
18-747 Lecture 6:
Modern Micro-Dataflow

James C. Hoe
Dept of ECE, CMU

September 17, 2001

Reading Assignments: MJ Ch7, Last Wednesday’s and today’s handout

Announcements: HW1 and Project 0 due 2:30 Friday

Handouts: “The MIPS R10000 Superscalar Microprocessor”

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 6-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

In-order State and Precise Interrupt

If an IBM 360/91 instruction
causes an exception, can
we stop the processor in a
precise state?

By the time j executes, k has already updated R4?
How do you rewind the register file to the state just
after i?

Recall, i never even got to update R4!!

Next time, how to maintain an “in-order” state of the
machine. (In-order state = the machine state as
viewed by the first not-yet-completed instruction.)

i: R4 ← R0 x R8
j: R2 ← R0 + R4 Exception!!
k: R4 ← R0 + R8
l: R8 ← R4 x R8

CMU 18-747
Lecture 6-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Modern Enhancements to
Tomasulo’s Algorithm

Tomasulo Modern

Machine Width - Peak IPC = 1 “Peak” IPC = 8

(Structural Dep.) 2 F.P. functional. units 6-10 functional units

Single CDB Many forwarding buses

Anti-Dep. - Operand copying Renamed register

Output Dep. - Reserv. Station Tag Renamed register

True Data Dep. - Tag-based forwarding Tag-based forwarding

Exceptions - Imprecise Precise (Require ROB)

CMU 18-747
Lecture 6-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Out-of-Order Machine State

R7 ⇐ D
R4 ⇐ E

R8 ⇐ G
R3 ⇐ H

R4 ⇐ E
R3 ⇐ F
R8 ⇐ G
R3 ⇐ H

R3 ⇐ A

R8 ⇐ C
R7 ⇐ D

R3 ⇐ A
R7 ⇐ B
R8 ⇐ C
R7 ⇐ D
R4 ⇐ E
R3 ⇐ F
R8 ⇐ G
R3 ⇐ H

Architectural
State:

Look-ahead
State:

Inorder
State:

Instruction
Sequence:

gray=dispatched but not yet executed instructions

CMU 18-747
Lecture 6-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Dispatch Buffer

Reservation

Dispatch

Complete

Stations

Compl. Buffer

Branch

Reg. File Ren. Reg.

Forwarding
results to
Res. Sta. &

Allocate
Reorder
Buffer
entries

Reg. Write Back

rename

Managed as a queue;
Maintains sequential order
of all Instructions in flight
(“takeoff” = dispatching;
 “landing” = completion)

(Reorder Buff.)

Integer Integer Float.- Load/
Point Store

registers

Elements of Modern Micro-dataflow
in

or
de

r
ou

t-o
f-o

rd
er

in
or

de
r

CMU 18-747
Lecture 6-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Steps during Dynamic Execution
DISPATCH:
- Read operands from Register File (ARF) and/or Rename Register

File (RRF) (RRF may return value or Tag)
- Allocate new RRF entry and rename destination register to it
- Allocate Reorder Buffer (ROB) entry
- Advance instruction to appropriate Reservation Station (RS)

EXECUTE:
- RS entry monitors result bus for rename register Tag(s) to latch in

pending operand(s)
- When all operands ready, issue instruction into Functional Unit

(FU) and deallocate RS entry (no further stalling in execution pipe)
- When execution finishes, broadcast result to waiting RS entries

and RRF entry
COMPLETE:
- When ready to commit result into “in-order” state:

1. Update architectural register from RRF entry, deallocate RRF
entry, and if it is a store instruction, advance it to Store Buffer

2. Deallocate ROB entry and instruction is considered
architecturally completed

CMU 18-747
Lecture 6-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Metaflow Lightning SPARC Processor

Superscalar fetch, issue, and execution
Micro-dataflow instruction scheduling
register renaming + memory renaming
Speculative execution with rapid rewinding
Precise Interrupts

circa 1991

Claim: “Factor of 2-3 performance advantage from
architecture”

CMU 18-747
Lecture 6-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Metaflow Datapath

ICache

issue

DRIS
(Renaming + Reservation
Stations + Reorder Buff.)

Retire

Scheduler

Register File

Branch Pred.

Speculative State

In-order State

CMU 18-747
Lecture 6-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Metaflow DRIS

Deferred-scheduling Register-renaming Instruction Shelf
(i.e. ROB + Rename Table + Reservation Stations)
A storage array with multiported RAMs and CAMs
(a.k.a. a very-very complicated register-file like thing)
A DRIS entry is maintained for every instruction in flight.

Lock1 RN1 ID1
Source 1

Lock2 RN2 ID2
Source 2

latest RD Data
Destination

Dispatched Fxn Unit Executed
Status

PC

CMU 18-747
Lecture 6-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

DRIS

Circular Queue Structure
Instructions stored in original

program order
New entries are allocated at the
head of the queue as new
instructions are issued
Entries are committed in-order
from the tail of the queue to the
register file and memory youngest

oldest

0
1
2
3
.
.
.
.
.

n-1
n

CMU 18-747
Lecture 6-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Issue*: (Rename+Decode)

A new ID (aka Tag) is allocated to each instruction
when issued into DRIS

ID is the index of the allocated DRIS entry location

The ID is used to refer to the result of that instruction

Register operand lookup, add rd, rs, rt
1. Search DRIS to see if an older instruction has rs or rt as its

destination. If so, rename the sources by setting the ID field.
2. If renamed, check to see if data are ready. If not, set the locked

bit.

Lock1 RN1 ID1
Source 1

Lock2 RN2 ID2
Source 2

latest RD Data
Destination

CMU 18-747
Lecture 6-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Associative Lookup

invalid RDlatest

invalid RDlatest

valid RDlatest

valid RD

valid RD

valid RD

invalid RD

invalid RD

latest

latest

latest

latest

latest

rs

=

tail
pointer

head
per

Return
My Tag

=

=

=

=

=

CMU 18-747
Lecture 6-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Micro-Dataflow Scheduling

The scheduler dispatches according to
- availability of pending instructions’ operands
- availability of the functional units
- chronological order of the instructions

Find the “oldest” N instructions such that
!locked1[id] && !locked2[id] &&

Dispatched[id]=false && Executed[id]=false &&
notBusy(fxnUnit[id])

Is “oldest-firsrt” always the best strategy?

Dispatch and set Dispatch[id]=true

CMU 18-747
Lecture 6-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Dispatching*: add rd,rs,rt

A dispatched instruction is sent to the functional unit
with its operands and its ID

Operands could come from:
- DRIS: Data[IDx[ID]] speculative state

when DRIS[IDx[ID]] is active
- Register File: RF[RNx[ID]] in-order state

when DRIS[IDx[ID]] is invalid or retired

Lock1 RN1 ID1 Lock2 RN2 ID2 latest RD Data

Dispatched Fxn Unit Executed PC

CMU 18-747
Lecture 6-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scheduling Memory Operations
Memory data dependence (RAW, WAR, WAW)
When to start a load instruction (on a uniprocessor)?
- no more older store instructions in DRIS or
- must know the addresses of all older stores in

DRIS or
- load speculatively and just reload if RAW hazard

Storing to memory irrevocably changes the in-order
machine state, therefore, a store instruction can only
be executed when
- it is the oldest instruction in DRIS or
- all instructions before the store have completed

and thus can no longer cause exceptions
(no unresolved/predicted branches)

CMU 18-747
Lecture 6-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Update

A Fxn unit returns both the result and the associated ID
The DRIS entry is updated

Data[ID]=result ;
Executed[ID]=true ;

Enable other instructions that uses this result
if (ID1[id]==ID) Locked1[id]=false;
if (ID2[id]== ID) Locked2[id]= false;

Lock1 RN1 ID1 Lock2 RN2 ID2 latest RD Data

CMU 18-747
Lecture 6-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Retire

Instructions retires strictly in-order from the oldest
entry of the DRIS

Data[retiree] is written (aka. committed) to the
register file

(speculative ⇒ in-order state)

Store instructions are only executed when retiring
from DRIS

CMU 18-747
Lecture 6-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

youngest

oldest

Precise Exceptions

Discard all DRIS entries
younger than the offending
instruction

How about older instruction
that hasn’t finished yet?

When to start executing
the interrupt handler?
- Performance
- Protection
- An earlier exception?

This works on branch misprediction too!!

youngest

oldest

youngest

oldest

youngest

oldest

exception

CMU 18-747
Lecture 6-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

To support N-way issue into DRIS per cycle
- Nx3 simultaneous 5-bit associative lookups

To support N-way dispatch per cycle
- 1 prioritized associative lookup of N entries
- Nx2 indexed lookup in DRIS
- Nx2 indexed lookup in the GPR

To support N-way update per cycle
- N indexed write to DRIS
- Nx2 associative lookup and write in DRIS

To support N-way retire per cycle
- N indexed lookup in DRIS
- N indexed write to GPR

The Cost of Implementing DRIS

CMU 18-747
Lecture 6-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Dispatch Buffer

Reservation

Dispatch

Complete

Stations

Compl. Buffer

Branch

Reg. File Ren. Reg.
Allocate
Reorder
Buffer
entries

Reg. Write Back

(Reorder Buff.)

Integer Integer Float.- Load/
Point Store

Decentralized Reordering Structure
in

or
de

r
ou

t-o
f-o

rd
er

in
or

de
r

CMU 18-747
Lecture 6-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Renaming Alternatives

Number of rename registers
Organization of rename registers
- Separate rename register file
- Pooled architectural/rename register file

Allocation of rename registers
- Fixed for each architectural register
- Shared by all architectural registers

Physical Location of rename registers
- Attached to the architectural register file
- Attached to the reorder buffer

Methods for rename lookup

CMU 18-747
Lecture 6-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Renaming Mechanisms

Data Busy Tag

Data Valid

RRF

Register
specifier

Operand read

Next entry
to complete

Next entry
to be allocated

ARF Map Table

What happens when you get an exception?

CMU 18-747
Lecture 6-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

FPU Register Renaming

Map table
32 x 6

32 33 34 35 36 37 38 39
Free List

head tail

tail
head

Pending Target Return Queue

FAD 3 2 1 FAD 3 2 1
OP T S1 S2 S3 OP T S1 S2 S3

Register Renaming in the RS/6000

Incoming FPU instructions pass through a renaming table prior to decode
Physical register names only within the FPU!!

32 architectural registers ⇒ 40 physical registers
Complex control logic maintains active register mapping

