
18-747 Lecture 19:
Very Long Instruction Word Architectures

James C. Hoe
Dept of ECE, CMU
November 7, 2001

Reading Assignments: papers below

Announcements: Project 2 (and HW3) due on coming Friday (coming Monday)

Handouts: Itanium Processor Microarchitecture, Sharangpani & Arora
The Technology Behind Crusoe Processors, Transmeta Corp.
The Intel IA-64 Compiler Code Generator, Bharadwaj, et al.
Continuous Program Optimization: Design and Evaluation,

Kistler & Franz
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 19-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

What Is VLIW?
VLIW hardware is simple and straightforward, like
SIMD machines.
While SIMD broadcasts one instruction, VLIW
separately directs each functional unit

add r1,r2,r3

FU FU FU FU

add r1,r2,r3

FU FU FU FU

load r4,r5+4 mov r6,r2 mul r7,r8,r9

SIMD
Instruction
Execution

VLIW
Instruction
Execution

CMU 18-747
Lecture 19-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Historical Perspective:
Microcoding, nanocoding (and RISC)

micro
sequencer

microcode
store

datapath control

Macro
Instructions

nanocode
store

datapath control

CMU 18-747
Lecture 19-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Horizontal Microcode and VLIW

A generation of high-performance, application-specific
computers relied on horizontally microprogrammed
computing engines.

Aggressive (but tedious) hand programming at the
microcode level provided performance well above
sequential processors.

Microsequencer
(2910) Microcode Memory

Bit
Slice
ALU

Bit
Slice
ALU

Bit
Slice
ALU

CMU 18-747
Lecture 19-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Principles of VLIW Operation
Statically scheduled ILP architecture.
Wide instructions specify many independent simple operations.

Multiple functional units executes all of the operations in an
instruction concurrently, providing fine-grain parallelism within
each instruction
Instructions directly control the hardware with no interpretation
and minimal decoding.
A powerful optimizing compiler is responsible for locating and
extracting ILP from the program and for scheduling operations to
exploit the available parallel resources

The processor does not make any run-time control decisions
below the program level

VLIW Instruction
100 - 1000 bits

CMU 18-747
Lecture 19-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Formal VLIW Models
Josh Fisher proposed the first VLIW machine at Yale (1983)
Fisher’s Trace Scheduling algorithm for microcode
compaction could exploit more ILP than any existing
processor could provide.
The ELI-512 was to provide massive resources to a single
instruction stream
- 16 processing clusters- multiple functional units/cluster.
- partial crossbar interconnect.
- multiple memory banks.
- attached processor – no I/O, no operating system.

Later VLIW models became increasingly more regular
- Compiler complexity was a greater issue than originally envisioned

CMU 18-747
Lecture 19-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Ideal Models for VLIW Machines
Almost all VLIW research has been based upon an
ideal processor model.
This is primarily motivated by compiler algorithm
developers to simplify scheduling algorithms and
compiler data structures.
- This model includes:

• Multiple universal functional units
• Single-cycle global register file

and often:
• Single-cycle execution
• Unrestricted, Multi-ported memory
• Multi-way branching

and sometimes:
• Unlimited resources (Functional units, registers, etc.)

CMU 18-747
Lecture 19-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW Execution Characteristics

Basic VLIW architectures are a generalized form of horizontally
microprogrammed machines

Functional
Unit

Global Multi-Ported Register File

Instruction
Memory

Functional
Unit

Functional
Unit

Functional
Unit

Sequencer
Condition Codes

CMU 18-747
Lecture 19-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW Design Issues

Unresolved design issues
- The best functional unit mix
- Register file and interconnect topology
- Memory system design
- Best instruction format

Many questions could be answered through
experimental research
- Difficult - needs effective retargetable compilers

Compatibility issues still limit interest in general-purpose
VLIW technology

However, VLIW may be the only way to build 8-16
operation/cycle machines.

CMU 18-747
Lecture 19-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Realistic VLIW Datapath

FAdd
(1 cycle)

Multi-Ported Register File

Instruction
Memory

FMul
4 cyc pipe

FMul
4 cyc unpipe

FDiv
16 cycle

Sequencer
Condition Codes

Multi-Ported Register File

No Bypass!!
No Stall!!

CMU 18-747
Lecture 19-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scheduling for Fine-Grain Parallelism

The program is translated into primitive RISC-style
(three address) operations
Dataflow analysis is used to derive an operation
precedence graph from a portion of the original
program
Operations which are independent can be scheduled
to execute concurrently contingent upon the
availability of resources
The compiler manipulates the precedence graph
through a variety of semantic-preserving
transformations to expose additional parallelism

CMU 18-747
Lecture 19-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example

Original Program 3-Address Code

Dependency Graph

VLIW Instructions

e = (a + b) * (c + d)
b++;

A: r1 = a + b
B: r2 = c + d
C: e = r1 * r2
D: b = b + 1

B

C

A

D

00: add a,b,r1 add c,d,r2 add b,1,b

01: mul r1,r2,e nop nop

CMU 18-747
Lecture 19-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW List Scheduling
Assign Priorities
Compute Data Ready List - all operations whose predecessors
have been scheduled.
Select from DRL in priority order while checking resource
constraints
Add newly ready operations to DRL and repeat for next instruction

1
5

4
3

2
2

5
3

7
2

3
3

8
2

12
2

9
3

13
1

10
1

11
1

6
4

{13}13

{10,11,12}111012

{2,7,8,9}8729

{2,3,4,5,6}5436

{1}1

Data Ready List4-wide VLIW

CMU 18-747
Lecture 19-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Enabling Technologies for VLIW

VLIW Architectures achieve high performance
through the combination of a number of key enabling
hardware and software technologies.
- Optimizing Schedulers (compilers)
- Static Branch Prediction
- Symbolic Memory Disambiguation
- Predicated Execution
- (Software) Speculative Execution
- Program Compression

CMU 18-747
Lecture 19-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Strengths of VLIW Technology
Parallelism can be exploited at the instruction level
- Available in both vectorizable and sequential programs.

Hardware is regular and straightforward
- Most hardware is in the datapath performing useful

computations.
- Instruction issue costs scale approximately linearly

Potentially very high clock rate

Architecture is “Compiler Friendly”
- Implementation is completely exposed - 0 layer of interpretation
- Compile time information is easily propagated to run time.

Exceptions and interrupts are easily managed
Run-time behavior is highly predictable
- Allows real-time applications.
- Greater potential for code optimization.

CMU 18-747
Lecture 19-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Weaknesses of VLIW Technology

No object code compatibility between generations
Program size is large (explicit NOPs)

Multiflow machines predated “dynamic memory
compression” by encoding NOPs in the instruction memory

Compilers are extremely complex
- Assembly code is almost impossible

Philosophically incompatible with caching techniques
VLIW memory systems can be very complex
- Simple memory systems may provide very low performance
- Program controlled multi-layer, multi-banked memory

Parallelism is underutilized for some algorithms.

CMU 18-747
Lecture 19-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW vs. Superscalar [Bob Rau, HP]

nomaybe
(Resv. Stations)

Runtime instruction reordering

maybe
(iteration frames)

maybe
(renaming)

Runtime register allocation

occasionallymaybeRun-time analysis of memory
dependencies

noyesRun-time analysis of register
dependencies

noyesInstruction stream parsing

yesnoMultiple operations/instruction

yesyesMultiple instructions/cycle
VLIWSuperscalarAttributes

CMU 18-747
Lecture 19-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Real VLIW Machines
VLIW Minisupercomputers/Superminicomputers:
- Multiflow TRACE 7/300, 14/300, 28/300 [Josh Fisher]
- Multiflow TRACE /500 [Bob Colwell]
- Cydrome Cydra 5 [Bob Rau]
- IBM Yorktown VLIW Computer (research machine)

Single-Chip VLIW Processors:
- Intel iWarp, Philip’s LIFE Chips (research)

Single-Chip VLIW Media (through-put) Processors:
- Trimedia, Chromatic, Micro-Unity

DSP Processors (TI TMS320C6x)

Intel/HP EPIC IA-64 (Explicitly Parallel Instruction Comp.)
Transmeta Crusoe (x86 on VLIW??)
Sun MAJC (Microarchitecture for Java Computing)

CMU 18-747
Lecture 19-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Why VLIW Now?

Nonscalability of Superscalar Processor
- ILP and complexity

Better compilation technology

Data
CacheInstruction

Cache

CPU

Data
Cache

Instruction
Cache

16 IPC

(1MB) (1.5MB)

VLIW CPU

1 Billion Transistor
Superscalar Processor

1 Billion Transistor
VLIW Processor

CMU 18-747
Lecture 19-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Performance Obstacles of Superscalars

Branches
- branch prediction helps, but penalty is still significant
- limits scope of dynamic and static ILP analysis + code motion

Memory Load Latency
- CPU speed increases at 60% per year
- memory speed increases only 5% per year

Memory Dependence
- disambiguation is hard, both in hardware and software

Sequential Execution Semantics ISAs
- total ordering of all the instructions
- implicit inter-instruction dependences

Very expensive to implement wide dynamic superscalars

CMU 18-747
Lecture 19-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Intel/HP EPIC/IA-64 Architecture

EPIC (Explicitly Parallel Instruction Computing)
- An ISA philosophy/approach

e.g. CISC, RISC, VLIW
- Very closely related to but not the same as VLIW

IA-64
- An ISA definition

e.g. IA-32 (was called x86), PA-RISC
- Intel’s new 64-bit ISA
- An EPIC type ISA

Itanium (was code named Merced)
- A processor implementation of an ISA

e.g. P6, PA8500
- The first implementation of the IA-64 ISA

CMU 18-747
Lecture 19-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

IA-64 EPIC vs. Classic VLIW
Similarities:
- Compiler generated wide instructions
- Static detection of dependencies
- ILP encoded in the binary (a group)
- Large number of architected registers

Differences:
- Instructions in a bundle can have dependencies
- Hardware interlock between dependent instructions
- Accommodates varying number of functional units and

latencies
- Allows dynamic scheduling and functional unit binding

Static scheduling are “suggestive” rather than absolute
⇒Code compatibility across generations

but software won’t run at top speed until it is recompiled so
“shrink-wrap binary” might need to include multiple builds

CMU 18-747
Lecture 19-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Project 3 Ideas
How to get 15% more performance
- better branch prediction
- better instruction and data prefetching
- value prediction
- out-of-order/speculative load
- better trace cache

How to get good performance-to-cost ratio
- start with an “effective” mechanism

Concentrate on the bottleneck!!
- eliminate excess

Good places to start looking for ideas are Proceedings of ISCA
(International Symposium on Computer Architecture) and Micro
(International Symposium on Microarchitecture). Papers can be
downloaded from http://ieeexplore.ieee.org using any CMU
machine. Make sure you cite the sources in your report.

CMU 18-747
Lecture 19-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

What to Do?
Just twiddling “baseline8” parameters won’t get you
15%
But, you most likely will have to tune the machine
parameters to get the full benefit of whatever
mechanisms you elect to add
Hint: don’t run the full benchmarks for all tuning runs.

Use representative sample sections instead!!
Once you achieved 15% performance gain, tune some
more for lower cost
10% Early Bonus
- report due 12/5, presentation due 12/7

5% Presentation Bonus (must also earn early bonus)
- selected for presentation on 12/10

