
18-747 Lecture 11:
High-Performance Memory Hierarchies

James C. Hoe
Dept of ECE, CMU

October 3, 2001

Reading Assignments: S&L Ch 3 82-107

Announcements: Midterm Exam on Monday 10/15

Handouts: Handout #7: HW1 Solution
Handout #8: Project 0 Solution
Graded HW1

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 11-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Wide Instruction Fetch Issues

Average Basic Block Size
- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

Three Major Challenges:

- Multiple-Branch Prediction

- Multiple Fetch Groups

- Alignment and Collapsing

Instruction

Fetch

Decode

Branch
Prediction

Instruction

Dispatch

Cache

Buffer

Cannot be solved with just longer cache blocks

CMU 18-747
Lecture 11-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

A Typical Trace Cache Organization

Trace Cache

Fetch Buffer

Next
Trace

Predict.

predicted PC

Execution
Core

Fill Unit

Completion

br. hist.Hist.
Hash

I-Cache

CMU 18-747
Lecture 11-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Fill Unit
Observe the dynamic execution sequence
Gather instructions into a trace segment (or trace
cache block)
Some simple heuristics for forming trace segments
- stop after collecting up to N instructions

(N is the trace cache block size)
- stop after B conditional branches

(B is the limit of the multi-branch predictor)
- stop after seeing an register-indirect jump
- Don’t split basic blocks
- In some designs, unconditional and conditional branches

can be dropped from the traces

Can include pre-decoded dependence information
Can even dynamically re-order instructions (don’t
need an out-of-order core!!)

CMU 18-747
Lecture 11-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Selection/Prediction
Basic
- find the trace that starts at the predicted next-PC

Multiple cached traces may have the same starting PC
- difference is in the internal branch decisions
⇒ need multi-branch predictors

Partial Traces
- predicted next-PC points to the middle of a cached

trace (cached ABC, but predicted BC)
- multi-branch prediction may say not to use the entire

length of a cached trace (cached ABC, but only
needs AB)
⇒ need alignment and collapsing buffer

So how is this better?

CMU 18-747
Lecture 11-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Redundant Traces
Suppose B,C and D are
instructions in a loop
- 3 different traces of 3-instructions are

possible
- Which one should we keep in the trace

cache?
- How do we detect the beginning and

the end of basic blocks?

Suppose A,B,C,D and E are basic
blocks
- don’t cache BC if BCD is cached
- what about CDB and CDE?
- what about ABC and DBC?
- How to cut down on redundant

instruction storage?

A

B

C

D

E

CMU 18-747
Lecture 11-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Replicated Block Cache

...
block_id

de
co

de
r

N=2n

direct mapped cache

FA i1 i2 ib

word lines

Final Collapse

Fetch Buffer
co

py
-2

co
py

-3

co
py

-4b inst

16

co
py

-1

Block Cache

Instructions from
the fill unit

(n-bit)

What about fragmentation?

CMU 18-747
Lecture 11-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Predict and Fetch Trace

Trace Table

Global History

Final Collapse

Fetch Buffer
16

Fetch Cycle

Predict Cycle

Block Cache

More efficient: redundancy is in the trace table and not the block cache

CMU 18-747
Lecture 11-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Next Trace Prediction

tag index
tag

global history

block_ids

1 2 ... wv

=

Hit

...

b_id0 b_id1 b_id2 b_id3

w pred. block_ids

Trace Table

Hash
Function

Next trace_id

to the block cache

predicted branch path

CMU 18-747
Lecture 11-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

The Block-Based Trace Cache

Fetch Buffer

trace_id

Completion

Final Collapse
Br.

block_ids

I-C
ac

hepre-collapse

hist.

Execution
Core

History
Hash

Fill
Unit

Rename
Table

Trace
Table Block Cache

CMU 18-747
Lecture 11-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

1. Next trace prediction
2. Trace cache fetch

Proposed
Trace Cache

Enhanced
Instruction Cache

Fetch

Completion

Execution Core

1. Multiple-branch prediction
2. Instruction cache fetch
3. Instruction alignment &

collapsing

1. Multiple-branch predictor
update

Execution Core

Wide-Fetch I-cache vs. T-cache

1. Trace construction and fill

CMU 18-747
Lecture 11-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Cache Trade-offs

Fetch time complexity

Trace cache:

Enhanced instruction cache:

Pros → Moves complexity to backend
Cons → Inefficient instruction storage

Pros → Efficient instruction storage
Cons → Complexity during fetch time

Instruction storage redundancy

CMU 18-747
Lecture 11-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

As Machines Get Wider (… and Deeper)

Fetch Fetch

RenameDispatchExecuteRetire

Di
sp

at
ch

Ex
ec

ut
e

Re
tir

e

1. Eliminate Stages
2 Relocate work to

the backend

Decode Decode

Ren
am

e

CMU 18-747
Lecture 11-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

CMU 18-747
Lecture 11-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CPU-Memory Bottleneck

Performance of high speed computers is usually limited
by memory performance, bandwidth & latency
Main memory access time >> Processor cycle time

over 100 times difference!!
if m fraction of instructions are loads and stores

then average ‘1+m’ references per instruction
suppose m=40%, IPC=4@1GHz ⇒ 22.4 GByte/sec

CPU Memory

CMU 18-747
Lecture 11-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

How to Incorporate Faster Memory

SRAM access time << Main memory access time
SRAM bandwidth >> Main memory bandwidth
⇒ SRAM is expensive

⇒ SRAM is smaller than main memory

Programs exhibit temporal locality
- frequently-used data can be held in the scratch pad
- the cost of the first and last memory access can be amortized

over multiple reuse

Programs must have a small working set (aka footprint)

CPU Main
Memory
(DRAM)RF

Scratch
Pad

(SRAM)

CMU 18-747
Lecture 11-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Caches: Automatic Management of
Fast Storage

CPU cache
Main

Memory

CPU L2
cache

Main
Memory

L3
cacheL1

16~32KB
1~2 pclk latency

~256KB
~10 pclk latency ~50 pclk latency

~4MB

CMU 18-747
Lecture 11-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Cache Memory Structures

index key idx key

tag data tag data

de
co

de
r

de
co

de
r

Indexed Memory

k-bit index
2k blocks

Associative Memory
(CAM)

no index
unlimited blocks

N-Way
Set-Associative Memory

k-bit index
2k • N blocks

CMU 18-747
Lecture 11-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Direct Mapped Caches

tag idx b.o.

=
Tag

match
Multiplexor

de
co

de
r

=
Tag

Match

de
co

de
r

tag index

block index

CMU 18-747
Lecture 11-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Each cache block or (cache line) has only one tag but
can hold multiple “chunks” of data
- reduce tag storage overhead

In 32-bit addressing, an 1-MB direct-mapped cache has 12
bits of tags

4-byte cache block ⇒ 256K blocks ⇒ ~384KB of tag
128-byte cache block ⇒ 8K blocks ⇒ ~12KB of tag

- the entire cache block is transferred to and from memory all
at once

good for spatial locality since if you access address i, you
will probably want i+1 as well (prefetching effect)

Block size = 2b; Direct Mapped Cache Size = 2B+b

Cache Block Size

tag block index block offset
LSBMSB

B-bits b-bits

CMU 18-747
Lecture 11-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Large Blocks and Subblocking

Large cache blocks can take a long time to refill
- refill cache line critical word first
- restart cache access before complete refill

Large cache blocks can waste bus bandwidth if
block size is larger than spatial locality
- divide a block into subblocks
- associate separate valid bits for each subblock.

tagsubblockvsubblockv subblockv

CMU 18-747
Lecture 11-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

tag blk.offset

Fully Associative Cache

=
=

=

=

Multiplexor
Associative

Search

Tag

CMU 18-747
Lecture 11-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

tag index BO

N-Way Set Associative Cache

=
=

Multiplexor

Associative
searchde

co
de

r

Cache Size = N x 2B+b

CMU 18-747
Lecture 11-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

N-Way Set Associative Cache

tag idx b.o.

= Tag
match

de
co

de
r

= Tag
match

Multiplexor

de
co

de
r

a seta way (bank)

Cache Size = N x 2B+b

CMU 18-747
Lecture 11-25
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Principle Behind Hierarchical Storage

Each level memoizes values stored at lower levels
Instead of paying the full latency for the “furthermost”
level of storage each time

Effective Access Ti = hi• ti + (1 - hi)•Ti+1
− where hi is the ‘hit’ ratio, the probability of finding the

desired data memoized at level i
− ti is the raw access time of memory at level i

Given a program with good locality of reference
Sworking-set < si ⇒ hi≈1 ⇒ Ti≈ti

A balanced system achieves the best of both worlds
- the performance of higher-level storage
- the capacity of lower-level low-cost storage.

