILP=1



CMU 18-747
Lecture 5-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Flashback
Scalar Pipeline
- Inorder issue (RF read), inorder execute, inorder completion
- Stall on RAW and Forwarding on RAW

Diversified Pipelines: Simple Scoreboard
- Inorder dispatch/issue, out-of-order completion
- Stall dispatch on {structural, RAW, WAW}, How about forwarding?

Diversified Pipelines: Full Scoreboard
- Inorder dispatch, out-of-order issue, out-of-order completion
- Stall dispatch on {structural, WAW}, stall issue on RAW, stall 

completion on WAR

Lessons:
- More out-of-orderness ⇒ more ILP ⇒ more hazards
- Don’t forget compiler analysis and scheduling
- Stall is a generic technique to ensure sequencing
- RAW stall is a fundamental requirement (for now)
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Limitations of Scoreboarding

Consider a scoreboard processor with infinitely wide 
datapath
In the best case, how many instructions can be 

simultaneously outstanding?

Hints
- no structural hazards
- can always write a RAW-free code sequence

addi r1,r0,1; addi r2,r0,1; addi r3,r0,1; …….
- think about x86 ISA with only 8 registers
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Contribution to Register Recycling:
Reasons for WAW and WAR

9 $34: mul $14 $7, 40
10 addu $15, $4, $14
11 mul $24, $9, 4
12 addu $25, $15, $24
13 lw $11, 0($25)
14 mul $12, $9, 40
15 addu $13, $5, $12
16 mul $14, $8, 4
17 addu $15, $13, $14
18 lw $24, 0($15)
19 mul $25, $11, $24
20 addu $10, $10, $25
21 addu $9, $9, 1
22 ble $9, 10, $34

COMPILER REGISTER ALLOCATION

INSTRUCTION LOOPS

Single Assignment, Symbolic Reg.

Map Symbolic Reg. to Physical Reg. 
Maximize Reuse of Reg.

CODE GENERATION

REG. ALLOCATION

Reuse Same Set of Reg. in 
Each Iteration
Overlapped Execution of 
Different Iterations

For (k=1;k<= 10; k++)
t += a [i] [k] * b [k] [j] ;
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Must Prevent (2) from completing 
before (1) completes

(1)   R3 ← R3  + R5

← R3

(2)   R3 ← R5 + 1

•
•
•

•
•
•

Resolving False Dependencies

(2)   R3  ← R5 + 1

Must Prevent (2) from completing •
•
•

(1)   R4 ← R3 + 1
before (1) is dispatched 

Stalling: delay dispatching (or write back) of the later 
instruction

Copy Operands: Copy not-yet-used operand to prevent 
being overwritten (WAR)

Register Renaming: use a different register (WAW & WAR)
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Register Renaming
Anti and output dependencies are false dependencies

The dependence is on name/location rather than data
Given infinite number of registers, anti and output 
dependencies can always be eliminated

r3 ← r1 op  r2
r5 ← r3 op  r4
r3 ← r6 op  r7

Renamed
r1 ← r2 / r3
r4 ← r1 * r5
r8 ← r3 + r6
r9 ← r8 - r4

Original
r1 ← r2 / r3
r4 ← r1 * r5
r1 ← r3 + r6
r3 ← r1 - r4
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Dataflow Order Execution

Use data copying and/or hardware register renaming 
to eliminate WAR and WAW
- register name refers to a temporary value produced by an 

earlier instruction (ISA perspective)
- decouple register name from fixed storage location
- disambiguate between register name reuse

Maintain a window (or windows) of several pending 
instructions with only RAW dependence
Issue instructions out-of-order
- find instructions whose input operands are available
- give preference to older instructions
- A completing instruction’s result can trigger other pending 

instructions  (RAW)
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IBM 360 Floating Point Unit (Base Model)
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Diversified Pipelined
Inorder Issue, Out-of-order Complete

Multiple functional units (FU’s)
- Floating-point add
- Floating-point multiply/divide

Three register files (pseudo reg-reg machine in FP unit)
- (4) floating-point registers (FLR)
- (6) floating-point buffers (FLB)
- (3) store data buffers (SDB)

Out of order instruction execution:
- After decode the instruction unit passes all floating point 

instructions (in order) to the floating-point operation stack (FLOS).
- In the floating point unit, instructions are then further decoded and 

issued from the FLOS to the two FU’s
Variable operation latencies (not pipelined):
- Floating-point add: 2 cycles 
- Floating-point multiply: 3 cycles 
- Floating-point divide: 12 cycles
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Tomasulo’s Algorithm [IBM 360/91, 1967]
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Reservation Station
Buffers where instructions can wait for RAW hazard 
resolution and execution
Associate more than one set of buffering registers 
(control, source, sink) with each FU ⇒ virtual FU’s.
- Add unit: three reservation stations
- Multiply/divide unit: two reservation stations

Pending (not yet executing) instructions can have 
either value operands or pseudo operands (aka. tags).

Mult

RS2
RS1

⇒
Mult

RS1

Mult

RS2
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Rename Tags
Register names are normally bound to FLR registers
When an FLR register is stale, the register “name” is  
bound to the pending-update instruction
Tags are names to refer to these pending-update 
instructions
In Tomasulo, A “tag” is statically bound to the buffer where 
a pending-update instruction waits.
- 6 FLB’s
- 5 reservation stations (3 add RSs, 2 multiply/divide RSs)

⇒ 4-bit tag is needed to identify the 11 potential sources
Instructions can be dispatched to RSs with either value 
operands or just tags.
- Tag operand ⇒ unfulfilled RAW dependence
- the instruction in the RS corresponding to the Tag will produce the 

actual value eventually
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Common Data Bus (CDB)
CDB is driven by all units that can update FLR
- When an instruction finishes, it broadcasts both its “tag” and 

its result on the CDB.
- Why don’t we need the destination register name?

Sources of CDB:
- Floating-point buffers (FLB)
- Two FU’s (add unit and the multiply/divide unit)

The CDB is monitored by all units that was left 
holding a tag instead of a value operand
- Listens for tag broadcast on the CDB
- If a tag matches, grab the value

Destinations of CDB:
- Reservation stations
- Store data buffers (SDB)
- Floating-point registers (FLR)
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Output Dependences (WAW)

Superscalar Execution Check List

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences

Control Dependences Data Dependences

True Dependences

Anti-Dependences

Storage Conflicts

(Structural Dependences)

(RAW)

(WAR)
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Structural Dependence Resolution

Structural dependence: virtual FU’s
- FLOS can hold and decode up to 8 instructions.
- Instructions are dispatched to the 5 reservation 

stations (virtual FU’s) even though there are only 
two physical FU’s.

- Hence, structural dependence does not stall 
decoding

Why is this useful?
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Resolving True-Dependence
True dependence: Tags + CDB
- If an operand is available in FLR, it is copied to RS 
- If an operand is not available then a tag is copied to the 

RS instead.  This tag identifies the source 
(RS/instruction) of the pending write

- Eventually the source instruction completes and 
broadcasts its tag and value on the CDB 

- Any reservation station entry, FLR entry or SDB entry 
that holds a matching tag as operand will latch in the 
broadcasted value from the CDB.

RAW dependence does not block subsequent 
independent instructions and does not block an FU
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RAW Example: 

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

7.88
10.04
3.52
6.00

DataTagBusyFLR
Cyc #1:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #2:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #3:

i: R2 ← R0 + R4
j: R8 ← R0 + R2
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RAW Example: 

Adder
3
2

10.006.001
SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

7.88
10.04

--1X2
6.00

DataTagBusyFLR
Cyc #1: dispatch i

Adder
3

--16.002
10.006.001
SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

--2X8
10.04

--1X2
6.00

DataTagBusyFLR
Cyc #2: dispatch j

Adder
3

16.006.002
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

--2X8
10.04
16.02
6.00

DataTagBusyFLR
Cyc #3: i in RS 1 broadcasts tag and result: CBD=<<1,16.0>>

i: R2 ← R0 + R4
j: R8 ← R0 + R2
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Resolving Anti-Dependence

Anti-dependence: Operand Copying

- If an operand is available in FLR, it is copied to RS 
with the issuing instruction

- By copying this operand to RS, all WAR 
dependencies due to future writes to this same 
register are resolved

Hence, the reading of an operand is not delayed, 
possibly due to other dependencies, and 
subsequent writes are also not delayed.
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WAR Example: 

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

7.88
10.04
3.52
6.00

DataTagBusyFLR
Cyc #1:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #2:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #3:

i:  R4 ← R0 x R8
j:  R0 ← R4 x R2
k: R2 ← R2 + R8
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WAR Example: 

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5

7.806.004
SrcTagSinkTagRS

7.88
--4X4

3.52
6.00

DataTagBusyFLR
Cyc #1: dispatch i

Adder
3
2

7.803.501
SrcTagSinkTagRS

Mult/Div
3.50--45
7.806.004
SrcTagSinkTagRS

7.88
--4X4
--1X2
--5X0

DataTagBusyFLR
Cyc #2: dispatch j & k (assume dual issue)

Adder
3
2

7.803.501
SrcTagSinkTagRS

Mult/Div
3.50--45
7.806.004
SrcTagSinkTagRS

7.88
--4X4
--1X2
--5X0

DataTagBusyFLR
Cyc #3:

i:  R4 ← R0 x R8
j:  R0 ← R4 x R2
k: R2 ← R2 + R8
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WAR Example: 

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
3.5046.805

4
SrcTagSinkTagRS

7.88
46.84
11.32

--5X0
DataTagBusyFLR

Cyc #4: RS 1 and 4 completes CBD=<<1,11.3>> & <<4,46,8>>

i:  R4 ← R0 x R8
j:  R0 ← R4 x R2
k: R2 ← R2 + R8
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Resolving Output-Dependence
Output dependence: “register renaming” + result forwarding
- If a FLR is waiting for a pending write, it’s tag field will contain the tag 

of the source instruction
- If a 2nd instruction comes along and want to write the same register 

• the register can be renamed to the 2nd instruction (i.e. new tag)
• Any instruction that needs the value of the 1st pending write has 

the tag of the 1st instruction.  Hence, the correct value will be 
forwarded from the 1st instruction directly

• any subsequent instruction that reads the register will get the tag, 
or eventually the result, of the 2nd instruction

WAW dependence is resolved without stalling a physical 
functional unit and does not require additional buffers to 
ensure sequential write back to the register file.
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WAW Example: 

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

7.88
10.04
3.52
6.00

DataTagBusyFLR
Cyc #1:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #2:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #3:

i:  R4 ← R0 x R8
j:  R2 ← R0 + R4
k: R4 ← R0 + R8
l:  R8 ← R4 x R8
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WAW Example: 

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #4:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #5:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #6:

i:  R4 ← R0 x R8
j:  R2 ← R0 + R4
k: R4 ← R0 + R8
l:  R8 ← R4 x R8
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WAW Example: 

Adder
3
2

--46.001
SrcTagSinkTagRS

Mult/Div
5

7.806.004
SrcTagSinkTagRS

7.88
--4X4
--1X2

6.00
DataTagBusyFLR

Cyc #1: dispatch i and j

Adder
3

7.806.002
--46.001

SrcTagSinkTagRS

Mult/Div
7.80--25
7.806.004
SrcTagSinkTagRS

--5X8
--2X4
--1X2

6.00
DataTagBusyFLR

Cyc #2: dispatch k and l

Adder
3

7.806.002
--46.001

SrcTagSinkTagRS

Mult/Div
7.80--25
7.806.004
SrcTagSinkTagRS

--5X8
--2X4
--1X2

6.00
DataTagBusyFLR

Cyc #3:

i:  R4 ← R0 x R8
j:  R2 ← R0 + R4
k: R4 ← R0 + R8
l:  R8 ← R4 x R8
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WAW Example: 

Adder
3
2

46.206.001
SrcTagSinkTagRS

Mult/Div
7.8013.805

4
SrcTagSinkTagRS

--5X8
13.84

--1X2
6.00

DataTagBusyFLR
Cyc #4: RS 2 and 4 completes: CBD=<<2,13k8>> & <<4,46,8>> 

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #5:

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #6:

i:  R4 ← R0 x R8
j:  R2 ← R0 + R4
k: R4 ← R0 + R8
l:  R8 ← R4 x R8
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Code Sequence for Example 4

w: R4  ← R0  +  R8

x: R2  ← R0  x  R4

y: R4  ← R4  +  R8

z: R8  ← R4  x  R2

w

x

y

z
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Critical Path Analysis

w

x

y

z

w

x

y

z

(2)

Max{3,2}

(3)

(2)

(3)

(3)

(2)

10 cyc 8 cyc
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In-order State and Precise Interrupt

If an IBM 360/91 instruction 
causes an exception, can 
we stop the processor in a 
precise state?

By the time j executes, k has already updated R4? 
How do you rewind the register file to the state just 
after i?

Recall, i never even got to update R4!!

Next time, how to maintain an “in-order” state of the 
machine.  (In-order state = the machine state as 
viewed by the first not-yet-completed instruction.)

i:  R4 ← R0 x R8
j:  R2 ← R0 + R4  Exception!!
k: R4 ← R0 + R8
l:  R8 ← R4 x R8
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A Modern Superscalar Processor

Instruction/Decode Buffer
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Dispatch Buffer
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Complete
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Example 4

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #1

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #2

w: R4  ← R0  +  R8
x: R2  ← R0  x  R4
y: R4  ← R4  +  R8
z: R8  ← R4  x  R2
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Example 4

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #3

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #4

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #5
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Example 4

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #6

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #7

Adder
3
2
1

SrcTagSinkTagRS

Mult/Div
5
4

SrcTagSinkTagRS

8
4
2
0

DataTagBusyFLR
Cyc #8


