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Interference Graph

Nodes: live ranges
Edges: interference

ld r4, 16(r3)
sub r6, r2, r4

add r7, r7, 1
blt   r7, 100

ld r5, 24(r3)

beq  r2, $0

add r2, r1, r5
sw r6, 8(r3)

“Live variable analysis”

r1

r2

r3
r4

r5

r6

r7

r1, r2 & r3 
are live-in

r1& r3 are live-out
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Register Interference & Allocation 

Interference Graph: G = <E,V>
- Nodes (V) = variables, (more specifically, their live ranges)
- Edges (E) = interference between variable live ranges

Graph Coloring (vertex coloring)
- Given a graph, G=<E,V>, assign colors to nodes (V) so that 

no two adjacent (connected by an edge) nodes have the 
same color

- A graph can be “n-colored” if no more than n colors are 
needed to color the graph.

- The chromatic number of a graph is min{n} such that it can 
be n-colored

- n-coloring is an NP-complete problem, therefore optimal 
solution can take a long time to compute

How is graph coloring related to register allocation?
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Chaitin’s Graph Coloring Theorem

Key observation:  If a graph G has a node X with 
degree less than n (i.e. having less than n edges 
connected to it), then G is n-colorable IFF the 
reduced graph G’ obtained from G by deleting X and 
all its edges is n-colorable.

Proof:

n-1
G’

G
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Graph Coloring Algorithm (Not Optimal)
Assume the register interference graph is n-colorable     

How do you choose n?
Simplification
- Remove all nodes with degree less than n
- Repeat until the graph has n nodes left

Assign each node a different color
Add removed nodes back one-by-one and pick a 
legal color as each one is added (2 nodes connected 
by an edge get different colors)

Must be possible with less than n colors

Complications: simplification can block if there are no 
nodes with less than n edges
Choose one node to spill based on spilling heuristic
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r1

r2

r3

r7

remove r4

COLOR stack = {r5, r6, r4}

remove r6

COLOR stack = {r5, r6}

r1

r2

r3
r4

r7

r1 r7

r2

r3
r4

r5

r6

COLOR stack = {}

r1

r2

r3
r4

r6

r7

remove r5

COLOR stack = {r5}

Example (N = 5)
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COLOR stack = {}

r1

r2

r3
r4

r5

r6

r7

remove r5

COLOR stack = {r5}
r1

r2

r3
r4

r6

r7

blocks spill r1
Is this a good choice??

COLOR stack = {r5}

r2

r3
r4

r6

r7

remove r6

COLOR stack = {r5, r6}

r2

r3
r4

r7

Example (N = 4)
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Register Spilling
When simplification is blocked, pick a node to delete 
from the graph in order to unblock
Deleting a node implies the variable it represents will 
not be kept in register (i.e. spilled into memory)
- When constructing the interference graph, each node is 

assigned a value indicating the estimated cost to spill it.
- The estimated cost can be a function of the total number of 

definitions and uses of that variable weighted by its estimated 
execution frequency.

- When the coloring procedure is blocked, the node with the least 
spilling cost is picked for spilling.

When a node is spilled, spill code is added into the 
original code to store a spilled variable at its definition 
and to reload it at each of its use
After spill code is added, a new interference graph is 
rebuilt from the modified code, and n-coloring of this 
graph is again attempted
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Phase Ordering Problem
Register allocation prior to code scheduling
- false dependencies induced due to register reuse
- anti and output dependencies impose unnecessary constraints
- code motion unnecessarily limited

Code scheduling prior to register allocation
- increase date live time (between creation and consumption)
- overlap otherwise disjoint live ranges (increase register 

pressure)
- may cause more live ranges to spill (run out of registers)
- spill code produced will not have been scheduled

One option: do both prepass and postpass scheduling.
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Compiler/Hardware Interactions

[B. Rau & J. Fisher, 1993]

Front end & Optimizer

Determine Depend.

Determine Independ.

Bind Resources

Execute

Bind Resources

HardwareCompiler

Sequential
(Superscalar)

Dependence
Architecture

(Dataflow)

Independence
Architecture
(Attached

Array
Processor)

Independence
Architecture
(Intel EPIC)

Determine Independ.

Determine Depend.

DSI
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Limitations of List Scheduling
Cannot move instructions past conditional branch 
instructions in the program (scheduling limited by 
basic block boundaries)
Problem: Many programs have small numbers of 
instructions (4-5) in each basic block. Hence, not 
much code motion is possible
Solution: Allow code motion across basic block 
boundaries.
Speculative Code Motion: “jumping the gun”
- Execute instructions before we know whether or not we need 

to
- Utilize otherwise idle resources to perform work which we 

speculate will need to be done

Relies on program profiling to make intelligent 
decisions about speculation
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Types of Speculative Code Motion
Two characteristics of speculative code motion:
- safety, which indicates whether or not spurious exceptions may 

occur
- legality, which indicates correctness of results

Four possible types of code motion:

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3
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Register Renaming
Prevents boosted instructions from overwriting 
register state needed on alternate execution path.
Utilizes idle (non-live) registers (r6 in example below).

A1: st ... =r6A1: sub r3=r7-r4
and r4=r3&r5
st ... =r4

n+2
st ... =r4st ... =r4n+1

load r4= ...
load r5= ...
cmpi c0,r4,10
add r4=r4+r5
sub r3=r7-r4
and r6=r3&r5
bc c0, A1

load r4= ...
load r5= ...
cmpi c0,r4,10
add r4=r4+r5
<stall>
<stall>
bc c0, A1

n
Scheduled CodeOriginal CodeBB#
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Copy Creation
Register renaming causes a problem when there are 
multiple definitions of a register reaching a single use:
- Below, definitions of r1 in both (i) and (ii) reach the use in (iii).
- If the instruction in (ii) is boosted into (i), it must be renamed to 

preserve the first value of r1.
- However, the boosted definition of r1 must reach the use in (iii) 

as well.
- Hence, we insert a copy instruction in (ii).

r4 = r1 ...

r1 = r2 & r3

r5 = r2 & r3
r1 = ... r1 = ...(i)

(ii)

(iii)

(i)

(ii)

r4 = r1 ...(iii)

r1 = r5
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Instruction Replication
General case of upward code motion: crossing 
control flow joins.
Instructions must be present on each control flow 
path to their original basic block
Replicate set is computed for each basic block that is 
a source of instructions to be boosted

(iii)

(i) (v)

(iv)

(ii)
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Profile Driven Optimizations
Wrong optimization choices can be costly!

How do you determine dynamic information 
during compilation?

During initial compilation, “extra code” can be added 
to a program to generate profiling statistics when the 
program is executed
Execution Profile, e.g.
- how many times is a basic block executed
- how often is a branch taken vs. not taken

Recompile the program using the profile to guide 
optimization choices 
A profile is associated with a particular program input 

⇒ may not work well on all executions
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Trace Scheduling [Josh Fisher]

Generate multi-basic block traces based on profiling 
information
- find the most often executed control path

List schedule a trace at a time
- optimize the execution of the trace (common case)
- fix any problem with off-trace paths as necessary (infrequently 

executed)

Good for very biased and predictable branching 
behavior
Trace scheduling engendered the VLIW architecture 
innovation and was implemented in the Multiflow TRACE 
compiler, which provided the basis for superscalar 
compilation techniques now being used by Intel, HP, and 
DEC
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Trace Scheduling Overview

Trace Selection
- select seed (the highest frequency basic block)
- extend trace  (along the highest frequency edges)

forward (successor of the last block of the trace)
backward (predecessor of the first block of the trace)

- don’t cross loop back edge
- bound max_trace_length heuristically

Trace Scheduling
- build data precedence graph for a whole trace
- perform list scheduling and allocate registers
- add compensation code to maintain semantic correctness

Speculative Code Motion (upward)
- Move an instruction above branches if safe
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Compensation Code for Downward Motion
Split Compensation Code:
- Instruction with more than one successor (conditional 

branch)

Join Compensation Code:
- Instruction with more than one predecessor

B
A
C
D

A’ XA
B
C
D

X
Original
trace

Scheduled
trace

A
C
B
D
E

X
C’

A
B
C
D

X

E

Original
trace

Scheduled
trace
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Copied Split Instruction

A
B
C
D
E

X

Y

D
B
E
A
C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB
C
D Y

Correctness

C’’’
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Trace Scheduling Example

beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6 fsub  f2, f3, f7st.d  f2, 0(r8)

add  r8, r8, 4

990

990

800

800

10

10

200

200

fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out
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Compensation Code Example

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code
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Compensation Code Example

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code
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Compensation Code Example

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split
add  r2, r2, 4
beq  r2, $0
fsub  f2,  f2,  f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions
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Compensation Code Illustration
fdiv  f1,  f2,  f3

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5
ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6
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Register Binding
Perform register allocation for a trace
• After scheduling a trace, do register allocation
+ Most frequently executed traces have maximum freedom of 

register usage
- Do not use graph coloring due to inappropriate framework

x = 

x

x = 

x

x  --->  r1 x  --->  r2
move  r1,  r2
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Superblock Scheduling

Motivation
- Trace scheduling is a good idea
- Maintaining semantic correctness (compensation code) is a 

pain

Superblock
- Trace with one entry point (multiple entries create control 

flow joins)
- May have multiple exits
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Superblock Formation Example

Identify traces using profiling information
Use tail duplication to eliminate side entry points

C

D

Trace

C

D

Trace

C’

D’

B B

Tail
duplication
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Superblock Formation Example

A

B

C D

E F

G

H

A

B

C D

E F

G

H

G’
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Superblock Enlarging

Branch Target Expansion
- Expand along likely-taken path

Loop Unrolling & Loop Peeling

A

B

C

D

A

B

C

D

B

C

B

C
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ILP Optimization

Basic Block Size
Average Block Size:

Basic block: 3 instructions
Superblock-original: 4 instructions
Superblock-formation: 10 instructions
Superblock-enlargement: 13 instructions

Dependence Elimination
- Code transformations to eliminate data dependencies
- Give code scheduler more freedom to move instructions
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Operand Migration

Move instructions whose results are not used within 
trace to less frequently executed paths

x = 

x

x = 

x
x = 
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Induction Variable Expansion
Eliminate redefinitions of induction variables within 
unrolled loops
Insert code to maintain semantic correctness

i = 0

i = i +1

i = i +1

a[ i ]

a[ i ]

i = 0

i = i +2

k = k +2

a[ i ]

a[ k ]

k = 1

use i

i = i - 1

i = k - 1

use i
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Accumulator Variable Expansion
Accumulate a sum or product in each iteration
Insert code to maintain semantic correctness
May not be safe for floating point

sum = 0

sum = sum + t

sum = sum + t’

t = ...

t’ = ...

use sum
use sum

sum = 0

sum = sum + t

k = k + t’

t = ...

t’ = ...

k = 0

sum = sum + k
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Superblock List Scheduling

Restricted percolation
- No architecture support
- Instructions that could cause exceptions are not moved 

beyond branches
- Memory load/store, integer divide and floating point 

instructions

General percolation
- Architecture support (non-trapping instructions)
- Write garbage value when exceptions occur for non-trapping 

instructions
We will see this when we discuss Intel EPIC


