
18-747 Lecture 22:
Binary-to-Binary Translation

James C. Hoe
Dept of ECE, CMU
November 22, 2001

Reading Assignments: paper on Transmeta
“Dynamic Binary Translation and Optimization”,

by E. R. Altman, K. Ebcioğlu, IBM Research

Announcements: Project 3 Short Proposal due Wednesday November 21st

Handouts: Handout #13.A: Corrected Project 3 Description
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 21-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

What is Binary Translation
Taking a binary executable from a source ISA and
generate a new executable in a target ISA such that the
new executable has exactly the same functional
behavior as the original
Same ISA ⇒ Optimization
- compiler instruction scheduling is a restricted form of translation
- re-optimizing old binaries for new, but ISA-compatible, hardware

Reoptimization can improve performance regardless whether
implementation details are exposed by the ISA

Across ISAs ⇒ Overcoming binary compatibility
- two processors are “binary compatible” if they can run the same

set of binaries (from BIOS to OS to applications)
- Strong economic incentive
How to get all of the popular software to run on my new processor?
How to get my software to run on all of the popular processors?

CMU 18-747
Lecture 21-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

What is so hard about it?
It is always possible to “interpret” an executable from
any ISA on a machine of any ISA

Turing machine simulation
But, naïve interpreters incur a lot of overhead and
thus run slower and use more memory

think of SimpleScalar as a PISA interpreter for PCs

Binary translation is not interpretation
- emits new binaries that runs natively on the target ISA

processor
- can be very difficult if the source ISA (e.g x86) or the source

executable (e.g. hand-crafted assembly code) is not nice

Without the high-level source code, you can’t always
statically tell what an executable is going to do

CMU 18-747
Lecture 21-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Some Hard Problems in Translation
Day-to-day problems
- Floating-point representation and operations
- Precise exceptions and interrupts

More obscure problems
(Executables compiled from high-level languages tend not to have

these kind of problems)
- Self-modifying code

A program can construct an instruction (in the old format) as a
data word, store it to memory, and jump to it

- Self-referential code
A program can checksum the code segment and compare it

against a stored value based on the original executable
- Register Indirect jumps to computed addresses

A program might compute a jump target that is only
appropriate for the original binary format and layout

A program can jump to the middle of an x86 inst on purpose

CMU 18-747
Lecture 21-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Static vs. Dynamic Translation
Static
+ May have source information (or at least have object code)
+ Can spend as much time as you need (days to months)
- Isn’t always safe or possible
- Not transparent to users

Dynamic
- Translation time is part of program execution time

⇒ Can’t do very complex analysis / optimization
⇒ Infrequently used code sections cost as much to translate

as frequently used code sections
- No source-level information
+ Has runtime information (dynamic profiling and optimization)
+ Can fall back to interpretation if all else fails
+ Can be completely transparent to users

CMU 18-747
Lecture 21-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

How can binary translation be used?
Porting old software to new platforms (static, different-ISA)

e.g translator from DEC VAX to Alpha

Binary Augmentations (static, same-ISA)
- localized modifications to shrink-wrap binaries without sources

e.g. inserting profiling code, simple optimizations

Dynamic Code Optimizations (dynamic, same-ISA)
- profile an execution and dynamically modify the executable using

techniques such as trace scheduling, e.g. HP Dynamo

Cross-platform execution (dynamic, different-ISA)
- using a combination of interpretation and translation to very

efficiently emulate a different (often nasty) ISA
e.g. Transmeta Crusoe and Code Morphing

Efficient Virtual Machines (dynamic, different-ISA)
- using a combination of interpretation and translation to very

efficiently emulate a different (nice-by-design) ISA
e.g. Java virtual machines and JIT (Just-in-Time) compilation

CMU 18-747
Lecture 21-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

A New Way to Think about Architecture
Architecture = dyn. translation + hardware implementation
- no problem of forward or backward binary compatibility

backward compatible processor: don’t need new software
forward compatible processor: don’t need new processors

- don’t need increasingly fancy HW to speedup an old ISA
- both the translator and HW can be upgraded or repaired with very

little disruption to the users

Processors (and systems) becomes commodity items (like
DRAM)
- processors can become very simple but very fast
- slightly defective processors can still be sold with workarounds

Old platforms and software can be cost-effectively revived
and maintained forever

“Amiga” is coming back as a soft architecture!

CMU 18-747
Lecture 21-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Transmeta Crusoe & Code Morphing

Crusoe boots “Code Morpher” from ROM at power-up
Crusoe+Code Morphing == x86 processor
x86 software (including BIOS) cannot tell the difference

Crusoe VLIW Processor

Code Morphing
Dynamic Binary Translation

Native
SW

HW

x86 applications

x86 OS
x86 BIOS

Complete
x86

Abstraction

CMU 18-747
Lecture 21-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Crusoe VLIW Processor

64 or 128-bit molecules directly control the in-order
VLIW pipeline (no dependence within a molecule)
1 FPU, 2 ALU, 1 LSU, and 1 BU
64 integer GPRs, 32 FPRs + shadow x86 regs
No hardware renaming or reordering
Same cond. code, floating-point, and TLB format as x86

FADD ADD LD BRCC

FPU
10-stage

ALU #0
7-stage

Load/Store
Unit Branch

128-bit molecule

CMU 18-747
Lecture 21-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Files

temporary registers for
Code Morphing Software &

translated code

restore
check
point

x86
registers

shadow
x86

registers

64

CMU 18-747
Lecture 21-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Executing x86 to as uOPs or atoms

Tr
an

sl
at

e

x86 uOP

O
ut

-o
f-O

rd
er

D
is

pa
tc

h

P
4

uO
P

Tr
ac

e
C

ac
he

P
ar

al
le

l F
U

s

In
-O

rd
er

R
et

ire

Code Morphing SW
(translate & interpret)

x86

V
LI

W
D

is
pa

tc
h

Translation
Cache

V
LI

W
 F

U
s

CMU 18-747
Lecture 21-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Code Morphing Software (CMS)
The only software written natively for Crusoe processors
- begins execution at power-up
- fetches previously unseen x86 basic block from memory
- translates a block of x86 instructions at a time into Crusoe VLIW
- caches the translation for future use
- jumps to the generated Crusoe code for execution, execution can

continue directly into other blocks if translation is cached
- regains control when execution reaches a unknown basic block
- interprets the execution of “unsafe” x86 instructions
- retranslates a block after collecting profiling information

CMS uses a separate region of memory that cannot be
touched by code translated from x86
Crusoe processors do not need to be binary compatible
between generations
⇒ can make different design trade-offs but needs a new
translator with a new processor

CMU 18-747
Lecture 21-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Cost of Translation
Translation time is part of execution time!

Translation cost has to be amortized over repeat use
1st pass translation must be fast and safe
- almost like interpretation
- x86 instructions are examined and translated byte-by-byte
- CMS constructs a function that is equivalent to the basic block
- CMS jumps to the function and regain control when the fxn returns
- collects statistics, i.e. execution frequency, branch histories

Re-translate an often “repeated” basic block (after ~50 times)
- examines execution profile
- applies full-blown analysis and optimization
- builds inlined Crusoe code that can run directly out of the translation

cache without intervention by CMS
- can do cross-basic block optimizations, such as speculative code

motion and trace scheduling

Caches translation for reuse to amortize translation cost

CMU 18-747
Lecture 21-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example of a Translation
x86 Binary Code

A: addl %eax, (%esp) // load data from stack, add to %eax
B: addl %ebx, (%esp) // load data from stack, add to %ebx
C: movl %esi, (%ebp) // load from mem (%ebp) into %esi
D: subl %ecx, 5 // subtract 5 from %ecx

1st Pass Sequential Crusoe Atoms
ld %r30, [%esp] // A: load data from stack, save to temp
add.c %eax, %eax, %r30 // add to %eax, set condition code

ld %r31, [%esp] // B: load data from stack, save to temp
add.c %ebx, %ebx, %r31 // add to %ebx, set condition code

ld %esi, [%ebp] // C: load from mem (%ebp) into %esi

sub.c %ecx, %ecx, 5 // D: subtract 5 from %ecx

literal translation

CMU 18-747
Lecture 21-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example of an Optimization
1st Pass Sequential Crusoe Atoms

ld %r30, [%esp]
add.c %eax, %eax, %r30 // cc is never tested
ld %r31, [%esp] // %r31 and %r30 are common sub-expr
add.c %ebx, %ebx, %r31 // cc is never tested
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5

2nd Pass Optimized Crusoe Atoms
ld %r30, [%esp] // [%esp] is loaded once and reused
add %eax, %eax, %r30 // don’t need to set condition code
add %ebx, %ebx, %r30 // don’t need to set condition code
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5

basic optimizations

Optimizations include common sub-expr elimination, dead-code elimination
(include unnecessary cc), loop invariant removal, etc. (see L16 for more)

CMU 18-747
Lecture 21-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example of Scheduling
2nd Pass Optimized Crusoe Atoms

ld %r30, [%esp]
add %eax, %eax, %r30
add %ebx, %ebx, %r30
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5

VLIW Scheduling (see L17&18)

Final Pass Scheduled Crusoe Molecules
{ ld %r30, [%esp] ; sub.c %ecx, %ecx, 5 }
{ ld %esi, [%ebp] ; add %eax, %eax, %r30 ; add %ebx, %ebx, %r30 }

In-order execution of scheduled molecules on a Crusoe processor mimics
the dynamic superscalar execution of uOPs in Pentium’s

CMU 18-747
Lecture 21-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Prediction
Static prediction based on dynamic profiling
Translation can favor the more frequent traversed
arm of an if-then-else statement by making that arm
the fall through (not-taken) path
Trace scheduling
- construct traces such that the most frequently traversed

control flow paths encounters no branches at all
- enlarged scoped of ILP scheduling
- needs compensation code when falling off trace

“select” instruction
- “SEL CC, Rd, Rs, Rt” means if (CC) Rd=Rs else Rd=Rt
- a limited variant of predicated execution
- supports if-conversion, i.e change control-flow to data-flow

CMU 18-747
Lecture 21-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Detecting Load/Store Aliasing

ld-and-protect records the location and size of the load
store-under-alias-mask checks aliasing against the
region protected by ldp
if stam discovers a conflict, it triggers an exception so
CMS can “discard” the effects of this basic block and re-
run a different translation that does not have the load
and store reordered

….
st %data, [%y]
….
ld %r31, [%x]
use %r31

potential
aliasing

….
ldp %r31, [%x]
….
stam %data, [%y]
….
use %r31

CMU 18-747
Lecture 21-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Eliminating Repeated Loads

Due to limited number of ISA regs, x86 programs keep most
variables on the stack
⇒ the same value is reloaded from stack for each use

(there isn’t a spare x86 ISA register to hold it between use)
CMS detects repeated load from the same address as common
sub-expression and holds a value in a temporary register for reuse
A store in between the loads can make the optimization unsafe
stam allows CMS to optimize for the common case

ld %r30, [%x]
….
st %data, [%y]
….
ld %r31, [%x]
use %r31

….
ldp %r30, [%x]
….
stam %data, [%y]
….
use %r30

CMU 18-747
Lecture 21-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Precise Exception Handling
CMS and Crusoe must emulate x86 behavior exactly,
including precise exception
But, an x86 instruction maps to several atoms and
can be reordered with atoms of other x86 instructions
and can be dispersed over a large code block after
optimization and scheduling
Solution (assumes exceptions are rare)
- check point x86 machine state at the start of every translated

block
- if execution reaches the end of the block without exception

then continue to the next block
- if exceptions is triggered in the middle of a block, CMS

restores x86 machine state from check point and reruns the
same block by “interpreting” the original x86 code, one
instruction at a time

CMU 18-747
Lecture 21-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Check Pointing x86 Machine State

Gated Store Buffer
- all stores are intercepted and held in a special buffer
- after a commit point, all earlier gated stores are released to update

cache or memory as appropriate (Note: not all at once!!)
- If a restore event is triggered, the content of the gated store buffer is

discarded
- After a commit, any earlier effects cannot be undone
- An restore returns x86 machine state to the last commit point

Temporary registers for
Code Morphing Software &

translated code

restore
commit

x86
registers

shadow
x86

registers

Register File
- a special “commit” instruction

makes a copy of x86 register
contents in the shadow registers

- shadow registers is not touched by
program execution

- “restore” restores the shadowed
values

CMU 18-747
Lecture 21-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Performance of Transmeta’s “x86”
Execution Time
- Comparable to direct hardware implementation by Intel or AMD
- TM5400 at 667 MHz is about the same as a Pentium III running

at 500MHz
Unamortized translation cost leads to lower benchmark results

Low Cost
- Much simpler hardware

TM5400 is a about 7 million transistors (P4 is at 41 Million)
- Easier to design, more scalable, easier to reach high clock rate,

more room for caches, better yield, etc
- Doesn’t have to worry about binary compatibility!!

Low Power
- less hardware ⇒ lower power
- Additional power management features (such as variable

supply voltage and clock frequency)

