
18-747 Lecture 8:
Instruction Flow

James C. Hoe
Dept of ECE, CMU

September 24, 2001

Reading Assignments: S&L Ch3 82-107, MJ Ch4 and Ch5, paper below

Announcements: Exam 1 on October 15th

Handouts: “Combining Branch Predictors”, Scott McFarling

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 8-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

CMU 18-747
Lecture 8-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Fetch Buffer

Fetch buffer smoothes out the rate mismatch
between fetch and execution
- neither the fetch bandwidth nor the execution bandwidth is

consistent

Fetch bandwidth should be higher than execution
bandwidth
- we prefer to have a stockpile of instructions in the buffer to

hide cache miss latencies. This requires both raw cache
bandwidth + control flow speculation

Fetch
Unit

Out-of-order
Core

CMU 18-747
Lecture 8-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Flow Bandwidth

CMU 18-747
Lecture 8-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Cache Basic

R
ow

 D
ec

od
er

111

001
000

PC=..xxRRRCC00

Mutiplexer

00 01 10 11

Instruction
example: 4 instructions per cache line

CMU 18-747
Lecture 8-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Spatial Locality and Fetch Bandwidth

R
ow

 D
ec

od
er

111

001
000

00 01 10 11

Inst0 Inst1 Inst2 Inst3

PC=..xxRRRCC00

CMU 18-747
Lecture 8-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

00 01 10 11

Fetch Group Miss Alignment

R
ow

 D
ec

od
er

111

001
000

PC=..xx0000100

Inst0 Inst1 Inst2

Inst3??

Cycle i

Cycle i+1

CMU 18-747
Lecture 8-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

IBM RS/6000 Auto-alignment

A0
A4
A8
A12

B0
B4
B8
B12

0
1
2
3

255

mux

T
logic

A1
A5
A9
A13

B1
B5
B9
B13

0
1
2
3

255

T
logic

A2
A6

A10
A14

B2
B6
B10
B14

0
1
2
3

255

A3
A7

A11
A15

B3
B7
B11
B15

0
1
2
3

255

mux

TLB
hit

control
logic

and
buffer

Odd
Directory
Sets
A & B

Even
Directory
Sets
A & B

Instruction buffer network

Interlock,
dispatch,
branch,
execution,
logic

D

D

D

D

In
st

ru
c t

io
n

n+
2

I n
st

r u
ct

i o
n

n+
3

In
st

ru
ct

io
n

n+
1

In
st

ru
c t

io
n

n

IFAR

mux mux

T
logic

- 2-way set associative I-Cache, 8 256-inst SRAM modules
- 16 instruction per cache line (**What is a cache line?)

CMU 18-747
Lecture 8-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Decoding Issues

Primary tasks:
- Identify individual instructions
- Determine instruction types
- Detect inter-instruction dependences

Two important factors:
- Instruction set architecture
- Width of parallel pipeline

CMU 18-747
Lecture 8-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Intel Pentium Pro Fetch/Decode Unit

Instruction Buffer 16 bytes

x86 Macro-Instruction Bytes from IFU

Decoder
0

Decoder
1

Decoder
2

Branch
Address

Calc.

To Next
Address

Calc.

4 uops 1 uop 1 uop

Up to 3 uops Issued to dispatch

uop Queue (6)

uROM

CMU 18-747
Lecture 8-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Predecoding in the AMD K5

I-Cache

ROP1 ROP2 ROP3 ROP4

128 + 80

64

From Memory

Up to 4 ROP’s

Predecode
Logic

64 + 40

8 Instruction Bytes

8 Instr. Bytes +

16 Instr. Bytes +

Decode, Translate
and Dispatch

Byte1 Byte2 Byte8

5 Bits

Byte1 Byte2 Byte8• • •

• • •

5 Bits 5 Bits

Predecode Bits

Predecode Bits

Predecoding is also useful for
RISC ISAs!!

Cost: cache size, refill time

CMU 18-747
Lecture 8-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Control Dependence

CMU 18-747
Lecture 8-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

IBM’s Experience on Pipelined Processors
[Agerwala and Cocke 1987]

Code Characteristics (dynamic)
- loads - 25%
- stores - 15%
- ALU/RR - 40%
- branches - 20%

• 1/3 unconditional (always taken)
unconditional - 100% schedulable

• 1/3 conditional taken
• 1/3 conditional not taken

conditional - 50% schedulable

CMU 18-747
Lecture 8-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Control Flow Graph
Shows possible paths of control flow through basic
blocks

Control Dependence
- Node X is control dependant on Node Y if the computation in

Y determines whether X executes

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

CMU 18-747
Lecture 8-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Mapping CFG to
Linear Instruction Sequence

A A

B

B

A

B
C

D
D

C

C

D

CMU 18-747
Lecture 8-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Types and Implementation

Types of Branches
- Conditional or Unconditional?
- Subroutine Call (aka Link), needs to save PC?
- How is the branch target computed?

• Static Target e.g. immediate, PC-relative
• Dynamic targets e.g. register indirect

Conditional Branch Architectures
- Condition Code ‘N-Z-C-V’ e.g. PowerPC
- General Purpose Register e.g. Alpha, MIPS
- Special Purposes register e.g. Power’s Loop Count

CMU 18-747
Lecture 8-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Condition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

CMU 18-747
Lecture 8-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Target Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

CMU 18-747
Lecture 8-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

What’s So Bad About Branches?

Performance Penalties
- Use up execution resources
- Fragmentation of I-Cache lines
- Disruption of sequential control flow

• Need to determine branch direction (conditional
branches)

• Need to determine branch target

Robs instruction fetch bandwidth and ILP

CMU 18-747
Lecture 8-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Riseman and Foster’s Study

7 benchmark programs on CDC-3600
Assume infinite machine:
- Infinite memory and instruction stack, register file, fxn units

Consider only true dependency at data-flow limit

If bounded to single basic block, i.e. no bypassing of
branches ⇒ maximum speedup is 1.72
Suppose one can bypass conditional branches and
jumps (i.e. assume the actual branch path is always
known such that branches do not impede instruction
execution)

Br. Bypassed: 0 1 2 8 32 128
Max Speedup: 1.72 2.72 3.62 7.21 24.4 51.2

CMU 18-747
Lecture 8-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Determining Branch Direction

Problem: Cannot fetch subsequent instructions until branch
direction is determined

Minimize penalty
- Move the instruction that computes the branch condition

away from branch (ISA&compiler)

Make use of penalty
- Bias for not-taken
- Fill delay slots with useful/safe instructions (ISA&compiler)
- Follow both paths of execution (hardware)
- Predict branch direction (hardware)

CMU 18-747
Lecture 8-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Determining Branch Target

Problem: Cannot fetch subsequent instructions until
branch target is determined

Minimize delay
- Generate branch target early in the pipeline

Make use of delay
- Bias for not taken
- Predict branch target

PC-relative vs Register Indirect targets

CMU 18-747
Lecture 8-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Prediction
Target Address Generation
- Access register

• PC, GP register, Link register
- Perform calculation

• +/- offset, auto incrementing/decrementing

⇒ Target Speculation

Condition Resolution
- Access register

• Condition code register, data register, count register
- Perform calculation

• Comparison of data register(s)

⇒ Condition Speculation

CMU 18-747
Lecture 8-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Condition Speculation
Biased For Not Taken
- Does not affect the instruction set architecture
- Not effective in loops

Software Prediction
- Encode an extra bit in the branch instruction

• Predict not taken: set bit to 0
• Predict taken: set bit to 1

- Bit set by compiler or user; can use profiling
- Static prediction, same behavior every time

Prediction Based on Branch Offsets
- Positive offset: predict not taken
- Negative offset: predict taken

Prediction Based on History

CMU 18-747
Lecture 8-25
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

nPC to Icache

nPC(seq.) = PC+4
PCBranch

Predictor
(using a BTB)

specu. target

BTB
update

prediction

(target addr.
and history)

specu. cond.

FA-mux

nPC=BP(PC)

What should this
really look like
for a superscalar?

CMU 18-747
Lecture 8-26
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

A small “cache-like” memory in the instruction fetch stage

Remembers previously executed branches, their addresses,
information to aid prediction, and most recent target
addresses
Instruction fetch stage compares current PC against those
in BTB to “guess” nPC
- If matched then prediction is made else nPC=PC+4
- If predict taken then nPC=target address in BTB else nPC=PC+4

When branch is actually resolved, BTB is updated

Branch Target
(Most Recent)

Branch
History

Branch Inst.
Address (tag)

………….…….

Branch Target Buffer (BTB)

current
PC

CMU 18-747
Lecture 8-27
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

UCB Study [Lee and Smith, 1984]
Benchmarks
- 26 programs (traces on IBM 370, DEC PDP-11, CDC 6400)
- Use trace-driven simulation with parameterized machine models

Branch types
- Unconditional: always taken or always not taken
- Subroutine call: always taken
- Loop control: usually taken (loop back)
- Decision: either way, e.g. IF-THEN-ELSE
- Computed GOTO: always taken, with changing target
- Supervisor call: always taken
- “Execute”: always taken (IBM 370)

Branch behavior: Taken vs Not Taken

IBM1 IBM2 IBM3 IBM4 DEC CDC Average
T 0.640 0.657 0.704 0.540 0.738 0.778 0.676
NT 0.360 0.343 0.296 0.460 0.262 0.222 0.324

CMU 18-747
Lecture 8-28
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Prediction Function
Based on opcode only (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
66 69 71 55 80 78

Based on history of branch
- Branch prediction function F (X1, X2,)
- Use up to 5 previous branches for history (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
0 64.1 64.4 70.4 54.0 73.8 77.8
1 91.9 95.2 86.6 79.7 96.5 82.3
2 93.3 96.5 90.8 83.4 97.5 90.6
3 93.7 96.7 91.2 83.5 97.7 93.5
4 94.5 97.0 92.0 83.7 98.1 95.3
5 94.7 97.1 92.2 83.9 98.2 95.7

CMU 18-747
Lecture 8-29
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Prediction accuracy approaches maximum with as
few as 2 preceding branch occurrences used as
history

Results (%)
IBM1 IBM2 IBM3 IBM4 DEC CDC
93.3 96.5 90.8 83.4 97.5 90.6

Example Prediction Algorithm

TTT

N

T

NT
T

TNT
TN
T

NN
N

N

T

T

N

T
N

TT
T

last two branches

next prediction

CMU 18-747
Lecture 8-30
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

N

T
N

N

T

TN
Tn?

T

t
T

N

N

T

TN
T

t?

T

T N

n?

tt?

N
N

nn

T N

Other Prediction Algorithms

Combining prediction accuracy with BTB hit rate
(86.5% for 128 sets of 4 entries each), branch
prediction can provide the net prediction accuracy of
approximately 80%. This implies a 5-20%
performance enhancement.

Saturation
Counter

Hysteresis
Counter

CMU 18-747
Lecture 8-31
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

IBM RS/6000 Study [Nair, 1992]

Five different branch types
- b: unconditional branch
- bl: branch and link (subroutine calls)
- bc: conditional branch
- bcr: conditional branch using link register (subroutine

returns)
- bcc: conditional branch using count register (system calls)

Separate branch function unit to overlap of branch
instructions with other instructions

Two causes for branch stalls
- Unresolved conditions
- Branches downstream too close to unresolved branches

CMU 18-747
Lecture 8-32
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Instruction Distribution

% of diff. types of % of bc inst. with
branch instructions: penalty cycles:

Benchmark b bl bc bcr 3 cyc. 2 cyc. 1 cyc.

spice2g6 7.86 0.30 12.58 0.32 13.82 3.12 0.76
doduc 1.00 0.94 8.22 1.01 10.14 1.76 2.02
matrix300 0.00 0.00 14.50 0.00 0.68 0.22 0.20
tomcatv 0.00 0.00 6.10 0.00 0.24 0.02 0.01
gcc 2.30 1.32 15.50 1.81 22.46 9.48 4.85
espresso 3.61 0.58 19.85 0.68 37.37 1.77 0.31
li 2.41 1.92 14.36 1.91 31.55 3.44 1.37
eqntott 0.91 0.47 32.87 0.51 5.01 11.01 0.80

CMU 18-747
Lecture 8-33
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Exhaustive Search for Optimal Predictors
There are 220 possible state machines of 2-bit predictors
Pruning uninteresting and redundant machines leaves 5248
It is possible to exhaustively search and find the optimal predictor for a
benchmark

*

*

*

*

*

predict NT predict T
Benchmark Best Pred. %

spice2g6 97.2

doduc 94.3

gcc 89.1

espresso 89.1

li 87.1

eqntott 87.9

TN

Saturation Counter is near optimal in all cases!

CMU 18-747
Lecture 8-34
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Number of Counter Bits Needed

Branch history table size: Direct-mapped array of 2k entries
Programs, like gcc, can have over 7000 conditional branches
In collisions, multiple branches share the same predictor
Variation of branch penalty with branch history table size level out
at 1024

62.4 (0.142)82.5 (0.063)86.8 (0.048)88.3 (0.042)li

78.4 (0.049)82.9 (0.046)87.2 (0.033)89.3 (0.028)eqntott

58.5 (0.176)87.2 (0.054)89.1 (0.047)89.5 (0.045)espresso

50.0 (0.128)86.0 (0.033)89.1 (0.026)89.7 (0.025)gcc

69.2 (0.022)90.2 (0.004)94.3 (0.003)94.2 (0.003)doduc

76.6 (0.031)96.2 (0.013)97.0 (0.009)97.0 (0.009)spice2g6

0-bit1-bit2-bit3-bit

Prediction Accuracy (Overall CPI Overhead)Benchmark

