
18-747 Lecture 2:
Pipelining Fundamentals

James C. Hoe
Dept of ECE, CMU
August 29, 2001

Reading Assignments: S&L Ch 2 pp1-34
Announcements: Office hours, MW, 4:30-5:30 PM

Textbook S&L, see Melissa HH-D204, $20 check to CMU
No cash, No credit cards!

Handout#0 due tomorrow noon, outside HH-D201
No recitation this week
No class on next Monday

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 2-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Anatomy of Engineering Design

Specification: Behavioral description of “What does it do?”
Synthesis: Search for possible solutions; pick the best one.
Implementation: Structural description of “How is it

constructed?”
Analysis: Figure out if the design meets the specification.

“Does it do the right thing?” + “How well does it perform?”

CMU 18-747
Lecture 2-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Set Architecture
ISA, the boundary between software and hardware
- Specifies the logical machine that is visible to the

programmer
- Also, a functional spec for the processor designers

What needs to be specified by an ISA
- Operations

• what to perform and what to perform next
- Temporary Operand Storage in the CPU

• accumulator, stacks, registers
- Number of operands per instruction
- Operand location

• where and how to specify the operands
- Type and size of operands
- Instruction-to-Binary Encoding

CMU 18-747
Lecture 2-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Dynamic-Static Interface

DSI = ISA
= a contract between the program and the machine.

CMU 18-747
Lecture 2-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Anatomy of a Modern ISA
Operations
simple ALU op’s, data movement, control transfer

Temporary Operand Storage in the CPU
Large General Purpose Register (GPR) File

Number of operands per instruction
triadic A ⇐ B op C

Operand location
load-store architecture with register indirect addressing

Type and size of operands
32/64-bit integers, IEEE floats

Instruction-to-Binary Encoding
Fixed width, regular fields

Exceptions: Intel x86, IBM 390 (aka z900)

CMU 18-747
Lecture 2-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

“Iron Law” of Processor Performance

Processor Performance =
Wall-Clock Time

Program

Architecture → Implementation → Realization
Compiler Designer Processor Designer Chip Designer

Instructions Cycles

Program Instruction

Time

Cycle

(code size) (CPI) (cycle time)

= X X

CMU 18-747
Lecture 2-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Pipelined Design
Motivation: Increase throughput with

little increase in hardware

Bandwidth or Throughput = Performance
Bandwidth (BW) = no. of tasks/unit time
For a system that operates on one task at a time:

BW = 1/ latency
BW can be increased by pipelining if many operands
exist which need the same operation, i.e. many
repetitions of the same task are to be performed.
Latency required for each task remains the same or
may even increase slightly.

CMU 18-747
Lecture 2-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Pipeline Illustrated:

Gate
Delay

Comb. Logic
n Gate Delay

Gate
DelayL Gate

DelayL

L Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n--2
n--2

n--3
n--3

n--3

BW = ~(2/n)

BW = ~(3/n)

CMU 18-747
Lecture 2-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Performance Model

Starting from an unpipelined
version with propagation delay T
and BW = 1/T

Ppipelined=BWpipelined = 1 / (T/ k +S)

where
S = delay through latch

T
S

S

T/k

T/k

k-stage
pipelinedunpipelined

CMU 18-747
Lecture 2-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Hardware Cost Model

Starting from an unpipelined version
with hardware cost G

Costpipelined = kL + G

where
L = cost of adding each latch, and
k = number of stages

G
L

L

G/k

G/k

k-stage
pipelinedunpipelined

CMU 18-747
Lecture 2-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Cost/Performance:
C/P = [Lk + G] / [1/(T/k + S)] = (Lk + G) (T/k + S)

= LT + GS + LSk + GT/k

Optimal Cost/Performance: find min. C/P w.r.t. choice of k

Cost/Performance Trade-off
[Peter M. Kogge, 1981]

kd
d Lk G+

1
T
k
--- S+

0 0 LS GT

k2
--------–+ +=

kopt
GT
LS
--------=

LS GT

k2
--------– 0=

k

C/P

CMU 18-747
Lecture 2-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

“Optimal” Pipeline Depth (kopt)

0

1

2

3

4

5

6

7

0 10 20 30 40 50
Pipeline Depth k

x104

C
os

t/P
er

fo
rm

an
ce

 R
at

io
 (C

/P
)

G=175, L=41, T=400, S=22

G=175, L=21, T=400, S=11

CMU 18-747
Lecture 2-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Pipelining Idealism
Uniform Suboperations
The operation to be pipelined can be evenly

partitioned into uniform-latency suboperations
Repetition of Identical Operations
The same operations are to be performed

repeatedly on a large number of different inputs
Repetition of Independent Operations
All the repetitions of the same operation are mutually

independent, i.e. no data dependence
and no resource conflicts

Good Examples: automobile assembly line
floating-point multiplier
instruction pipeline???

CMU 18-747
Lecture 2-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Pipeline Design
Uniform Suboperations ... NOT!
⇒ balance pipeline stages

- stage quantization to yield balanced stages
- minimize internal fragmentation (some waiting stages)

Identical operations ... NOT!
⇒ unifying instruction types

- coalescing instruction types into one “multi-function” pipe
- minimize external fragmentation (some idling stages)

Independent operations ... NOT!
⇒ resolve data and resource hazards

- inter-instruction dependency detection and resolution
- minimize performance lose

CMU 18-747
Lecture 2-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

The Generic Instruction Cycle

The “computation” to be pipelined

1. Instruction Fetch (IF)
2. Instruction Decode (ID)
3. Operand(s) Fetch (OF)
4. Instruction Execution (EX)
5. Operand Store (OS)
6. Update Program Counter (PC)

CMU 18-747
Lecture 2-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

The GENERIC Instruction Pipeline (GNR)

Based on Obvious Subcomputations:

IF

ID

OF

EX

OS

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction

Store
Operand

Execute

1.

2.

3.

4.

5.

CMU 18-747
Lecture 2-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Balancing Pipeline Stages

Without pipelining
Tcyc≈ TIF+TID+TOF+TEX+TOS

= 31

Pipelined
Tcyc ≈ max{TIF, TID, TOF, TEX, TOS}

= 9

Speedup= 31 / 9

Can we do better in terms of
either performance or
efficiency?

IF

ID

OF

EX

OS

TIF= 6 units

TID= 2 units

TID= 9 units

TEX= 5 units

TOS= 9 units

CMU 18-747
Lecture 2-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Balancing Pipeline Stages

Two Methods for Stage Quantization:
- Merging of multiple subcomputations into one.
- Subdividing a subcomputation into multiple

subcomputations.

Current Trends:
- Deeper pipelines (more and more stages).
- Multiplicity of different (subpipelines).
- Pipelining of memory access (tricky).

CMU 18-747
Lecture 2-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Granularity of Pipeline Stages
Coarser-Grained Machine Cycle:
4 machine cyc / instruction cyc

Finer-Grained Machine Cycle:
11 machine cyc /instruction cyc

DELAY

ID

DELAY

DELAY

EX2

4

5

6

1

2

3

7

8

ID

IF

OF

EX2

EX1

OS

10

11

IF

OF

ID

EX

OS

9
DELAY

DELAY

DELAY

DELAY

DELAY

IF
ID

OS

IF
ID

OF

EX

1

2

3

4

TIF&ID= 8 units

TID= 9 units

TEX= 5 units

TOS= 9 units

Tcyc= 3 units

CMU 18-747
Lecture 2-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Hardware Requirements

Logic needed for each
pipeline stage
Register file ports needed
to support all the stages
Memory accessing ports
needed to support all the
stages

DELAY

ID

DELAY

DELAY

EX2

4

5

6

1

2

3

7

8

ID

IF

OF

EX2

EX1

OS

10

11

IF

OF

ID

EX

OS

9
DELAY

DELAY

DELAY

DELAY

DELAY

IF
ID

OS

IF
ID

OF

EX

1

2

3

4

CMU 18-747
Lecture 2-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Pipeline Examples

IF

RD

IF

ID

OF

EX

OS

ALU

MEM

WB

1

2

3

4

5

IF

ID
OF

EX

OS

PC GEN.PC GEN

PC GEN.Cache Read

PC GEN.Cache Read

PC GEN.Decode

PC GEN.Add GEN
PC GEN.Read REG

PC GEN.Cache Read

PC GEN.Cache Read

PC GEN.EX 1

PC GEN.EX 2

PC GEN.Write Result
PC GEN.Check Result

1

2
3
4

5

6
7
8

9

10
11

12

MIPS R2000/R3000 AMDAHL 470V/7

CMU 18-747
Lecture 2-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Unifying Instruction Types

Procedure:
1. Analyze the sequence of register transfers

required by each instruction type.
2. Find commonality across instruction types and

merge them to share the same pipeline stage.
3. If there exists flexibility, shift or reorder some

register transfers to facilitate further merging.

CMU 18-747
Lecture 2-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Coalescing Resource Requirements
The 6-stage TYPICAL (TYP) pipeline:

WR. MEM.

ID

RD

ALU

MEM

WB

1

2

3

4

5

IF

6

I-CACHE
PC

DECODE

RD. REG.

ALU OP.

ADDR. GEN.

I-CACHE
PC

DECODE

RD. REG.

I-CACHE
PC

DECODE

RD. REG.

I-CACHE
PC

DECODE

RD. REG.

WR. REG. WR. REG.

IF:

ID:

OF:

EX:

OS:

LOAD STORE BRANCHALU

RD. MEM.

ADDR.GEN. ADDR. GEN.

WR. PC

CMU 18-747
Lecture 2-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Interface to Memory Subsystem

I-CacheD-CacheDa
ta

A
d
d

Memory

Da
ta

A
d
d

I-CacheI-Cache

r

r

ALU

RD

IFIF

ID

RD

ALU

MEM

WB

CMU 18-747
Lecture 2-25
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Pipeline Interface to Register File:

ALU

RD

IFIF

ID

RD

ALU

MEM

WB

D

S1

S2

W/RWData

RData2

Register
File

RAdd2
RData1

WAdd

RAdd1

CMU 18-747
Lecture 2-26
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

6-stage TYP Pipeline

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF

CMU 18-747
Lecture 2-27
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ALU Instruction Flow Path

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF

CMU 18-747
Lecture 2-28
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Load Instruction Flow Path

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF

CMU 18-747
Lecture 2-29
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Store Instruction Flow Path

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF

What is wrong in this figure (from p2-31 S&L)?

CMU 18-747
Lecture 2-30
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Instruction Flow Path

IF

D-Cache

I-Cache

•

•

•

I-Cache

D-Cache

Register
File

ALU

Update
PC

Instruction
Decode

•

Add Data

•

Data Add

ID

RD

ALU

WB

MEM

IF

CMU 18-747
Lecture 2-31
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Pipeline Resource Diagram

I6

I7

I8

I9

I10

I11

t10

I5

I6

I7

I8

I9

I10

t9

I4I3I2I1WB

I5I4I3I2I1MEM

I6I5I4I3I2I1ALU

I7I6I5I4I3I2I1RD

I8I7I6I5I4I3I2I1ID

I9I8I7I6I5I4I3I2I1IF

t8t7t6t5t4t3t2t1t0

CMU 18-747
Lecture 2-32
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

F

MEM

Pipelining: Steady State

IF ID RD ALU MEM
IF ID RD ALU MEM

IF ID RD ALU MEM
IF ID RD ALU

t0 t1 t2 t3 t4 t5

IF ID RD ALU
IF ID RD

IF ID

Insti
Insti+1
Insti+2
Insti+3
Insti+4

WB
WB

WB

CMU 18-747
Lecture 2-33
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Dependencies

Data Dependence
- True dependence (RAW)

Instruction must wait for all required input operands
- Anti-Dependence (WAR)

Later write must not clobber a still-pending earlier read
- Output dependence (WAW)

Earlier write must not clobber an already-finished later write

Control Dependence (aka Procedural Dependence)
- Conditional branches cause uncertainty to instruction

sequencing
- Instructions following a conditional branch depends on the

resolution of the branch instruction
(more exact definition later)

CMU 18-747
Lecture 2-34
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example: Quick Sort on MIPS R2000
bge $10, $9, $36
mul $15, $10, 4
addu $24, $6, $15
lw $25, 0($24)
mul $13, $8, 4
addu $14, $6, $13
lw $15, 0($14)
bge $25, $15, $36

$35:
addu $10, $10, 1
. . .

$36:
addu $11, $11, -1
. . .

for (;(j<high)&&(array[j]<array[low]);++j);
$10 = j; $9 = high; $6 = array; $8 = low

CMU 18-747
Lecture 2-35
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Dependences
and Pipeline Hazards

Sequential Code Semantics

i1:

i2:

i3:

The implied sequential precedences are
overspecifications. It is sufficient but not
necessary to ensure program correctness.

A true dependence between
two instructions may only
involve one subcomputation
of each instruction.

i1: xxxx

i2: xxxx

i3: xxxx

i2

i1

i3

CMU 18-747
Lecture 2-36
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Necessary Conditions for Data Hazards

i:rk←_

j:rk←_ Reg Write

Reg Write

iOj

i:_←rk

j:rk←_ Reg Write

Reg Read

iAj

i:rk←_

j:_←rk Reg Read

Reg Write

iDj

stage X

stage Y

dist(i,j) ≤ dist(X,Y) ⇒ ??
dist(i,j) > dist(X,Y) ⇒ ??

WAW Hazard WAR Hazard RAW Hazard

dist(i,j) ≤ dist(X,Y) ⇒ Hazard!!
dist(i,j) > dist(X,Y) ⇒ Safe

CMU 18-747
Lecture 2-37
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Hazards due to
Memory Data Dependences

----------write reg.write reg.6. WB

PC<-br. addr.write mem.read mem.-----5. MEM

addr. gen.
cond. gen.

addr. gen.addr. gen.ALU op.4. ALU

read reg.read reg.read reg.read reg.3. RD

decodedecodedecodedecode2. ID

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

1. IF

Branch inst.Store inst.Load inst.ALU Inst.Pipe Stage

CMU 18-747
Lecture 2-38
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Hazards due to
Register Data Dependences

----------write reg.write reg.6. WB

PC<-br. addr.write mem.read mem.-----5. MEM

addr. gen.
cond. gen.

addr. gen.addr. gen.ALU op.4. ALU

read reg.read reg.read reg.read reg.3. RD

decodedecodedecodedecode2. ID

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

1. IF

Branch inst.Store inst.Load inst.ALU Inst.Pipe Stage

CMU 18-747
Lecture 2-39
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Hazards due to
Control Dependences

----------write reg.write reg.6. WB

PC<-br. addr.write mem.read mem.-----5. MEM

addr. gen.
cond. gen.

addr. gen.addr. gen.ALU op.4. ALU

read reg.read reg.read reg.read reg.3. RD

decodedecodedecodedecode2. ID

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

I-cache

PC<PC+4

1. IF

Branch inst.Store inst.Load inst.ALU Inst.Pipe Stage

