
18-747 Lecture 12:
Memory Dataflow Techniques

James C. Hoe
Dept of ECE, CMU

October 8, 2001

Reading Assignments: MJ Ch8
Announcements: Exam 1 on Monday 10/15

** This is the last lecture to be included on Exam 1
** Exam 2 on Monday 12/3
HW 2 due Wednesday 10/10 (start of class)
Project 1 due Friday 10/12

Handouts: “The micorarchitecture of superscalar processors”
Practice exam solution

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 12-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Principle Behind Hierarchical Storage

Each level memoizes values stored at lower levels
Instead of paying the full latency for the “furthermost”
level of storage each time

Effective Access Ti = hi• ti + (1 - hi)•Ti+1
− where hi is the ‘hit’ ratio, the probability of finding the

desired data memoized at level i
− ti is the raw access time of memory at level i

Given a program with good locality of reference
Sworking-set < si ⇒ hi≈1 ⇒ Ti≈ti

A balanced system achieves the best of both worlds
- the performance of higher-level storage
- the capacity of lower-level low-cost storage.

Assumption: faster memory is more expensive

CMU 18-747
Lecture 12-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Translation Look-aside Buffer (TLB)

=

Index

Tag

Physical page no.

Physical address

Page offset

Virtual address
Virtual page no.

Page
offset

A cache of address translations

CMU 18-747
Lecture 12-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

tag idx

Set-Associative and Fully Associative TLBs

=
=

Physical address

Page
offset

Virtual page no.

PPN tag

Phy. pg. no.

page offset tag

=
=
=

=

Virtual
page
no.

Physical address

Page
offset

PPN tag

Phy. pg. no.

page offset

What are relative sizes of ITLB, BTB and I-cache?

CMU 18-747
Lecture 12-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Tag Index Page Offset (PO)

TLB

Phy. Page No. (PPN) PO
Tag Index BO

D-cache

Data

k
g

p

Virtual
Address
(n=v+g bits)

Physical
Address
(m=p+g bits)

Virtual Page No. (VPN)

v-k

t i b

Physically Indexed Cache

CMU 18-747
Lecture 12-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Virtually Indexed Cache
Parallel Access to TLB and Cache arrays

=

Virtual Pg No. (VPN)
Tag Index Page Offset Tag Index Page Offset

TLB

D-cache
PPN

PPN
Data

Hit/Miss

p

p

gk Index BOv-k

i b

p

p

Virtual Pg No. (VPN)

How large can a virtually indexed cache get?

CMU 18-747
Lecture 12-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Large Virtually Indexed Cache

=

Virtual Pg No. (VPN)
Tag Index Page Offset Tag Index Page Offset

TLB

D-cache
PPN

PPN
Data

Hit/Miss

p

p

gk Index BOv-k

i b

p

p

Virtual Pg No. (VPN)

If two VPNs differs in a, but both map to the same PPN then
there is an aliasing problem

a

CMU 18-747
Lecture 12-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Synonym (or Aliasing)

When VPN bits are used in
indexing, two virtual
addresses that map to the
same physical address can
end up sitting in two cache
lines

In other words, two copies of
the same physical memory
location may exist in the
cache
⇒ modification to one copy
won’t be visible in the other

=

Tag Index Page Offset

D-cache

PPN
Data

Hit/Miss

p

Index BO

i b

p

Virtual Pg No. (VPN)

a

PPN
from
TLB

If the two VPNs do not differ in a then there is no aliasing problem

CMU 18-747
Lecture 12-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

R10000’s Virtually Index Caches
32KB 2-Way Virtually-Indexed L1
- needs 10 bits of index and 4 bits of block offset
- page offset is only 12-bits ⇒ 2 bits of index are VPN[1:0]

Direct-Mapped Physical L2
- L2 is Inclusive of L1
- VPN[1:0] is appended to the “tag” of L2

Given two virtual addresses VA and VB that differs in a
and both map to the same physical address PA
- Suppose VA is accessed first so blocks are allocated in L1&L2
- What happens when VB is referenced?

1 VB indexes to a different block in L1and misses
2 VB translates to PA and goes to the same block as VA in L2
3. Tag comparison fails (VA[1:0]≠VB[1:0])
4. Treated just like as a L2 conflict miss ⇒ VA’s entry in L1 and

L2 are both ejected due to inclusion policy

CMU 18-747
Lecture 12-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Memory Dataflow Techniques

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

CMU 18-747
Lecture 12-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Uniprocessor Load and Store Semantics

Given Storei(a, v) << Loadj(a)
Load(a) must return v if there does not exist another
Storek such that

Storei(a, v) << Storek(a, v’) << Loadj(a)

This can be guaranteed by observing data dependence
- RAW Store(a, v) followed by Load(a)
- WAW Store(a, v’) followed by Store(a, v)
- WAR Load(a) followed by Store(a, v’)

For a uniprocessor, do we need to worry about loads and
stores to different addresses? What about SMPs?

(“<<“ means precedes)

CMU 18-747
Lecture 12-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Total Ordering of Loads and Stores

Keep all loads and stores totally in order with respect
to each other

However, loads and stores can execute out of order
with respect to other types of instructions (while
obeying register data-dependence)

Except, stores must still be held for all
previous instructions

CMU 18-747
Lecture 12-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

The “DAXPY” Example

Y[i] = A * X[i] + Y[i]

LD F0, a
ADDI R4, Rx, #512 ; last address

Loop:
LD F2, 0(Rx) ; load X[i]
MULTD F2, F0, F2 ; A*X[i]
LD F4, 0(Ry) ; load Y[i]
ADDD F4, F2, F4 ; A*X[i] + Y[i]
SD F4, 0(Ry) ; store into Y[i]
ADDI Rx, Rx, #8 ; inc. index to X
ADDI Ry, Ry, #8 ; inc. index to Y
SUB R20, R4, Rx ; compute bound
BNZ R20, loop ; check if done

LD

LDMULTD

ADDD

SD

??

CMU 18-747
Lecture 12-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Dynamic Reordering of Memory Operations

Storing to memory irrevocably changes the in-order
machine state, therefore a Store instruction is only
executed when it is the oldest unfinished instruction

No memory WAW or WAR
Allow out-of-order execution of Loads that do not
have RAW memory-dependence
What is hard about managing memory-dependence?
- memory address are much wider than reg names
- memory dependencies are not static

• a load (or store) instruction’s address can change
• addresses need to be calculated and translated first

- memory instructions take longer to execute relative to other
instructions types

CMU 18-747
Lecture 12-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Processing of Load/Store Instructions

Dispatch Buffer

Dispatch

Reservation Stations

Branch

Arch. RF Ren. RF

Reg. Write Back

Reorder Buffer

Integer Integer Float.-
Point

Load/
Store

Address Generation
Address Translation
Memory Access

Data Memory

Complete

Retire
Store Buffer

in
or

de
r

ou
t-o

f-o
rd

er
in

or
de

r

LD/ST Queue cannot follow simple register dataflow

store path

load
path

CMU 18-747
Lecture 12-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Load/Store Queue

Operates as a circular FIFO
Loads and store instructions are
stored in program order
- allocate on dispatch
- de-allocate on retirement

Issue to address unit in register
dataflow order
A matrix records memory address
dependence (also considers
relative age of entries)
- store ops are held until retirement
- load ops are issued when no

dependency exists (all older store
addresses must be known)

address
calculation+
translation

CMU 18-747
Lecture 12-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Load Bypassing
Loads can be allowed to bypass older stores if no
aliasing is found
- Older stores’ addresses must be computed before loads can

be issued to allow checking for RAW

Alternatively, a load can assume no aliasing and
bypass older stores speculatively
- validation of no aliasing with previous stores must be done

and provide mechanism for reversing the effect

Stores are kept in ROB and LD/Store address queue
until all older instructions have completed
At completion time, a store is moved to the Store
Buffer to wait for turn to access cache

Store is consider completed. Latency beyond this
point has little effect on the processor throughput

CMU 18-747
Lecture 12-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Store Buffer

ROB

Store
Buffer

Speculative State

Committed State

Cache &
Memory System

Once a store enters the
store buffer, its effect
cannot be undone
Must also be check by load
bypassing and forwarding

CMU 18-747
Lecture 12-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Load Forwarding

If a pending load is RAW dependent on an earlier
store still in the store buffer, it need not wait till the
store is issued to the data cache

Forward from which store?
Storei(a, v) << Storek(a, v’) << Loadj(a)

The load can be directly satisfied from the store
buffer if both load and store addresses are valid and
the data is available in the store buffer

This avoids the latency of accessing the data cache

Very important for x86 processors. Why?

CMU 18-747
Lecture 12-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Memory Ordering for
Shared Memory Multiprocessors

Consider these two programs running to two
processors that communicate via shared memory

Can the order of Loads and Stores be swapped
during dynamic execution?

Proc A:
MEM[Y] is initially 1
……
compute V
Store (X, V)
Store (Y, 0)
……

Proc B:
……
do {

lock=Load Y
while (lock)
data = Load X
……

Much more to come on this later!!

