18-747 Lecture 2:
Pipelining Fundamentals

James C. Hoe
Dept of ECE, CMU
August 29, 2001

Reading Assignments: S&L Ch 2 pp1-34
Announcements: Office hours, MW, 4:30-5:30 PM
Textbook S&L, see Melissa HH-D204, $20 check to CMU
No cash, No credit cards!
Handout#0 due tomorrow noon, outside HH-D201
No recitation this week

No class on next Monday
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) EREREERRG Codumas

Anatomy of Engineering Design

f SPECIFICATION ﬁ

Synthesis Analysis

&> IMPLEMENTATION ﬁ

Specification: Behavioral description of “What does it do?”
Synthesis: Search for possible solutions; pick the best one.

Implementation: Structural description of “How is it
constructed?”

Analysis: Figure out if the design meets the specification.
“Does it do the right thing?” + “How well does it perform?”

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

(() Electrical & Computer CMU 18-747
ENGlNEER NG Lecture 2-3
J. C. Hoe

Instruction Set Architecture

¢ ISA, the boundary between software and hardware

- Specifies the logical machine that is visible to the
programmer

- Also, a functional spec for the processor designers

¢ What needs to be specified by an ISA
Operations
» what to perform and what to perform next

- Temporary Operand Storage in the CPU
« accumulator, stacks, registers

- Number of operands per instruction

- Operand location
» where and how to specify the operands

- Type and size of operands
- Instruction-to-Binary Encoding

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

€ ERERNEERRE Codumas.

Dynamic-Static Interface h

PROGRAM
| compiler exposed to
| | complexity software “static”
ARCHITECTURE % —- - (DSI)
% hardware hidden in “dynamic’
complexity harcware
MACHINE
DSl = ISA

= a contract between the program and the machine.

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

(() Electrical & Computer CMU 18-747

ENGlNEER NG beg;tul['e 2-5
. C. Hoe

Anatomy of a Modern ISA

¢ Operations
simple ALU op’s, data movement, control transfer

¢ Temporary Operand Storage in the CPU
Large General Purpose Register (GPR) File
¢ Number of operands per instruction
triadic A<=Bop C
¢ Operand location
load-store architecture with register indirect addressing
¢ Type and size of operands
32/64-bit integers, IEEE floats

¢ Instruction-to-Binary Encoding
Fixed width, regular fields

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) Electrical & Computer CMU 18-747
A ENGNERRNE Lecture 2.6
J. C. Hoe

“Iron Law” of Processor Performance

Wall-Clock Time

Processor Performance =

Program
Instructions Cycles Time
= X _ X
Program Instruction Cycle
(code size) (CPI) (cycle time)

Architecture — Implementation — Realization

Compiler Designer Processor Designer Chip Designer

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) EREREERRG Cobuma?

Pipelined Design

¢ Bandwidth or Throughput = Performance

Bandwidth (BW) = no. of tasks/unit time

¢ For a system that operates on one task at a time:
BW = 1/ latency

¢ BW can be increased by pipelining if many operands
exist which need the same operation, i.e. many
repetitions of the same task are to be performed.

¢ Latency required for each task remains the same or
may even increase slightly.

4

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ectrical & Computer
) ENENEERNE

CMU 18-747
Lecture 2-8
J. C. Hoe

Pipeline lllustrated:

Comb. gogic m_ BW = ~(1/n)

N Gate
2 Delay

N
FL» D §3e, | Bw= ~@n)

N
n 3594_, L

N Gat N Gate
3 Dealaeyl‘gl—> 3 DeIayI— BW= ~(3/n)

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) EREREERRG Codumas

Performance Model

¢ Starting from an unpipelined

version with propagation delay T unpipelined lf,;f;f;ggd
and BW =1/T
| l
T/k
IDpipelinedzB\Npipelined =1 /(T/ k +S) I
T
where T o
S = delay through latch .
l
} T/k
I
S
}

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ectrical & Computer CMU 18-747
) ENENEERNE

Hardware Cost Model

J. C. Hoe

¢ Starting from an unpipelined version

L k-stage

with hardware cost G unpipelined pipelined
l
I
where II
L = cost of adding each latch, and G e
k = number of stages o
l

' G/k

I
L
}

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) EREREERRG et
Cost/Performance Trade-off

[Peter M. Kogge, 1981]

Cost/Performance: C//\P

C/IP = [Lk+G]/[1/(T/k+S)]=(Lk + G) (T/k + S)
= LT + GS + LSk + GT/k

>k

Optimal Cost/Performance: find min. C/P w.r.t. choice of k

4 3
KA ek € g 2
dk| 1 2

T k
Y LS %T = 0
k
v - [T

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) EREREERRG Codue a1z

“Optimal” Pipeline Depth (k,,)

6? 7x104
o .|
o ©
&’ 5
3 4
= G=175, L=41, T=400, S=22
£ 3
£ 2
o 1 G=175, L=21, T=400, S=11
2
O 0
0 10 20 30 40 50

Pipeline Depth k

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) EREREERRG Codue s
J. C. Hoe
Pipelining Idealism

& Uniform Suboperations

The operation to be pipelined can be evenly
partitioned into uniform-latency suboperations

¢ Repetition of Identical Operations

The same operations are to be performed
repeatedly on a large number of different inputs

& Repetition of Independent Operations

All the repetitions of the same operation are mutually
iIndependent, i.e. no data dependence

and no resource conflicts
Good Examples: automobile assembly line
floating-point multiplier

instruction pipeline???
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

(() Electrical & Computer CMU 18-747

ENGINEERING beg;tul['e 2-14
. C. Hoe

Instruction Pipeline Design

¢ Uniform Suboperations ... NOT!

= balance pipeline stages

- stage quantization to yield balanced stages
- minimize internal fragmentation (some waiting stages)

¢ |dentical operations ... NOT!

= unifying instruction types
- coalescing instruction types into one “multi-function” pipe
- minimize external fragmentation (some idling stages)

¢ Independent operations ... NOT!

= resolve data and resource hazards
- inter-instruction dependency detection and resolution
- minimize performance lose

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) EREREERRG Codum 1t

The Generic Instruction Cycle

¢ The “computation” to be pipelined

Instruction Fetch (IF)
Instruction Decode (ID)

. Operand(s) Fetch (OF)
Instruction Execution (EX)

. Operand Store (OS)

Update Program Counter (PC)

o0k wd=

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) Electrical & Computer CMU 18-747
€7 ENGINEERING Lecture 216
J. C. Hoe

The GENERIC Instruction Pipeline (GNR)

Based on Obvious Subcomputations:

l

1. Instruction | IF
Fetch
2. Instruction D
3. Operand OVF
4. Instruction EX
Execute —]_I
5. Operand
Store ‘#

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

(() Electrical & Computer CMU 18-747

ENGINEERING beg;tul['e 2-17
. C. Hoe

Balancing Pipeline Stages

| ¢ Without pipelining

‘ IF I T,== 6 units Toye® TiEt Tipt Tort Text Tos
= 31
| ID I T»= 2 units o
° ¢ Pipelined
‘ 6F I T 5= 9 units Tcycz max{Tie, Tip, Tors Texs Tost
=9
EX e
L—' Tex= O units Speedupz 31/9
| OS I Tos= 9 units

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

(() Electrical & Computer CMU 18-747

ENGINEERING hegult'e 2-18
. C. Hoe

Balancing Pipeline Stages

¢ Two Methods for Stage Quantization:
- Merging of multiple subcomputations into one.

- Subdividing a subcomputation into multiple
subcomputations.

¢ Current Trends:
- Deeper pipelines (more and more stages).
- Multiplicity of different (subpipelines).
- Pipelining of memory access (tricky).

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ectrical & Computer CMU 18-747
) ENENEERNE

Granularity of Pipeline Stages

Coarser-Grained Machine Cycle: Finer-Grained Machine Cycle:
4 machine cyc / instruction cyc 11 machine cyc /instruction cyc

)
'i 1 Toon= 8 uni "
ID ‘ IFeip= 8 units o %

OF 2 T.=9 units OF{ —

1
2
3
4
R >
6
7
8
9

T
EX | 3 Tgx=5units EX{ m

w_Ef,A_h; 10
11
E Teyc= 3 units

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

0s 4 Tog= 9 units os {

m c i
¥ ENGNEERE Cacture 2,26

Hardware Requirements

)

¢ Logic needed for each ||£ IF{ if | 1
plpe.llne s’Fage D | 1 mﬂl 2
¢ Register file ports needed 4 [—_rJ-;—I 3
to support all the stages oF , .
¢ Memory accessing ports |‘ OF mﬂl 5
needed to support all the 6
stages EX 3 5 5
EX{ ﬁ' :

] @
9

il 03{3‘“’:'

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Computer CMU 18-747

¥ ENGINEERNE Leciure 2.21

Pipeline Examples :

MIPS RZ%OO/RBOOO AMDAHL 470V/7
)
IF IF. PC GEN 1
T~ 1 %—I
ID/ w 2
Cache Read 3
oF 2 —
ID — Decode 4
(@ 5
EX > 3 6
Cache Read 7
4 Cache Read 8
9

EX | EX 1 |

;{ EX2 | 10

i 08~ [Check Resury 11
i 12

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ectrical & Computer
) ENENEERNE

CMU 18-747
Lecture 2-22
J. C. Hoe

Unifying Instruction Types

¢ Procedure:

1.

Analyze the sequence of register transfers
required by each instruction type.

. Find commonality across instruction types and

merge them to share the same pipeline stage.

. If there exists flexibility, shift or reorder some

register transfers to facilitate further merging.

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ENGlNEER NG Lecture 2-23

(() Electrical & Computer CMU 18-747
J. C. Hoe

Coalescing Resource Requirements

The 6-stage TYPICAL (TYP) pipeline:
ALU LOAD STORE BRANCH

IF: I-CACHE |-CACHE I-CACHE I-CACHE IE 1
: PC PC PC PC
ID: DECODE DECODE DECODE DECODE ID I2
OF: RD.REG. RD.REG. RD.REG. RD. REG. RD |3
ADDR. GEN. ALU | 4
RD. MEM.
MEM I 5
EX: ALU OP. l
OS: (WR.REG. WR.REG! | ADDR.GEN. ADDR.GEN. WB I 6
WR. MEM. - WR. PC J

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Q) RGN EERNe cMy 18-747

Interface to Memory Subsystem

— __,El_
iIJ] r |-Cache |
D

W — i

-+ - |
Memory

ALU

Risia —n

%VEI]\ o ; D-Cache |

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747

Electrical & Computer
Q) ENGINEERINE Lecture 2.25
J. C. Hoe

Pipeline Interface to Register File:

F

Y D

ID |

A

RD S1 Register
3 _|RAdd1 File

W/R

~|RAdd2
RData1

RData2

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

(() Electrical & Computer CMU 18-747

ENGINEERING hegult'e 2-26
. C. Hoe

6-stage TYP Pipeline

>
=
C

B —
R

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Computer CMU 18-747

¥ ENGINEERNE Lecture 2.27

ALU Instruction Flow Path

‘U datel Instructiolv
— pP Decode

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Computer CMU 18-747

¥ ENGINEERNE Lecture 2,26

Load Instruction Flow Path

—||I-Cach

\ [2/ D

v mmwwmwﬂ%@

‘U datel Instructiolv g
— pP Decode

~
|

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

QO

Electrical & Computer

ENGINEERING

CMU 18-747
Lecture 2-29
J. C. Hoe

Store Instruction Flow Path

‘ %axemagmummw;&

il

1structio
Decode

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

QO

Electrical & Computer

ENGINEERING

CMU 18-747
Lecture 2-30
J. C. Hoe

Branch Instruction Flow Path

_I'J'oTa—l

ID

| M“"Wmmmamg@

——

1structio
Decode

%’””“”“g"‘”“
=
—~

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) EREREERRG Codum a1

Pipeline Resource Diagram

o |t | b [t |ttt |t |t |t |t
IF i | I Is | Is | Iz | Is | g | lio | I14
D I |1, [PO B B S Y A O
RD I, | 1, I | g | 1 | I | I,

ALU I |1, I | I | 1 | I

MEM I, | 1, Is | I | I
WB I, | I, I | |,

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ectrical & Computer
) ENENEERNE

Pipelining: Steady State

CMU 18-747
Lecture 2-32
J. C. Hoe

b ot ot ottt —
nst [IF_|[ID_J[RD J[ALU]IMEMI[WB

nst,, IF_J[_ID_J[RD J[ALU]IMEM|[WB

nst,, IF_J[_ID_J[RD JJALUJIMEMI[WB3

nst., IF_J[_ID_][RD [[ALU]MEM

nst., , IF_J[/D [RD J[ALLE

IF_J[/D J[RD3

IF][ID3

F 2

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Computer CMU 18-747

¥ ENGINEERNE Lecture 2.33

Instruction Dependencies

¢ Data Dependence
- True dependence (RAW)
Instruction must wait for all required input operands
- Anti-Dependence (WAR)
Later write must not clobber a still-pending earlier read
- Output dependence (WAW)
Earlier write must not clobber an already-finished later write

¢ Control Dependence (aka Procedural Dependence)

- Conditional branches cause uncertainty to instruction
sequencing

- Instructions following a conditional branch depends on the
resolution of the branch instruction

(more exact definition later)

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ectrical & Computer
) ENENEERNE

CMU 18-747
Lecture 2-34
J. C. Hoe

Example: Quick Sort on MIPS R2000

bge $10, $9, $36
mul $1 $10, 4)
addu $24, _$6, $15
lw $25, 0($
mul $13,_$8, 4 >
addu $14,_%6, %13
lw $15,—0(%14)
bge $25, $15, $36 —
$35:) 7
addu $10, $10, 1 —
$36:
addu $11, %11, -1
for (;(j<high)&&(array[j]<array[low]);++j);
$10 = j; $9 = high; $6 = array; $8 = low

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Computer CMU 18-747
A ENGINEERE Lecture 2-35

Instruction Dependences
and Pipeline Hazards
Sequential Code Semantics A true dependence between

two instructions may only
iInvolve one subcomputation
of each instruction.

il: xxxx @
i2: XxXxx @

i1:

i2:

Illlll‘ll'lll’

i3: xxxx @

The implied sequential precedences are
overspecifications. It is sufficient but not I

necessary to ensure program correctness.
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

) Electrical & Computer CMU 18-747
A ENGNERRNE Lecture 2.36
J. C. Hoe

Necessary Conditions for Data Hazards

X l l
J i T_ |RegWrite| J:T«¢_ |RegWrite] J:_¢T« |Reg Read

l L]

“ o) } | N Ip)

v l l
| . r .« |Reg Write i . _«r, |RegRead | :r «_ |Reg Write
l l l

WAW Hazard WAR Hazard RAW Hazard

dist(i,j) < dist(X,Y) = Hazard!!
dist(i,j) > dist(X)Y) = Safe

COPYTIgrit ZOO T, Jdlries <. 110e, CIvio arra Jorin P. Shen, Intel

Electrical & Computer CMU 18-747

¥ ENGINEERNE Lecture 2.37

Hazards due to
Memory Data Dependences

Pipe Stage ALU Inst. |_oad inst. Store inst. Branch inst.

1. IF |-cache |-cache |-cache |-cache
PC<PC+4 PC<PC+4 PC<PC+4 PC<PC+4

2. 1D decode decode decode decode

3.RD read reg. read reg. read reg. read reg.

4. ALU ALU op. addr. gen. addr. gen. addr. gen.
cond. gen.

5. MEM - read mem. write mem. PC<-br. addr.

6. WB write reg. writereg. -— -

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Computer CMU 18-747

¥ ENGINEERNE Lecture 2.38

Hazards due to
Register Data Dependences

Pipe Stage ALU Inst. |oad inst. Store inst. Branch inst.

1. IF |-cache |-cache |-cache |-cache
PC<PC+4 PC<PC+4 PC<PC+4 PC<PC+4

2. 1D decode decode decode decode

3. RD read reg. read reg. read reg. read reg.

4. ALU ALU op. addr. gen. addr. gen. addr. gen.
cond. gen.

5. MEM - read mem. write mem. PC<-br. addr.

6. WB write reg. writereg. -—— -

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

QO

Electrical & Computer

ENGINEERING

Pipe Stage

1. IF

2.1D
3.RD
4. ALU

5. MEM
6. WB

Hazards due to

Control Dependences

ALU Inst.

|-cache
PC<PC+4

decode
read reg.

ALU op.

write reg.

| oad inst. Store inst.
|-cache |-cache
PC<PC+4 PC<PC+4
decode decode
read reg. read reg.
addr. gen. addr. gen.
read mem. write mem.
write reg. -

CMU 18-747
Lecture 2-39
J. C. Hoe

Branch inst.

|-cache
PC<PC+4
decode
read reg.

addr. gen.
cond. gen.

PC<-br. addr.

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

