
18-747 Lecture 21:
Multithreading Processors

James C. Hoe
Dept of ECE, CMU
November 14, 2001

Reading Assignments: paper below

Announcements: Project 3 Short Proposal due Monday November 19

Handouts: “Simultaneous Multithreading: A Platform for Next-Generation
Processors”, Eggers, et al., IEEE Micro

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 21-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Remaining Lectures

11/19 L22: Binary Translation and Optimization
11/26 L23: SMP Cache Coherence

11/28 L24: Exam Review and Course at a Glance
Guest Lecture: Low Power Processor Design

by Prof. D. Marculescu
12/3 Exam 2
12/5 Recitation by Aaron
12/10 Class Presentations

CMU 18-747
Lecture 21-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction-Level Parallelism
When executing a program, how many “independent”
operations can be performed in parallel
How to take advantage of ILP
- Pipelining (including superpipelining)

• overlap different stages from different instructions
• limited by divisibility of an instruction and ILP

- Superscalar (including VLIW)
• overlap processing of different instructions in all stages
• limited by ILP

How to increase ILP
- dynamic/static register renaming ⇒ reduce WAW and WAR
- dynamic/static instruction scheduling ⇒ reduce RAW hazards
- use predictions to optimistically break dependence

CMU 18-747
Lecture 21-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Thread-Level Parallelism

The average processor actually executes several
“programs” (a.k.a. processes, threads of control, etc)
at the same time Time Multiplexing
The instructions from these different threads have
lots of parallelism
Taking advantage of “thread-level” parallelism, i.e. by
concurrent execution, can improve the overall
throughput of the processor (but not turn-around time
of any one thread)

Basic Assumption: the processor has idle
resources when running only one thread at a time

CMU 18-747
Lecture 21-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Multiprocessing
Time-multiplex multiprocessing on uniprocessors
started back in 1962
Even concurrent execution by time-multiplexing
improves throughput How?
- a single thread would effectively idle the processor when spin-

waiting for I/O to complete, e.g. disk, keyboard, mouse, etc.
- can spin for thousands to millions of cycles at a time

- a thread should just go to “sleep” when waiting on I/O and let
other threads use the processor, a.k.a. context switch

compute waiting
for I/O compute waiting

for I/O compute waiting
for I/O

compute1 compute2 compute1 compute2 compute1 compute2

CMU 18-747
Lecture 21-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Context Switch
A “context” is all of the processor (plus machine) states
associated with a particular process
- programmer visible states: program counter, register file

contents, memory contents
- and some invisible states: control and status reg, page table

base pointers, page tables
What about cache (virtual vs. physical), BTB and TLB entries?

Classic Context Switching
- timer interrupt stops a program mid-execution (precise)
- OS saves away the context of the stopped thread
- OS restores the context of a previously stopped thread (all

except PC)
- OS uses a “return from exception” to jump to the restarting PC

The restored thread has no idea it was interrupted, removed,
later restored and restarted

CMU 18-747
Lecture 21-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Saving and Restoring Context
Saving
- “Context” information that occupy unique resources must be

copied and saved to a special memory region belonging
exclusively to the OS

• e.g. program counter, reg file contents, cntrl/status reg
- “Context” information the occupy commodity resources just

needs to be hidden from the other threads
• e.g. active memory pages can be left in physical memory

but page translations must be removed (but remembered)

Restoring is the opposite of saving
The act of saving and restoring is performed by the
OS in software
⇒ can take a few hundred cycles per switch, but the
cost is amortize over the execution “quantum”

(If you want the full story, take a real OS course!)

CMU 18-747
Lecture 21-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Fast Context Switches

A processor becomes idle when a thread runs into a
cache miss

Why not switch to another thread?
Cache miss lasts only tens of cycles, but it costs OS at
least 64 cycles just to save and restore the 32 GPRs
Solution: fast context switch in hardware
- replicate hardware context registers: PC, GPRs, cntrl/status,

PT base ptr eliminates copying
- allow multiple context to share some resources, i.e. include

process ID as cache, BTB and TLB match tags
eliminates cold starts

- hardware context switch takes only a few cycles
• set the PID register to the next process ID
• select the corresponding set of hardware context registers

to be active

CMU 18-747
Lecture 21-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example: MIT’s Sparcle Processor

Based SUN SPARC II processors
- provided hardware contexts for 4 threads, one is reserved

for the interrupt handlers
- hijacked SPARC II’s register windowing mechanism to

support fast switching between 4 sets of 32 GPRs
- switches context in 4 cycles

Used in a cache-coherent distributed shared memory
machine
- On a cache miss to remote memory (takes hundreds of

cycles to satisfy), the processor automatically switches to a
different user thread

- The network interface can interrupt the processor to wake up
the message handler thread to handle communication

CMU 18-747
Lecture 21-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Really Fast Context Switches
When pipelined processor stalls due to RAW
dependence between instructions, the execution
stage is idling

Why not switch to another thread?
Not only do you need hardware contexts, switching
between contexts must be instantaneous to have any
advantage!!
If this can be done,
- don’t need complicated forwarding logic to avoid stalls
- RAW dependence and long latency operations (multiply,

cache misses) do not cause throughput performance loss

Multithreading is a “latency hiding” technique

CMU 18-747
Lecture 21-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Fine-grain Multithreading
Suppose instruction processing can be divided into
several stages, but some stages has very long latency
- run the pipeline at the speed of the slowest stage, or
- superpipeline the longer stages, but then back-to-back

dependencies cannot be forwarded
t0 t1 t2 t3 t4

Inst0
Inst1 Fa Fb Da Db Ea Eb Wa Wb

Fa Fb Da Db Ea Eb Wa Wb

Fa Fb Da Db Ea Eb Wa Wb

t0 t1 t2 t3 t4
InstT1-0

InstT1-1

Fa Fb Da Eb Wa Wb

Fa Fb Da Db Ea Eb Wa Wb

Db Ea

Fa Fb Ea Eb Wa WbDa Db

Fa Fb Ea Eb Wa WbDa Db

superpipelined

2-way multithreaded
superpipelined

InstT2-x

InstT2-y

CMU 18-747
Lecture 21-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Examples: Instruction Latency Hiding
Using the previous scheme, MIT Monsoon pipeline cycles through 8
statically scheduled threads to hide its 8-cycle (pipelined) memory access
latency
HEP and Tera MTA [B. Smith]:
- on every cycle, dynamically selects a “ready” thread (i.e. last

instruction has finished) from a pool of upto 128 threads
- worst case instruction latency is 128 cycles (may need 128 threads!!)
- a thread can be waken early (i.e. before the last instruction finishes)

using software hints to indicate no data dependence
InstT1

InstT3

A B C F G H
A B C D E E G H

D E
A B E F G HC D

A B E F G HC D

InstT2

InstT4
A B E F G HC D

A B E F G HC D
A B E F G HC D

A B E F G HC D
A B E F G HC D

InstT5

InstT7

InstT6

InstT8
InstT1

CMU 18-747
Lecture 21-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Really Really Fast Context Switches

Superscalar processor datapath must be over-resourced
- has more functional units than ILP because the units are not

universal
- current 4 to 8 way designs only achieves IPC of 2 to 3

Some units must be idling in each cycle

Why not switch to another thread?

Fetch
Unit

OOO
Dispatch

Unit

FMult
(4 cyc)

FAdd
(2 cyc)

A
LU

1
A

LU
2

Load/Store
(variable)

Fdiv, unpipe
(16 cyc)

Reorder
Buffer

CMU 18-747
Lecture 21-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Simultaneous Multi-Threading [Eggers, et al.]

Dynamic and flexible sharing of functional units between
multiple threads

⇒ increases utilization ⇒ increases throughtput

FMult
(4 cyc)

FAdd
(2 cyc)

A
LU

1
A

LU
2

Load/Store
(variable)

Fdiv, unpipe
(16 cyc)

Reorder
Buffer

A

Reorder
Buffer

Z

Fetch
Unit

A

OOO
Dispatch

A

Fetch
Unit

Z

OOO
Dispatch

Z

C
on

te
xt

 A
C

on
te

xt
 Z

CMU 18-747
Lecture 21-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compaq Alpha EV8
Technology
- 1.2 ~ 2.0 GHz
- 250 million transistors (mostly in the caches)
- 0.125um CMOS with copper
- 1.2V Vdd
- 1100 signal pins (flip chip)

probably about that many power and ground pins

Architecture
- 8-wide superscalar with support for 4-way SMT

supports both ILP and thread-level parallelism
- On-chip router and directory support for building glueless

512-way ccNUMA SMP

[Joel Emer's Microprocessor Forum]

CMU 18-747
Lecture 21-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

EV8: Superscalar to SMT
In SMT mode, it is as if there are 4 processors on a
chip that shares their caches and TLB
Replicated hardware contexts
- program counter
- architected registers (actually just the renaming table since

architected registers and rename registers come from the
same physical pool)

Shared resources
- rename register pool (larger than needed by 1 thread)
- instruction queue
- caches
- TLB
- branch predictors

The dynamic superscalar execution pipeline is more
or less unchanged

CMU 18-747
Lecture 21-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

SMT Issues
Adding a SMT to superscalar
- Single-thread performance is slight worse due to overhead

(longer pipeline, longer combinational delays)
- Over-utilization of shared resources

• contention for instruction and data memory bandwidth
• interferences in caches, TLB and BTBs

But remember multithreading can hide some of the
penalties. For a given design point, SMT should be more
efficient than superscalar if thread-level parallelism is
available

High-degree SMT faces similar scalability problems
as superscalars
- needs numerous I-cache and d-cache ports
- needs numerous register file read and write ports
- the dynamic renaming and reordering logic is not simpler

CMU 18-747
Lecture 21-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Speculative Multithreading

SMT can justify wider-than-ILP datapath
But, datapath is only fully utilized by multiple threads
How to make single-thread program run faster?

Think about predication
What to do with spare resources?
- execute both sides of hard-to-predictable branches
- send another thread to scout ahead to warm up caches &

BTB
- speculatively execute future work

e.g. start several loop iterations concurrently as different
threads, if data dependence is detected, redo the work

Must have ways to contain the effects of incorrect
speculations!!

- run a dynamic compiler/optimizer on the side

CMU 18-747
Lecture 21-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Slipstream Processors
Execute a single-threaded application redundantly on a
“modified” 2-way SMT, with one thread slightly ahead
- an advanced stream (A-stream) followed by a redundant

stream (R-stream)

“The two redundant programs combined run faster
than either can alone” [Rotenberg]

How is this possible?
- A-stream is highly speculative

• can use all kinds of branch and value predictions
• doesn’t go back to check or correct misprediction
• even selectively skip some instructions

e.g. some instructions compute branch decisions, why
execute them if I am going to predict the branch
anyways

- A-stream should run faster, but its results can’t be trusted
- R-stream is executed normally, but it still runs faster because

caches and TLB would have been warmed by the A-stream!!

