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Branch Instruction Speculation
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A small “cache-like” memory in the instruction fetch stage

Remembers previously executed branches, their addresses, 
information to aid prediction, and most recent target 
addresses
Instruction fetch stage compares current PC against those 
in BTB to “guess” nPC
- If matched then prediction is made else nPC=PC+4
- If predict taken then nPC=target address in BTB else nPC=PC+4

When branch is actually resolved, BTB is updated
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Prediction accuracy approaches maximum with as 
few as 2 preceding branch occurrences used as 
history

Example Prediction Algorithm
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Branch Prediction Function
Based on opcode only (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
66 69 71 55 80 78

Based on history of branch
- Branch prediction function prediction F (X1, X2, .... )
- Use up to 5 previous branches for history (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
0 64.1 64.4 70.4 54.0 73.8 77.8
1 91.9 95.2 86.6 79.7 96.5 82.3
2 93.3 96.5 90.8 83.4 97.5 90.6
3 93.7 96.7 91.2 83.5 97.7 93.5
4 94.5 97.0 92.0 83.7 98.1 95.3
5 94.7 97.1 92.2 83.9 98.2 95.7
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Other Prediction Algorithms

Combining prediction accuracy with BTB hit rate 
(86.5% for 128 sets of 4 entries each), branch 
prediction can provide the net prediction accuracy of 
approximately 80%.  This implies a 5-20% 
performance enhancement.
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Exhaustive Search for 
Optimal Predictors [Nair, 1992]

There are 220 possible state machines of 2-bit predictors
Pruning uninteresting and redundant machines leaves 5248
It is possible to exhaustively search and find the optimal predictor for a 
benchmark

*

*

*

*

*

predict NT predict T
Benchmark Best Pred. %

spice2g6 97.2

doduc 94.3

gcc                         89.1

espresso                89.1

li                             87.1

eqntott 87.9

TN

Saturation Counter is near optimal in all cases!
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Number of Counter Bits Needed

Branch history table size: Direct-mapped array of 2k entries
Programs, like gcc, can have over 7000 conditional branches
In collisions, multiple branches share the same predictor
Variation of branch penalty with branch history table size level out 
at 1024

62.4 (0.142)82.5 (0.063)86.8 (0.048)88.3 (0.042)li

78.4 (0.049)82.9 (0.046)87.2 (0.033)89.3 (0.028)eqntott

58.5 (0.176)87.2 (0.054)89.1 (0.047)89.5 (0.045)espresso

50.0 (0.128)86.0 (0.033)89.1 (0.026)89.7 (0.025)gcc

69.2 (0.022)90.2 (0.004)94.3 (0.003)94.2 (0.003)doduc

76.6 (0.031)96.2 (0.013)97.0 (0.009)97.0 (0.009)spice2g6

0-bit1-bit2-bit3-bit

Prediction Accuracy (Overall CPI Overhead)Benchmark
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Global Branch Prediction
So far, the prediction of each static branch instruction is 
based solely on its own past behavior and not the 
behaviors of other neighboring static branch instructions
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2-Level Adaptive Prediction [Yeh & Patt]

Two-level adaptive branch prediction
- 1st level: History of last k (dynamic) branches encountered
- 2nd level: branch behavior of the last s occurrences of the 

specific pattern of these k branches
- Use a Branch History Register (BHR) in conjunction with a 

Pattern History Table (PHT)

Example: (k=8, s=6)
- Last k branches with the behavior (11100101)
- s-bit History at the entry (11100101) is [101010]
- Using history, branch prediction algorithm predicts direction 

of the branch

Effectiveness:
- Average 97% accuracy for SPEC
- Used in the Intel P6 and AMD K6
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Nomenclature: {G,P}A{g,p,s}

To achieve 97% average prediction accuracy: 
G (1) BHR: 18 bits;   g (1) PHT: 218 x 2 bits total = 524 kbits
P (512x4) BHR: 12 bits;   g (1) PHT: 212 x 2 bits total = 33 kbits
P (512x4) BHR: 6 bits;   s (512) PHT: 26 x 2 bits total = 78 kbits
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1 0 1           1  1       
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Global BHSR Scheme (GAs)
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Per-Branch BHSR Scheme (PAs)
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Gshare Branch Prediction [McFarling]
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Other Schemes
Function Return Stack
- Register indirect targets are hard to predict from branch history
- Register indirect branches are mostly used for function returns
⇒ 1. Push the return address onto a stack on each function call

2. On a reg. indirect branch, pop and return the top address 
as prediction

Combining Branch Predictors
- Each type of branch prediction scheme tries to capture a 

particular program behavior
- May want to include multiple prediction schemes in hardware
- Use another history-based prediction scheme to “predict” which 

predictor should be used for a particular branch
You get the best of all worlds. This works quite well
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BTB for Superscalar Fetch
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PPC 604 Fetch Address Generation
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Control Flow Speculation

Leading Speculation
- Tag speculative instructions 
- Advance branch and following instructions
- Buffer addresses of speculated branch instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3
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Mis-speculation Recovery

Eliminate Incorrect Path
- Must ensure that the mis-speculated instructions produce no 

side effects

Start New Correct Path
- Must have remembered the alternate (non-predicted) path

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3 tag3tag3

tag2
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Mis-speculation Recovery

Eliminate Incorrect Path
- Use branch tag(s) to deallocate completion buffer entries 

occupied by speculative instructions (now determined to be 
mis-speculated).

- Invalidate all instructions in the decode and dispatch buffers, as 
well as those in reservation stations

How expensive is a misprediction?

Start New Correct Path
- Update PC with computed branch target (if it was predicted NT)
- Update PC with sequential instruction address (if it was 

predicted T)
- Can begin speculation once again when encounter a new 

branch

How soon can you restart?
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Trailing Confirmation

Trailing Confirmation
- When branch is resolved, remove/deallocate speculation tag
- Permit completion of branch and following instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3tag3 tag3

tag2
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Fast Branch Rewind and Restart: 
Metaflow DRIS

Discard all DRIS entries 
(and corresponding 
operations) younger than 
the mispredicted branches

Can restart immediately 
from the corrected branch 
target because the DRIS 
has sufficient information 
(rename & value) to 
continue from where left off

Works with nested 
mispredictions!!

youngest

oldest

misprediction

oldestoldestoldest

another miss

another miss
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To reinitiate renaming:
- wait for all instructions older than the rewind point to drain 

clear of the pipeline and then reset register remapping to null
Long restart latency

- Reorder buffer has to remember how to restored the map 
table to the point of the mispredicted branch 

Complicated multi-cycle logic
- Cache rename map after branch prediction

Rewinding/Flushing of Rename Table 
data busy tag

logical
register
name

ARF Map Table
data

RRF
rdy next to

free
next to
allocate

Operand Value/Tag
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Impediments to Wide Fetching

Average Basic Block Size
- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

Branch Prediction Mechanisms
- must make multiple branch predictions per cycle
- potentially multiple predicted taken branches

Conventional I-Cache Organization
- must fetch from multiple predicted taken targets per 

cycle
- must align and collapse multiple fetch groups per cycle

More to come: Trace Caching!!


