
18-747 Lecture 17:
Advanced ILP Scheduling

James C. Hoe
Dept of ECE, CMU
October 31, 2001

Reading Assignments: MJ Ch11

Announcements: Last chance for Quiz 1 re-grade requests

Handouts:

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 17-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Interference Graph

Nodes: live ranges
Edges: interference

ld r4, 16(r3)
sub r6, r2, r4

add r7, r7, 1
blt r7, 100

ld r5, 24(r3)

beq r2, $0

add r2, r1, r5
sw r6, 8(r3)

“Live variable analysis”

r1

r2

r3
r4

r5

r6

r7

r1, r2 & r3
are live-in

r1& r3 are live-out

CMU 18-747
Lecture 17-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Interference & Allocation

Interference Graph: G = <E,V>
- Nodes (V) = variables, (more specifically, their live ranges)
- Edges (E) = interference between variable live ranges

Graph Coloring (vertex coloring)
- Given a graph, G=<E,V>, assign colors to nodes (V) so that

no two adjacent (connected by an edge) nodes have the
same color

- A graph can be “n-colored” if no more than n colors are
needed to color the graph.

- The chromatic number of a graph is min{n} such that it can
be n-colored

- n-coloring is an NP-complete problem, therefore optimal
solution can take a long time to compute

How is graph coloring related to register allocation?

CMU 18-747
Lecture 17-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Chaitin’s Graph Coloring Theorem

Key observation: If a graph G has a node X with
degree less than n (i.e. having less than n edges
connected to it), then G is n-colorable IFF the
reduced graph G’ obtained from G by deleting X and
all its edges is n-colorable.

Proof:

n-1
G’

G

CMU 18-747
Lecture 17-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Graph Coloring Algorithm (Not Optimal)
Assume the register interference graph is n-colorable

How do you choose n?
Simplification
- Remove all nodes with degree less than n
- Repeat until the graph has n nodes left

Assign each node a different color
Add removed nodes back one-by-one and pick a
legal color as each one is added (2 nodes connected
by an edge get different colors)

Must be possible with less than n colors

Complications: simplification can block if there are no
nodes with less than n edges
Choose one node to spill based on spilling heuristic

CMU 18-747
Lecture 17-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

r1

r2

r3

r7

remove r4

COLOR stack = {r5, r6, r4}

remove r6

COLOR stack = {r5, r6}

r1

r2

r3
r4

r7

r1 r7

r2

r3
r4

r5

r6

COLOR stack = {}

r1

r2

r3
r4

r6

r7

remove r5

COLOR stack = {r5}

Example (N = 5)

CMU 18-747
Lecture 17-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

COLOR stack = {}

r1

r2

r3
r4

r5

r6

r7

remove r5

COLOR stack = {r5}
r1

r2

r3
r4

r6

r7

blocks spill r1
Is this a good choice??

COLOR stack = {r5}

r2

r3
r4

r6

r7

remove r6

COLOR stack = {r5, r6}

r2

r3
r4

r7

Example (N = 4)

CMU 18-747
Lecture 17-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Spilling
When simplification is blocked, pick a node to delete
from the graph in order to unblock
Deleting a node implies the variable it represents will
not be kept in register (i.e. spilled into memory)
- When constructing the interference graph, each node is

assigned a value indicating the estimated cost to spill it.
- The estimated cost can be a function of the total number of

definitions and uses of that variable weighted by its estimated
execution frequency.

- When the coloring procedure is blocked, the node with the least
spilling cost is picked for spilling.

When a node is spilled, spill code is added into the
original code to store a spilled variable at its definition
and to reload it at each of its use
After spill code is added, a new interference graph is
rebuilt from the modified code, and n-coloring of this
graph is again attempted

CMU 18-747
Lecture 17-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Phase Ordering Problem
Register allocation prior to code scheduling
- false dependencies induced due to register reuse
- anti and output dependencies impose unnecessary constraints
- code motion unnecessarily limited

Code scheduling prior to register allocation
- increase date live time (between creation and consumption)
- overlap otherwise disjoint live ranges (increase register

pressure)
- may cause more live ranges to spill (run out of registers)
- spill code produced will not have been scheduled

One option: do both prepass and postpass scheduling.

CMU 18-747
Lecture 17-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compiler/Hardware Interactions

[B. Rau & J. Fisher, 1993]

Front end & Optimizer

Determine Depend.

Determine Independ.

Bind Resources

Execute

Bind Resources

HardwareCompiler

Sequential
(Superscalar)

Dependence
Architecture

(Dataflow)

Independence
Architecture
(Attached

Array
Processor)

Independence
Architecture
(Intel EPIC)

Determine Independ.

Determine Depend.

DSI

CMU 18-747
Lecture 17-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Limitations of List Scheduling
Cannot move instructions past conditional branch
instructions in the program (scheduling limited by
basic block boundaries)
Problem: Many programs have small numbers of
instructions (4-5) in each basic block. Hence, not
much code motion is possible
Solution: Allow code motion across basic block
boundaries.
Speculative Code Motion: “jumping the gun”
- Execute instructions before we know whether or not we need

to
- Utilize otherwise idle resources to perform work which we

speculate will need to be done

Relies on program profiling to make intelligent
decisions about speculation

CMU 18-747
Lecture 17-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Types of Speculative Code Motion
Two characteristics of speculative code motion:
- safety, which indicates whether or not spurious exceptions may

occur
- legality, which indicates correctness of results

Four possible types of code motion:

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3

CMU 18-747
Lecture 17-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Renaming
Prevents boosted instructions from overwriting
register state needed on alternate execution path.
Utilizes idle (non-live) registers (r6 in example below).

A1: st ... =r6A1: sub r3=r7-r4
and r4=r3&r5
st ... =r4

n+2
st ... =r4st ... =r4n+1

load r4= ...
load r5= ...
cmpi c0,r4,10
add r4=r4+r5
sub r3=r7-r4
and r6=r3&r5
bc c0, A1

load r4= ...
load r5= ...
cmpi c0,r4,10
add r4=r4+r5
<stall>
<stall>
bc c0, A1

n
Scheduled CodeOriginal CodeBB#

CMU 18-747
Lecture 17-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Copy Creation
Register renaming causes a problem when there are
multiple definitions of a register reaching a single use:
- Below, definitions of r1 in both (i) and (ii) reach the use in (iii).
- If the instruction in (ii) is boosted into (i), it must be renamed to

preserve the first value of r1.
- However, the boosted definition of r1 must reach the use in (iii)

as well.
- Hence, we insert a copy instruction in (ii).

r4 = r1 ...

r1 = r2 & r3

r5 = r2 & r3
r1 = ... r1 = ...(i)

(ii)

(iii)

(i)

(ii)

r4 = r1 ...(iii)

r1 = r5

CMU 18-747
Lecture 17-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Replication
General case of upward code motion: crossing
control flow joins.
Instructions must be present on each control flow
path to their original basic block
Replicate set is computed for each basic block that is
a source of instructions to be boosted

(iii)

(i) (v)

(iv)

(ii)

CMU 18-747
Lecture 17-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Profile Driven Optimizations
Wrong optimization choices can be costly!

How do you determine dynamic information
during compilation?

During initial compilation, “extra code” can be added
to a program to generate profiling statistics when the
program is executed
Execution Profile, e.g.
- how many times is a basic block executed
- how often is a branch taken vs. not taken

Recompile the program using the profile to guide
optimization choices
A profile is associated with a particular program input

⇒ may not work well on all executions

CMU 18-747
Lecture 17-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Scheduling [Josh Fisher]

Generate multi-basic block traces based on profiling
information
- find the most often executed control path

List schedule a trace at a time
- optimize the execution of the trace (common case)
- fix any problem with off-trace paths as necessary (infrequently

executed)

Good for very biased and predictable branching
behavior
Trace scheduling engendered the VLIW architecture
innovation and was implemented in the Multiflow TRACE
compiler, which provided the basis for superscalar
compilation techniques now being used by Intel, HP, and
DEC

CMU 18-747
Lecture 17-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Scheduling Overview

Trace Selection
- select seed (the highest frequency basic block)
- extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)
backward (predecessor of the first block of the trace)

- don’t cross loop back edge
- bound max_trace_length heuristically

Trace Scheduling
- build data precedence graph for a whole trace
- perform list scheduling and allocate registers
- add compensation code to maintain semantic correctness

Speculative Code Motion (upward)
- Move an instruction above branches if safe

CMU 18-747
Lecture 17-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code for Downward Motion
Split Compensation Code:
- Instruction with more than one successor (conditional

branch)

Join Compensation Code:
- Instruction with more than one predecessor

B
A
C
D

A’ XA
B
C
D

X
Original
trace

Scheduled
trace

A
C
B
D
E

X
C’

A
B
C
D

X

E

Original
trace

Scheduled
trace

CMU 18-747
Lecture 17-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Copied Split Instruction

A
B
C
D
E

X

Y

D
B
E
A
C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB
C
D Y

Correctness

C’’’

CMU 18-747
Lecture 17-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Scheduling Example

beq r1, $0

fdiv f1, f2, f3
fadd f4, f1, f5

ld r2, 0(r3)

add r2, r2, 4

ld r2, 4(r3)

add r3, r3, 4

beq r2, $0

fsub f2, f2, f6 fsub f2, f3, f7st.d f2, 0(r8)

add r8, r8, 4

990

990

800

800

10

10

200

200

fdiv f1, f2, f3
fadd f4, f1, f5
beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live

live out

out

CMU 18-747
Lecture 17-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code Example

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code

CMU 18-747
Lecture 17-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code Example

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4 B3 B6

fadd f4, f1, f5

Split

add r3, r3, 4
add r8, r8, 4

Join comp. code

fadd f4, f1, f5

comp. code

CMU 18-747
Lecture 17-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code Example

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3
fadd f4, f1, f5

fadd f4, f1, f5

Split
add r2, r2, 4
beq r2, $0
fsub f2, f2, f6
st.d f2, 0(r8)
add r3, r3, 4
add r8, r8, 4

B6

add r3, r3, 4
add r8, r8, 4

Join comp. code

Copied

comp. code

split
instructions

CMU 18-747
Lecture 17-25
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code Illustration
fdiv f1, f2, f3

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

fadd f4, f1, f5

add r3, r3, 4
add r8, r8, 4

fadd f4, f1, f5
ld r2, 4(r3)

fadd f4, f1, f5

fsub f2, f3, f7

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)
add r3, r3, 4
add r8, r8, 4

add r3, r3, 4
add r8, r8, 4

B3

B6

CMU 18-747
Lecture 17-26
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Binding
Perform register allocation for a trace
• After scheduling a trace, do register allocation
+ Most frequently executed traces have maximum freedom of

register usage
- Do not use graph coloring due to inappropriate framework

x =

x

x =

x

x ---> r1 x ---> r2
move r1, r2

CMU 18-747
Lecture 17-27
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock Scheduling

Motivation
- Trace scheduling is a good idea
- Maintaining semantic correctness (compensation code) is a

pain

Superblock
- Trace with one entry point (multiple entries create control

flow joins)
- May have multiple exits

CMU 18-747
Lecture 17-28
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock Formation Example

Identify traces using profiling information
Use tail duplication to eliminate side entry points

C

D

Trace

C

D

Trace

C’

D’

B B

Tail
duplication

CMU 18-747
Lecture 17-29
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock Formation Example

A

B

C D

E F

G

H

A

B

C D

E F

G

H

G’

CMU 18-747
Lecture 17-30
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock Enlarging

Branch Target Expansion
- Expand along likely-taken path

Loop Unrolling & Loop Peeling

A

B

C

D

A

B

C

D

B

C

B

C

CMU 18-747
Lecture 17-31
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ILP Optimization

Basic Block Size
Average Block Size:

Basic block: 3 instructions
Superblock-original: 4 instructions
Superblock-formation: 10 instructions
Superblock-enlargement: 13 instructions

Dependence Elimination
- Code transformations to eliminate data dependencies
- Give code scheduler more freedom to move instructions

CMU 18-747
Lecture 17-32
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Operand Migration

Move instructions whose results are not used within
trace to less frequently executed paths

x =

x

x =

x
x =

CMU 18-747
Lecture 17-33
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Induction Variable Expansion
Eliminate redefinitions of induction variables within
unrolled loops
Insert code to maintain semantic correctness

i = 0

i = i +1

i = i +1

a[i]

a[i]

i = 0

i = i +2

k = k +2

a[i]

a[k]

k = 1

use i

i = i - 1

i = k - 1

use i

CMU 18-747
Lecture 17-34
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Accumulator Variable Expansion
Accumulate a sum or product in each iteration
Insert code to maintain semantic correctness
May not be safe for floating point

sum = 0

sum = sum + t

sum = sum + t’

t = ...

t’ = ...

use sum
use sum

sum = 0

sum = sum + t

k = k + t’

t = ...

t’ = ...

k = 0

sum = sum + k

CMU 18-747
Lecture 17-35
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock List Scheduling

Restricted percolation
- No architecture support
- Instructions that could cause exceptions are not moved

beyond branches
- Memory load/store, integer divide and floating point

instructions

General percolation
- Architecture support (non-trapping instructions)
- Write garbage value when exceptions occur for non-trapping

instructions
We will see this when we discuss Intel EPIC

