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Memory Dataflow Techniques
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Reading Assignments:   MJ Ch8
Announcements: Exam 1 on Monday 10/15

** This is the last lecture to be included on Exam 1
** Exam 2 on Monday 12/3
HW 2 due Wednesday 10/10 (start of class)
Project 1 due Friday 10/12

Handouts: “The micorarchitecture of superscalar processors”
Practice exam solution

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel



CMU 18-747
Lecture 12-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Principle Behind Hierarchical Storage

Each level memoizes values stored at lower levels
Instead of paying the full latency for the “furthermost” 
level of storage each time

Effective Access Ti = hi• ti + (1 - hi)•Ti+1
− where hi is the ‘hit’ ratio, the probability of finding the 

desired data memoized at level i
− ti is the raw access time of memory at level i

Given a program with good locality of reference 
Sworking-set < si ⇒ hi≈1   ⇒ Ti≈ti

A balanced system achieves the best of both worlds
- the performance of higher-level storage
- the capacity of lower-level low-cost storage.

Assumption: faster memory is more expensive
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Translation Look-aside Buffer (TLB)
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A cache of address translations 
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tag   idx

Set-Associative and Fully Associative TLBs
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What are relative sizes of ITLB, BTB and I-cache?   
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Virtually Indexed Cache
Parallel Access to TLB and Cache arrays

=

Virtual Pg No. (VPN) 
Tag         Index       Page Offset Tag     Index        Page Offset

TLB

D-cache
PPN

PPN
Data

Hit/Miss

p

p

gk Index    BOv-k

i b

p

p

Virtual Pg No. (VPN) 

How large can a virtually indexed cache get? 
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Large Virtually Indexed Cache
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If two VPNs differs in a, but both map to the same PPN then 
there is an aliasing problem

a
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Synonym (or Aliasing)

When VPN bits are used in 
indexing, two virtual 
addresses that map to the 
same physical address can 
end up sitting in two cache 
lines

In other words, two copies of 
the same physical memory 
location may exist in the 
cache
⇒ modification to one copy 
won’t be visible in the other
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If the two VPNs do not differ in a then there is no aliasing problem
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R10000’s Virtually Index Caches
32KB 2-Way Virtually-Indexed L1
- needs 10 bits of index and 4 bits of block offset
- page offset is only 12-bits  ⇒ 2 bits of index are VPN[1:0]

Direct-Mapped Physical L2 
- L2 is Inclusive of L1
- VPN[1:0] is appended to the “tag” of L2

Given two virtual addresses VA and VB that differs in a
and both map to the same physical address PA
- Suppose VA is accessed first so blocks are allocated in L1&L2
- What happens when VB is referenced?

1  VB indexes to a different block in L1and misses
2  VB translates to PA and goes to the same block as VA in L2
3. Tag comparison fails (VA[1:0]≠VB[1:0])
4. Treated just like as a L2 conflict miss ⇒ VA’s entry in L1 and

L2 are both ejected due to inclusion policy
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Memory Dataflow Techniques
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Uniprocessor Load and Store Semantics

Given Storei( a, v ) << Loadj( a ) 
Load(a) must return v if there does not exist another 
Storek such that         

Storei( a, v ) << Storek( a, v’ ) << Loadj(a)

This can be guaranteed by observing data dependence
- RAW Store(a, v)  followed by Load( a )
- WAW Store(a, v’ )  followed by Store(a, v )
- WAR Load( a ) followed by Store( a, v’ )

For a uniprocessor, do we need to worry about loads and 
stores to different addresses?  What about SMPs?

(“<<“ means precedes)
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Total Ordering of Loads and Stores

Keep all loads and stores totally in order with respect 
to each other

However, loads and stores can execute out of order 
with respect to other types of instructions (while 
obeying register data-dependence)

Except, stores must still be held for all 
previous instructions
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The “DAXPY” Example

Y[ i ] = A * X[ i ] + Y[ i ]

LD F0, a
ADDI R4, Rx, #512 ; last address 

Loop:
LD F2, 0(Rx) ; load X[ i ]
MULTD  F2, F0, F2 ; A*X[ i ]
LD F4, 0(Ry) ; load Y[ i ]
ADDD    F4, F2, F4 ; A*X[ i ] + Y[ i ]
SD F4, 0(Ry) ; store into Y[ i ]
ADDI Rx, Rx, #8 ; inc. index to X
ADDI Ry, Ry, #8 ; inc. index to Y
SUB R20, R4, Rx ; compute bound
BNZ R20, loop ; check if done

LD

LDMULTD

ADDD

SD

??
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Dynamic Reordering of Memory Operations

Storing to memory irrevocably changes the in-order 
machine state, therefore a Store instruction is only 
executed when it is the oldest unfinished instruction

No memory WAW or WAR
Allow out-of-order execution of Loads that do not 
have RAW memory-dependence
What is hard about managing memory-dependence?
- memory address are much wider than reg names
- memory dependencies are not static

• a load (or store) instruction’s address can change 
• addresses need to be calculated and translated first

- memory instructions take longer to execute relative to other 
instructions types
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Processing of Load/Store Instructions
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Load/Store Queue

Operates as a circular FIFO
Loads and store instructions are 
stored in program order
- allocate on dispatch
- de-allocate on retirement

Issue to address unit in register 
dataflow order
A matrix records memory address 
dependence (also considers 
relative age of entries)
- store ops are held until retirement 
- load ops are issued when no 

dependency exists (all older store 
addresses must be known)

address
calculation+
translation
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Load Bypassing
Loads can be allowed to bypass older stores if no 
aliasing is found
- Older stores’ addresses must be computed before loads can 

be issued to allow checking for RAW 

Alternatively, a load can assume no aliasing and 
bypass older stores speculatively
- validation of no aliasing with previous stores must be done 

and provide mechanism for reversing the effect

Stores are kept in ROB and LD/Store address queue 
until all older instructions have completed 
At completion time, a store is moved to the Store 
Buffer to wait for turn to access cache  

Store is consider completed.  Latency beyond this 
point has little effect on the processor throughput
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Store Buffer
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Once a store enters the 
store buffer, its effect 
cannot be undone
Must also be check by load 
bypassing and forwarding
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Load Forwarding

If a pending load is RAW dependent on an earlier 
store still in the store buffer, it need not wait till the 
store is issued to the data cache

Forward from which store?
Storei( a, v ) << Storek( a, v’ ) << Loadj(a)

The load can be directly satisfied from the store 
buffer if both load and store addresses are valid and 
the data is available in the store buffer

This avoids the latency of accessing the data cache

Very important for x86 processors.  Why?
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Memory Ordering for 
Shared Memory Multiprocessors

Consider these two programs running to two 
processors that communicate via shared memory

Can the order of Loads and Stores be swapped 
during dynamic execution?

Proc A:
MEM[Y] is initially 1
……
compute V
Store (X, V)
Store (Y, 0)
……

Proc B:
……
do {

lock=Load Y
while (lock)
data = Load X
……

Much more to come on this later!!


