
18-747 Lecture 10:
Trace Caching

James C. Hoe
Dept of ECE, CMU

October 1, 2001

Reading Assignments: 2 papers below

Announcements: Midterm Exam on Monday 10/15
Condor Usage

Handouts: “Critical Issues Regarding the Trace Cache Fetch Mechanism”
“The Block-based Trace Cache”

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 10-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

PPC604 Speculative Execution

instruction
cache BHT BTAC +2 +4

FA
R

Prediction Logic
(4 instructions)

Target Seq Addr

Prediction Logic
(4 instructions)

Target Seq Addr

Prediction Logic
(4 instructions)

Target Seq Addr

Exception Logic

PC

Target

+

fetch

decode

dispatch

branch
execute

complete

CMU 18-747
Lecture 10-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Control Flow Speculation

Leading Speculation
- Tag speculative instructions
- Advance branch and following instructions
- Buffer addresses of speculated branch instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3

CMU 18-747
Lecture 10-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Mis-speculation Recovery

Eliminate Incorrect Path
- Must ensure that the mis-speculated instructions produce no

side effects

Start New Correct Path
- Must have remembered the alternate (non-predicted) path

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3 tag3tag3

tag2

CMU 18-747
Lecture 10-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Mis-speculation Recovery

Eliminate Incorrect Path
- Use branch tag(s) to deallocate completion buffer entries

occupied by speculative instructions (now determined to be
mis-speculated).

- Invalidate all instructions in the decode and dispatch buffers, as
well as those in reservation stations

How expensive is a misprediction?

Start New Correct Path
- Update PC with computed branch target (if it was predicted NT)
- Update PC with sequential instruction address (if it was

predicted T)
- Can begin speculation once again when encounter a new

branch

How soon can you restart?

CMU 18-747
Lecture 10-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trailing Confirmation

Trailing Confirmation
- When branch is resolved, remove/deallocate speculation tag
- Permit completion of branch and following instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3tag3 tag3

tag2

CMU 18-747
Lecture 10-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Fast Branch Rewind and Restart:
Metaflow DRIS

Discard all DRIS entries
(and corresponding
operations) younger than
the mispredicted branches

Can restart immediately
from the corrected branch
target because the DRIS
has sufficient information
(rename & value) to
continue from where left off

Works with nested
mispredictions!!

youngest

oldest

misprediction

oldestoldestoldest

another miss

another miss

CMU 18-747
Lecture 10-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

To reinitiate renaming:
- wait for all instructions older than the rewind point to drain

clear of the pipeline and then reset register remapping to null
Long restart latency

- Reorder buffer has to remember how to restored the map
table to the point of the mispredicted branch

Complicated multi-cycle logic
- Cache rename map after branch prediction

Rewinding/Flushing of Rename Table
data busy tag

logical
register
name

ARF Map Table
data

RRF
rdy next to

free
next to
allocate

Operand Value/Tag

CMU 18-747
Lecture 10-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Fetching for Wide Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction
Flow

EXECUTE

(ROB)

> 8 way

CMU 18-747
Lecture 10-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Wide Instruction Fetch Issues

Average Basic Block Size
- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

Three Major Challenges:

- Multiple-Branch Prediction

- Multiple Fetch Groups

- Alignment and Collapsing

Instruction

Fetch

Decode

Branch
Prediction

Instruction

Dispatch

Cache

Buffer

Cannot be solved with just longer cache blocks

CMU 18-747
Lecture 10-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Multiple Branch Predictions
Issues with multiple branch predictions:
- Latency resulting from sequential predictions
- Later predictions based on stale/speculative history
- Don’t forget, 0.95x0.95x0.95=0.85

BTB

BTB

BTB

Fetch
address

Block 1 Block 2 Block 3

CMU 18-747
Lecture 10-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Examples of Multi-Branch Predictors

bn b0
BHSR

PHT

p0 p1 p2

How do you update this thing after a branch resolves?

CMU 18-747
Lecture 10-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Examples of Multi-Branch Predictors

bn b0
BHSR

bn:2
bn-1:1

bn-2:0

b1
b0

p0

b0
p0

p0
p1

p1p2

PHT

2n-2 x 4 entries

CMU 18-747
Lecture 10-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Multiple Predicted Taken Branches

Issues with multiple taken branches:
- Long latency with multiple sequential I-cache accesses
- or, multi-ported I-cache with slower access latency
- or, multi-banked I-cache to approximate multi-port

Block 2 FA

Block 1 FA

Block 3 FA

Block 1
instructions

Block 2
instructions

Block 3
instructions

Multi-ported I-cache

CMU 18-747
Lecture 10-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Instruction Alignment and Collapsing

Issues with alignment and collapsing:
- Misalignment between fetch group and cache line.
- Packing of variable-sized blocks into fetch buffer.

I-cache
Port 1

I-cache
Port 2

I-cache
Port 3

Fetch buffer
How do you
know where
this is?

CMU 18-747
Lecture 10-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Mapping CFG to
Linear Instruction Sequence

A A

B

B

A

B
C

D
D

C

C

D

CMU 18-747
Lecture 10-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

The Trace Cache Proposal

A

B

C

D

E F

G

A

B
C

D

E

F
G

A

B
C

D

F
G

I-cache line
boundaries

Trace-
cache line
boundaries

10% static
90% dynamic

static 90%
dynamic 10%

CMU 18-747
Lecture 10-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

A Typical Trace Cache Organization

Trace Cache

Fetch Buffer

Next
Trace

Predict.

predicted PC

Execution
Core

Fill Unit

Completion

br. hist.Hist.
Hash

I-Cache

CMU 18-747
Lecture 10-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Fill Unit
Observe the dynamic execution sequence
Gather instructions into a trace segment (or trace
cache block)
Some simple heuristics for forming trace segments
- stop after collecting up to N instructions

(N is the trace cache block size)
- stop after B conditional branches

(B is the limit of the multi-branch predictor)
- stop after seeing an register-indirect jump
- Don’t split basic blocks
- In some designs, unconditional and conditional branches

can be dropped from the traces

Can include pre-decoded dependence information
Can even dynamically re-order instructions (don’t
need an out-of-order core!!)

CMU 18-747
Lecture 10-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Intel Pentium Pro Fetch/Decode Unit

Instruction Buffer 16 bytes

x86 Macro-Instruction Bytes from IFU

Decoder
0

Decoder
1

Decoder
2

Branch
Address

Calc.

To Next
Address

Calc.

4 uops 1 uop 1 uop

Up to 3 uops Issued to dispatch

uop Queue (6)

uROM

CMU 18-747
Lecture 10-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Predecoding in the AMD K5

I-Cache

ROP1 ROP2 ROP3 ROP4

128 + 80

64

From Memory

Up to 4 ROP’s

Predecode
Logic

64 + 40

8 Instruction Bytes

8 Instr. Bytes +

16 Instr. Bytes +

Decode, Translate
and Dispatch

Byte1 Byte2 Byte8

5 Bits

Byte1 Byte2 Byte8• • •

• • •

5 Bits 5 Bits

Predecode Bits

Predecode Bits

CMU 18-747
Lecture 10-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Intel P4 Trace Cache
A 12K-uop trace cache replaces the L1 I-cache
6-uop per trace line, can include branches
Trace cache returns 3-uop per cycle
IA-32 decoder can be simpler and slower

Only needs to decode one IA-32 instruction per cycle

Front End BTB
4K Entries

ITLB &
Prefetcher L2 Interface

IA32 Decoder

Trace Cache
12K uop’s

Trace Cache BTB
512 Entries

CMU 18-747
Lecture 10-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Selection/Prediction
Basic
- find the trace that starts at the predicted next-PC

Multiple cached traces may have the same starting PC
- difference is in the internal branch decisions
⇒ need multi-branch predictors

Partial Traces
- predicted next-PC points to the middle of a cached

trace (cached ABC, but predicted BC)
- multi-branch prediction may say not to use the entire

length of a cached trace (cached ABC, but only
needs AB)
⇒ need alignment and collapsing buffer

So how is this better?

CMU 18-747
Lecture 10-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Redundant Traces
Suppose B,C and D are
instructions in a loop
- 3 different traces of 3-instructions are

possible
- Which one should we keep in the trace

cache?
- How do we detect the beginning and

the end of basic blocks?

Suppose A,B,C,D and E are basic
blocks
- don’t cache BC if BCD is cached
- what about CDB and CDE?
- what about ABC and DBC?
- How to cut down on redundant

instruction storage?

A

B

C

D

E

CMU 18-747
Lecture 10-25
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Replicated Block Cache

...
block_id

de
co

de
r

N=2n

direct mapped cache

FA i1 i2 ib

word lines

Final Collapse

Fetch Buffer
co

py
-2

co
py

-3

co
py

-4b inst

16

co
py

-1

Block Cache

Instructions from
the fill unit

(n-bit)

What about fragmentation?

CMU 18-747
Lecture 10-26
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Predict and Fetch Trace

Trace Table

Global History

Final Collapse

Fetch Buffer
16

Fetch Cycle

Predict Cycle

Block Cache

More efficient: redundancy is in the trace table and not the block cache

CMU 18-747
Lecture 10-27
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Next Trace Prediction

tag index
tag

global history

block_ids

1 2 ... wv

=

Hit

...

b_id0 b_id1 b_id2 b_id3

w pred. block_ids

Trace Table

Hash
Function

Next trace_id

to the block cache

predicted branch path

CMU 18-747
Lecture 10-28
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

The Block-Based Trace Cache

Fetch Buffer

trace_id

Completion

Final Collapse
Br.

block_ids

I-C
ac

hepre-collapse

hist.

Execution
Core

History
Hash

Fill
Unit

Rename
Table

Trace
Table Block Cache

CMU 18-747
Lecture 10-29
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

1. Next trace prediction
2. Trace cache fetch

Proposed
Trace Cache

Enhanced
Instruction Cache

Fetch

Completion

Execution Core

1. Multiple-branch prediction
2. Instruction cache fetch
3. Instruction alignment &

collapsing

1. Multiple-branch predictor
update

Execution Core

Wide-Fetch I-cache vs. T-cache

1. Trace construction and fill

CMU 18-747
Lecture 10-30
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Cache Trade-offs

Fetch time complexity

Trace cache:

Enhanced instruction cache:

Pros → Moves complexity to backend
Cons → Inefficient instruction storage

Pros → Efficient instruction storage
Cons → Complexity during fetch time

Instruction storage redundancy

CMU 18-747
Lecture 10-31
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

As Machines Get Wider (… and Deeper)

Fetch Fetch

RenameDispatchExecuteRetire

Di
sp

at
ch

Ex
ec

ut
e

Re
tir

e

1. Eliminate Stages
2 Relocate work to

the backend

Decode Decode

Ren
am

e

