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Trace Scheduling [Josh Fisher]

Generate multi-basic block traces based on profiling 
information
- find the most often executed control path

List schedule a trace at a time
- optimize the execution of the trace (common case)
- fix any problem with off-trace paths as necessary (infrequently 

executed)

Good for very biased and predictable branching 
behavior
Trace scheduling engendered the VLIW architecture 
innovation and was implemented in the Multiflow TRACE 
compiler, which provided the basis for superscalar 
compilation techniques now being used by Intel, HP, and 
DEC
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Trace Scheduling Overview

Trace Selection
- select seed (the highest frequency basic block)
- extend trace  (along the highest frequency edges)

forward (successor of the last block of the trace)
backward (predecessor of the first block of the trace)

- don’t cross loop back edge
- bound max_trace_length heuristically

Trace Scheduling
- build data precedence graph for a whole trace
- perform list scheduling and allocate registers
- add compensation code to maintain semantic correctness

Speculative Code Motion (upward)
- Move an instruction above branches if safe
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Compensation Code for Downward Motion
Split Compensation Code:
- Instruction with more than one successor (conditional 

branch)

Join Compensation Code:
- Instruction with more than one predecessor
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Copied Split Instruction
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Trace Scheduling Example

beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6 fsub  f2, f3, f7st.d  f2, 0(r8)

add  r8, r8, 4
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fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4
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Compensation Code Example

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code
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Compensation Code Example

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code
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Compensation Code Example

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split
add  r2, r2, 4
beq  r2, $0
fsub  f2,  f2,  f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions
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Compensation Code Illustration
fdiv  f1,  f2,  f3

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5
ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6
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Register Binding
Perform register allocation for a trace
• After scheduling a trace, do register allocation
+ Most frequently executed traces have maximum freedom of 

register usage
- Do not use graph coloring due to inappropriate framework

x = 

x

x = 

x

x  --->  r1 x  --->  r2
move  r1,  r2
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Superblock Scheduling

Motivation
- Trace scheduling is a good idea
- Maintaining semantic correctness (compensation code) is a 

pain

Superblock
- Trace with one entry point (multiple entries create control 

flow joins)
- May have multiple exits
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Superblock Formation Example

Identify traces using profiling information
Use tail duplication to eliminate side entry points
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Superblock Formation Example
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Superblock Enlarging

Branch Target Expansion
- Expand along likely-taken path

Loop Unrolling & Loop Peeling
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ILP Optimization

Basic Block Size
Average Block Size:

Basic block: 3 instructions
Superblock-original: 4 instructions
Superblock-formation: 10 instructions
Superblock-enlargement: 13 instructions

Dependence Elimination
- Code transformations to eliminate data dependencies
- Give code scheduler more freedom to move instructions
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Operand Migration

Move instructions whose results are not used within 
trace to less frequently executed paths

x = 

x

x = 

x
x = 
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Induction Variable Expansion
Eliminate redefinitions of induction variables within 
unrolled loops
Insert code to maintain semantic correctness

i = 0

i = i +1

i = i +1

a[ i ]

a[ i ]

i = 0

i = i +2

k = k +2

a[ i ]

a[ k ]

k = 1

use i

i = i - 1

i = k - 1

use i
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Accumulator Variable Expansion
Accumulate a sum or product in each iteration
Insert code to maintain semantic correctness
May not be safe for floating point

sum = 0

sum = sum + t

sum = sum + t’

t = ...

t’ = ...

use sum
use sum

sum = 0

sum = sum + t

k = k + t’

t = ...

t’ = ...

k = 0

sum = sum + k
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Symbolic Memory Disambiguation
Simple Example:

It is easy to determine at 
compile time that a and b
have different addresses. 
It is also easy to determine if 
they are in separate memory 
banks.

Symbolic analysis of the source code (or the dataflow graphs) 
answers these questions
The scheduler then embeds this information within the program

More complex situations arise when arrays or pointers are used:
– Is a[j] independent of a[j+k]?
– Is a[j] independent of b[j]?

– Is a[j] independent of a[j+1]?
– Is a[j] independent of *msg?

load r1, r29+_a
load r2, r29+_b
add  r3, r1, r2
store r0+_c, r3

c = a + b;
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Predicated Execution
Predicated Execution  removes 
branches by conditionally 
executing operations
Removing branches combines 
multiple basic blocks into larger 
basic blocks
Branch related stalls are 
eliminated
Additional opportunities for 
scheduling optimizations appear

Example: if (x<y) then 
z+=x;

else
z+=y;

x=i+j;
y=k+m;
w=x+y;

cc=(x<y)

branch (cc)

z+=xz+=y

x=i+j
y=k+m

w=x+y

Traditional
Branching

cc=(x<y)

if ( cc ) z+=y
x=i+j

y=k+m

w=x+y

if ( cc  ) z+=x

Predicated
Execution

Execution time is reduced from 
5 cycles to 3 cycles.
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Speculative Execution
Speculative Execution involves computing results 
before it is known if they will be used in the program.

cc=(x<y)

branch (cc)

z=z1z=z2

x=i+j
y=k+m

w=x+y

Speculative
Execution

z1=z+x
z2=z+y

cc=(x<y)

if ( cc ) z=z1
if ( cc ) z=z2 

x=i+j
y=k+m

w=x+y

Speculative
& Predicated

z1=z+x
z2=z+y

cc=(x<y)

branch (cc)

z+=xz+=y

x=i+j
y=k+m

w=x+y

No Speculative
Execution
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Superblock List Scheduling

Restricted percolation
- No architecture support
- Instructions that could cause exceptions are not moved 

beyond branches
- Memory load/store, integer divide and floating point 

instructions

General percolation
- Architecture support (non-trapping instructions)
- Write garbage value when exceptions occur for non-trapping 

instructions
We will see this when we discuss Intel EPIC
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Compiler/Hardware Interactions

[B. Rau & J. Fisher, 1993]

Front end & Optimizer

Determine Depend.

Determine Independ.

Bind Resources

Execute

Bind Resources

HardwareCompiler

Sequential
(Superscalar)

Dependence
Architecture

(Dataflow)

Independence
Architecture
(Attached

Array
Processor)

Independence
Architecture
(Intel EPIC)

Determine Independ.

Determine Depend.

DSI
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Attached Array Processors
The FPS-120B (1975) and FPS-164 (1980) were 
early user programmable microcoded engines 64-bit 
instruction word

contained ten fields
called parcels - each
specified one operation.

- six functional units
executed the instructions

- Data path topology is optimized 
for vector (or array) dot products, 
FFT, and convolution

A FORTRAN compiler could schedule vectorizable 
loops with software pipelining.
Most users relied on hand-coded library routines 
(supplied by the manufacturer) 

Peak performance was 12MFLOPS.

ADDER MULT

Auxiliary 
Memory

Main 
Memory

X Data 
Registers

Y Data 
Registers



CMU 18-747
Lecture 18-26
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Principles of VLIW Operation
Statically scheduled ILP architecture.
Wide instructions specify many independent simple operations.

Multiple functional units executes all of the operations in an 
instruction concurrently, providing fine-grain parallelism within 
each instruction
Instructions directly control the hardware with no interpretation 
and minimal decoding.
A powerful optimizing compiler is responsible for locating and 
extracting ILP from the program and for scheduling operations to
exploit the available parallel resources

The processor does not make any run-time control decisions 
below the program level

VLIW Instruction
100 - 1000 bits
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VLIW Execution Characteristics

Basic VLIW architectures are a generalized form of horizontally 
microprogrammed machines

Functional
Unit

Global Multi-Ported Register File

Instruction 
Memory

Functional
Unit

Functional
Unit

Functional
Unit

Sequencer
Condition Codes


