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i=0
while (i<99) {

;; a[ i ]=a[ i ]/10
Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry
i++

}

Software Pipelining

i=0
while (i<99) {

Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry

Rx = a[ i+1 ]
Ry = Rx / 10
a[ i+1 ] = Ry

Rx = a[ i+2 ]
Ry = Rx / 10
a[ i+2 ] = Ry

i=i+3
}

Ai

Bi

Ci

i=0
while (i<99) {

Rx = a[ i ]
Ry = Rx / 10
Rx = a[ i+1 ]

a[ i ] = Ry
Ry = Rx / 10
Rx = a[ i+2 ]

a[ i+1 ] = Ry
Ry = Rx / 10
a[ i+2 ] = Ry

i=i+3
}
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i=0
while (i<99) {

;; a[ i ]=a[ i ]/10
Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry
i++

}

Software Pipelining (continued)

i=0
while (i<99) {

Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry

Rx = a[ i+1 ]
Ry = Rx / 10
a[ i+1 ] = Ry

Rx = a[ i+2 ]
Ry = Rx / 10
a[ i+2 ] = Ry

i=i+3
}

i=0
Ry=a[ 0 ] / 10
Rx=a[ 1 ]

while (i<97) {
a[i]=Ry

Ry=Rx / 10

Rx=a[i+2]

i++
}

a[97]=Ry
a[98]=Rx / 10

Ai

Bi

Ci

Ai+2

Bi+1

Ci
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Compiler Structure

Frond End Optimizer Back End

Machine  independent Machine dependent

high-level
source
code

IR machine
code

Dependence
Analyzer

(IR= intermediate representation)

IR
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Code Selection
Map IR to machine instructions (e.g. pattern matching)

ASGI

&a

&b &c

&d MULI

ADDIINDIRI

INDIRI INDIRI

addi  Rt1,  Rb,  Rc
muli  Rt2,  Ra,  Rt1

Inst *match (IR *n) {
switch (n->opcode) {

case MUL :
l = match (n->left());
r = match (n->right());
if (n->type == D || n->type == F )

inst = mult_fp( (n->type == D), l, r );
else

inst = mult_int ( (n->type == I), l, r);
break;

case ADD :
l = match (n->left());
r = match (n->right());
if (n->type == D || n->type == F)

inst = add_fp( (n->type == D), l, r);
else 

inst = add_int ((n->type == I), l, r);
break;

}
return inst;

}

case ……..:

case ……..:
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Code Scheduling
Rearrange code sequence to minimize execution 
time
- Hide instruction latency
- Utilize all available resources 

l.d     f4,  8(r8)
fadd  f5, f4, f6
 l.d     f2, 16(r8)
fsub  f7, f2, f6
fmul f7, f7, f5
s.d     f7, 24(r8)
l.d     f8, 0(r9)
s.d     f8, 8(r9) 

1 stall 

1 stall

3 stalls

1 stall

reorder

l.d     f4,  8(r8)
l.d     f2, 16(r8)
fadd  f5, f4, f6
fsub  f7, f2, f6
fmul f7, f7, f5
s.d     f7, 24(r8)
l.d     f8, 0(r9)
s.d     f8, 8(r9)

3 stalls

1 stall

0 stall
0 stall

l.d     f4,  8(r8)
l.d     f2, 16(r8)
fadd  f5, f4, f6
fsub  f7, f2, f6
fmul f7, f7, f5
l.d     f8, 0(r9)
s.d     f8, 8(r9)
s.d     f7, 24(r8)

0 stalls
1 stall

0 stall
0 stallreorder

(memory dis-ambiguation)
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Register Allocation

Map virtual registers into physical registers 
- minimize register usage to reduce memory accesses
- but introduces false dependencies . . . . .

l.d     f4,  8(r8)
fadd  f5, f4, f6
l.d     f2, 16(r8)
fsub  f7, f2, f6
fmul f7, f7, f5
s.d     f7, 24(r8)
l.d     f8, 0(r9)
s.d     f8, 8(r9) 

l.d     $f0,  8(r8)
fadd  $f2, $f0, $f3
l.d     $f0, 16(r8)
fsub  $f0, $f0, $f3
fmul $f0, $f0, $f2
s.d     $f0, 24(r8)
l.d     $f0, 0(r9)
s.d     $f0, 8(r9) 

$f0

$f2

$f3

f2
f4
f7
f8

f5

f6
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Back End

IR Back End

code
selection

code
scheduling

register
allocation

code
emission

Machine code

Instruction-level IR

• map virtual registers into architect registers
• rearrange code 
• target machine specific optimizations

- delayed branch
- conditional  move
- instruction combining 

auto increment addressing mode
add carrying (PowerPC)
hardware branch (PowerPC)
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Code Scheduling
Objectives:  minimize execution latency of the program
- Start as early as possible instructions on the critical path
- Help expose more instruction-level parallelism to the hardware
- Help avoid resource conflicts that increase execution time

Constraints
- Program Precedences
- Machine Resources

Motivations
- Dynamic/Static Interface (DSI):  By employing more software 

(static) optimization techniques at compile time, hardware 
complexity can be significantly reduced

- Performance Boost:  Even with the same complex hardware, 
software scheduling can provide additional performance 
enhancement over that of unscheduled code
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Precedence Constraints
Minimum required ordering and latency between 
definition and use 
Precedence graph
- Nodes: instructions
- Edges (a→b):  a precedes b
- Edges are annotated with minimum latency

w[i+k].ip = z[i].rp + z[m+i].rp;
w[i+j].rp = e[k+1].rp*

(z[i].rp -z[m+i].rp) -
e[k+1].ip *
(z[i].ip - z[m+i].ip);

FFT  code  fragment

i1: l.s f2, 4(r2) 
i2: l.s f0, 4(r5) 
i3: fadd.s f0, f2, f0 
i4: s.s f0, 4(r6) 
i5: l.s f14, 8(r7)
i6: l.s f6, 0(r2)
i7: l.s f5, 0(r3) 
i8: fsub.s f5, f6, f5 
i9: fmul.s f4, f14, f5 
i10: l.s f15, 12(r7)
i11: l.s f7, 4(r2) 
i12: l.s f8, 4(r3) 
i13: fsub.s f8, f7, f8 
i14: fmul.s f8, f15, f8 
i15: fsub.s f8, f4, f8 
i16: s.s f8, 0(r8)
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Precedence Graph

i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12

i13

i14

i15

i16

2 2
2

2 2
2

2 2

4 4

222

2
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Resource Constraints

Bookkeeping
- Prevent resources from being oversubscribed

I1 I2 FA FM

cycle

Machine model

add r1, r1, 1

fadd f1, f1, f2

fadd f3, f3, f4

add r2, r2, 4
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List Scheduling for Basic Blocks

1. Assign priority to each instruction
2. Initialize ready list that holds all ready instructions

Ready = data ready and can be scheduled

3. Choose one ready instruction I from ready list with 
the highest priority

Possibly using tie-breaking heuristics

4. Insert I into schedule 
Making sure resource constraints are satisfied

5. Add those instructions whose precedence 
constraints are now satisfied into the ready list 
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Priority Functions/Heuristics
Number of descendants in precedence graph
Maximum latency from root node of precedence 
graph
Length of operation latency
Ranking of paths based on importance
Combination of above
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Orientation of Scheduling

Instruction Oriented
- Initialization (priority and ready list)
- Choose one ready instruction I and find a slot in schedule

make sure resource constraint is satisfied
- Insert I into schedule 
- Update ready list

Cycle Oriented
- Initialization (priority and ready list)
- Step through schedule cycle by cycle
- For the current cycle C, choose one ready instruction I

be sure latency and resource constraints are satisfied
- Insert I into schedule (cycle C)
- Update ready list
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List Scheduling Example
(a + b) * (c - d) + e/f

load: 2 cycles
add: 1 cycle

mul: 4 cycles
div: 10 cycles

sub: 1 cycle

orientation: cycle 
direction:  backward
heuristic: maximum latency to root

ld a ld b ld c ld d ld e ld f

fadd fsub fdiv

fadd

fmul

1 2 3 4 5 6

7 8 9

10

11
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Scalar Scheduling Example

14
13
12
11
10

9
8
7
6
5
4
3
2
1

CodeScheduleReady listCycle
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Scalar Scheduling Example

fadd111114
nop9 1013
nop9 1012
nop9 1011
fmul109 1010
fadd (a + b)77 8 99
fsub (c – d)81 2 8 98
ld a11 2 3 4 97
ld b22 3 4 96
ld c33 4 95
fdiv (e/f)94 94
ld d44 5 63
ld e55 62
ld f661

CodeScheduleReady listCycle

green means candidate and ready 
red means candidate but not yet ready
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Superscalar Scheduling Example

faddx111114
nop9  1013
nop9  1012
nop9  1011
fmulX109 1010
fadd (a + b)X77  8 99
fsub (c – d)X81  2  8 98
ld aX11  2 3  4  97
ld bX22  3  4 96
ld cX33  4  95

ld dfdiv (e/f)XX4 94 94
5  63

ld eX55  62
ld fX661

FDFI
Code

Resources
ScheduleReady listCycle
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Take Home Example
Append the following to the previous example:

*(p) = (x + Ry) - Rz ; 
p = p + 4 ;

ld x add

fadd

fsub

s.f

12

13

14

15

16
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Take Home Example

14
13
12
11
10

9
8
7
6
5
4
3
2
1

FDFI
Code

Resources
ScheduleReady listCycle
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Take Home Example

addfaddXX11 1611 1614
s.fX159  10 1513
fsubX149  10 1412
faddX139  10 1311
fmulX109 10 1210

ld xfadd (a + b)XX7 127  8 9 129
fsub (c – d)X81  2  8 98
ld aX11  2 3  4  97
ld bX22  3  4 96
ld cX33  4  95

ld dfdiv (e/f)XX4 94 94
5  63

ld eX55  62
ld fX661

FDFI
Code

Resources
ScheduleReady listCycle
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Directions of List Scheduling
Backward Direction
- Start with consumers of values
- Heuristics

• Maximum latency from root
• Length of operation latency

produces results just in time
Forward Direction
- Start with producers of values
- Heuristics

• Maximum latency from root 
• Number of descendants
• Length of operation latency

produces results as early as possible
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Limitations of List Scheduling
Cannot move instructions past conditional branch 
instructions in the program (scheduling limited by 
basic block boundaries)
Problem: Many programs have small numbers of 
instructions (4-5) in each basic block. Hence, not 
much code motion is possible
Solution: Allow code motion across basic block 
boundaries.
- Speculative Code Motion: “jumping the gun”

• execute instructions before we know whether or not we 
need to

• utilize otherwise idle resources to perform work which we 
speculate will need to be done

- Relies on program profiling to make intelligent decisions 
about speculation
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Register Allocation
Mapping symbolic (virtual) registers used in IR onto 
architected (physical) registers
IR assumes unlimited number of symbolic registers 
If the number of “live” values is greater than the 
number of physical registers in a machine, then some 
values must be kept in memory, i.e. we must insert 
spill code to “spill” some variables from registers out 
to memory and later reload them when needed

Imagine if you only had one register
The objective in register allocation is to try to 
maximize keeping temporaries in registers and 
minimize memory accesses (spill code)

⇒ maximize register reuse
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A variable or value is “live”, along a particular control-
flow path, from its definition to last use without any 
intervening redefinition

Variable Live Range

Live range, lr(x)
- Group of paths in 

which x is live
Interference
- x and y interfere if x

and y are ever 
simultaneously alive 
along some control 
flow path
i.e. lr(x) ∩ lr (y)

x =

=x

y =

=y =y

y is not live
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Interference Graph

Nodes: live ranges
Edges: interference

ld r4, 16(r3)
sub r6, r2, r4

add r7, r7, 1
blt   r7, 100

ld r5, 24(r3)

beq  r2, $0

add r2, r1, r5
sw r6, 8(r3)

“Live variable analysis”

r1

r2

r3
r4

r5

r6

r7

r1, r2 & r3 
are live-in

r1& r3 are live-out
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Register Interference & Allocation 

Interference Graph: G = <E,V>
- Nodes (V) = variables, (more specifically, their live ranges)
- Edges (E) = interference between variable live ranges

Graph Coloring (vertex coloring)
- Given a graph, G=<E,V>, assign colors to nodes (V) so that 

no two adjacent (connected by an edge) nodes have the 
same color

- A graph can be “n-colored” if no more than n colors are 
needed to color the graph.

- The chromatic number of a graph is min{n} such that it can 
be n-colored

- n-coloring is an NP-complete problem, therefore optimal 
solution can take a long time to compute

How is graph coloring related to register allocation?
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Chaitin’s Graph Coloring Theorem

Key observation:  If a graph G has a node X with 
degree less than n (i.e. having less than n edges 
connected to it), then G is n-colorable IFF the 
reduced graph G’ obtained from G by deleting X and 
all its edges is n-colorable.

Proof:

n-1
G’

G
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Graph Coloring Algorithm (Not Optimal)
Assume the register interference graph is n-colorable     

How do you choose n?
Simplification
- Remove all nodes with degree less than n
- Repeat until the graph has n nodes left

Assign each node a different color
Add removed nodes back one-by-one and pick a 
legal color as each one is added (2 nodes connected 
by an edge get different colors)

Must be possible with less than n colors

Complications: simplification can block if there are no 
nodes with less than n edges
Choose one node to spill based on spilling heuristic
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r1

r2

r3

r7

remove r4

COLOR stack = {r5, r6, r4}

remove r6

COLOR stack = {r5, r6}

r1

r2

r3
r4

r7

r1 r7

r2

r3
r4

r5

r6

COLOR stack = {}

r1

r2

r3
r4

r6

r7

remove r5

COLOR stack = {r5}

Example (N = 5)



CMU 18-747
Lecture 16-32
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

COLOR stack = {}

r1

r2

r3
r4

r5

r6

r7

remove r5

COLOR stack = {r5}
r1

r2

r3
r4

r6

r7

blocks spill r1
Is this a ood choice??

COLOR stack = {r5}

r2

r3
r4

r6

r7

remove r6

COLOR stack = {r5, r6}

r2

r3
r4

r7

Example (N = 4)
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Register Spilling
When simplification is blocked, pick a node to delete 
from the graph in order to unblock
Deleting a node implies the variable it represents will 
not be kept in register (i.e. spilled into memory)
- When constructing the interference graph, each node is 

assigned a value indicating the estimated cost to spill it.
- The estimated cost can be a function of the total number of 

definitions and uses of that variable weighted by its estimated 
execution frequency.

- When the coloring procedure is blocked, the node with the least 
spilling cost is picked for spilling.

When a node is spilled, spill code is added into the 
original code to store a spilled variable at its definition 
and to reload it at each of its use
After spill code is added, a new interference graph is 
rebuilt from the modified code, and n-coloring of this 
graph is again attempted
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Phase Ordering Problem
Register allocation prior to code scheduling
- false dependencies induced due to register reuse
- anti and output dependencies impose unnecessary constraints
- code motion unnecessarily limited

Code scheduling prior to register allocation
- increase date live time (between creation and consumption)
- overlap otherwise disjoint live ranges (increase register 

pressure)
- may cause more live ranges to spill (run out of registers)
- spill code produced will not have been scheduled

One option: do both prepass and postpass scheduling.
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Compiler/Hardware Interactions

[B. Rau & J. Fisher, 1993]

Front end & Optimizer

Determine Depend.

Determine Independ.

Bind Resources

Execute

Bind Resources

HardwareCompiler

Sequential
(Superscalar)

Dependence
Architecture

(Dataflow)

Independence
Architecture
(Attached

Array
Processor)

Independence
Architecture
(Intel EPIC)

Determine Independ.

Determine Depend.

DSI


