
18-747 Lecture 13:
Memory Prefetching and Speculation

James C. Hoe
Dept of ECE, CMU
October 10, 2001

Reading Assignments:  (Optional MJ Ch9)

Announcements: Quiz on Monday 10/15
HW 2 due now
Project 1 due Friday before recitation

Handouts: Handout 09 HW2 Solution
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Format of the Quiz

Coverage 
- Lectures (upto L12), projects, HWs, assigned readings 

(textbooks and papers)

Types of questions
- Freebies: can you remember the materials
- Probing: did you understand the materials
- Design: can you apply the materials

Open Book (course textbooks, course handouts, any 
materials written by yourself, no outside materials, 
no electronics, no sharing, no borrowing)
Designed to be completed by the average student in 
100 minutes
- Someone who understands the material solidly should take 

substantially less time
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How to Prepare
Start early
Review the lecture notes and reading assignments
- Pay attention to high-lighted items
- Redo all of the examples in the lecture handouts

Do the practice exam
Review the problem sets and projects
- (especially if you didn’t do them the first time)

Go to office hours with questions
Rest well the night before and show up on-time
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During the Quiz

Think before you answer. Is there an easier way to 
solve the problem?
Pay attention to time allocation
- 100 minutes, 100 points
- if a question is worth 5 points, don’t spend 20 minutes on it
- What does it mean if a problem is worth [X/Y points]?

Skip questions you can’t do and come back to them 
later
Don’t expect to have time to read Chapter 3 for the 
very first time during the quiz

Reminder: Use pencil or black/blue ink only
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Prefetching
Cache miss is either expensive or very expensive
If we can foretell which address the program will 
reference in the future then we can ensure the location 
is in the cache ahead of time  ⇒ No cache miss!!
Like branch prediction, prefetching takes advantage of 
regular/repeatable program behavior, in this case the 
memory reference pattern)
Unlike branch prediction, prefetching is quite safe
Only involves prediction but no “speculative execution”

Prefetching the wrong location can only affect 
processor performance (more misses) but not 
correctness
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What is Hard about Prefetching

Must correctly guess both when to prefetch and 
which address to prefetch

What if you prefetch the wrong lines
- cache pollution
- waste of bandwidth

both bus bandwidth & cache port bandwidth

What if you prefetch at the wrong time
- too early, cache pollution
- too late, ineffective



CMU 18-747
Lecture 13-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Static Prefetch
PowerPC Data Cache Block Touch Instruction (dcbt EA)
“a hint that performance will probably be improved if the block 
containing the byte addressed by EA is fetched into the data cache”

A correct implementation of dcbt is to do nothing
Or, as a load instruction with no destination register 
except it should not trigger page or protection faults

Where should compilers insert dcbt?
- In front of every load: wastes I-cache and D-cache bandwidth
- Where are loads likely to miss

• When traversing large data sets (arrays in scientific code)
- Where load misses would really hurt performance

• pointer arguments to functions
• linked-list traversal - find loads who data address is itself the 

result of a previous load



CMU 18-747
Lecture 13-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Spatial Locality and Sequential Prefetching
Works well for I-cache
- Instruction fetching tend to access memory sequentially

Doesn’t work very well for D-cache
- More irregular access pattern
- regular patterns may have non-unit stride (e.g. matrix code)

Relatively easy to implement
- Large cache block size already have the effect of prefetching
- After loading one-cache line, start loading the next line 

automatically if the line is not in cache and the bus is not busy

What if you fetch at the wrong time
Imagine if you started sequential prefetching of a long cache 

line and so happens you get a load miss to the middle of that 
line?

A critical-word-first reload triggered by the load miss 
itself may actually have restarted computation sooner!!
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Access pattern for a particular static load is more predictable
Reference Prediction Table

Remembers previously executed loads, their PC, the last 
address referenced, stride between the last two references 
When executing a load, look up in RPT and compute the 
distance between the current data addr and the last addr
- if the new distance matches the old stride 

⇒ found a pattern, go ahead and prefetch “current addr+stride”
- update “last addr” and “last stride” for next lookup

FlagsLastLast AddressLoad Inst.

………….…….
StrideReferencedPC (tag)

Stride Prefetchers

Load
Inst
PC
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Stream Buffers
Each stream buffer holds one stream of 
sequentially prefetched cache lines 

No cache pollution
On a load miss check the head of all stream 
buffers for an address match
- if hit, pop the entry from FIFO, update 

the cache with data 
- if not, allocate a new stream buffer to the 

new miss address (may have to recycle 
a stream buffer following LRU policy)

Stream buffer FIFOs are continuously 
topped-off with subsequent cache lines 
whenever there is room and the bus is not 
busy
Stream buffers can incorporate stride 
prediction mechanisms to support non-unit-
stride streams
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Correlation-Based Prefetching
Consider the following history of Load addresses 
emitted by a processor
A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A ,B C, D, C

After referencing a particular address (say A or E), are 
some addresses more likely to be referenced next

A B C

D E F
1.0

.33 .5

.2

1.0.6.2

.67
.6

.5

.2

.2

Markov
Model
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Track the likely next addresses after seeing a particular addr.
Prefetch accuracy is generally low so prefetch up to N next 
addresses to increase coverage (but this wastes bandwidth)

Prefetch accuracy can be improved by using longer history
- Decide which address to prefetch next by looking at the last K load 

addresses instead of just the current one 
- e.g. index with the XOR of the data addresses from the last K loads

Very similar to the idea behind global branch prediction
- Using history of a couple loads can increase accuracy dramatically

This technique can also be applied to just the load miss stream

…….
Candidate N

Prefetch

……

Confidence

….

.…

….
….ConfidencePrefetchLoad Data Addr

………….…….
Candidate 1(tag)

Correlation-Based Prefetching

Load
Data
Addr
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Software Controlled Memory Hierarchy

Expose cache hierarchy to the programmer
Controlling the size of the cache
- If the program is known to have a small footprint, turn off half

of the L1 or turn off the entire L2 to save power

Controlling the associativity
- Assign individual L1 banks to different software threads so 

they don’t thrash each other
- Designate a specific L1 bank for streaming references only 

so you don’t displace the rest of the cache contents

Fine-grain cache control instructions, e.g.
- Lock a particular cache line from displacement
- Prefetch an address up to just L2 but not L1
- Start a new stream buffer prefetch
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Our Picture of Superscalar Micros
First half of the course
Single-instruction stream 

shrink-wrap binary

What’s to come
- Software/compilation based 

techniques
- Heavy-duty speculation
- New ISA design and support
- New microarchitecture style
- System-level parallelism
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Branch
Predictor Instruction

Buffer
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Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data 

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Higher performance, lower power, anything goes
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Dataflow Limit on Superscalar Micros 
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Breaking Dataflow Dependence:
Prediction and Speculation

Branch prediction:
- Branch target history
- Branch direction history

Load value prediction:
- Value history for each static load

Register value prediction:
- Source or destination value history per static instruction 

operand

Dependence and alias prediction:
- Source or destination dependence distance history

Assumes a very large transistor budget
1. Large complicated prediction logic for accuracy
2. Spare resources to spend on speculated computation



CMU 18-747
Lecture 13-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Load Value Locality

cc1-271 cc1
cjpeg

compress
doduc

eqntott
gawk

gperf
grep
hydro2d

mpeg perl
quick sc

swm256
tomcatvxlis

p
0

20
40
60
80

100

V
al

ue
 L

oc
al

ity
 (%

) PowerPC
cc1-271

cjpeg

compress
doduc

eqntott
gawk

gperf
grep
hydro2d

mpeg perl
quick sc

swm256
tomcatv xlisp

0
20
40
60
80

100

V
al

ue
 L

oc
al

ity
 (%

) Alpha AXPHistory=1
History=16

Optimized, two ISAs, SPECish benchmarks (720M instr)
Frequently >= 50% with history depth of 1
Frequently >= 80% with history depth of 16
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Generalized Value Locality
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Dynamic Pipeline Contraction
Fold away pipeline stages via speculation:
- Predict: obtain semantic outcome of instruction early
- Speculate: allow dependent instr. to execute in parallel
- Recover: Perform fix-up when mis-speculation occurs
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Superspeculation Pipeline Contractions
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Value Prediction Mechanism
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Classification Table (CT) Value Prediction Table (VPT)
<v> <v> <value history><pred history>

Predicted ValuePrediction Result Updated Value

Oper. Position

PC of pred. instr.

Source Operand Value Prediction

Similar to earlier work on value prediction, but 
predicts source operands:
- Decouples execution from dependence checking
- Don’t care where value is coming from until validation

Confidence mechanism (CT) filters out wrong 
predictions
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~50% of source operands can be correctly predicted
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Load Value Prediction and Classification
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Load Value Locality

~10% of loaded values are constant-promoted
~35% (int) and 25% (FP) of loaded values are predicted
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Rename

Dispatch Group
P1: SrcDst

Buffers

PC

BHR

Dependence Prediction Table
<v><rename buffer index>

Dependence Prediction Mechanism

Keeps dependence distance history per instruction
Bypasses dependence detection if dependence 
distance stays constant
Allows execution to begin in parallel with exact 
dependence checking
Incorrect prediction results in execution restart
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Dependence Predictability

~80% of source operands can be value- or dependence predicted
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Alias Prediction

Speculatively forwards values from store queue
Dependence distance history used to predict the right 
store queue entry
Address generation is taken off the critical path

Store
Queue

Load PC

BHR

Alias Prediction Table
<v><Relative StQ index>
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~15% (int) and 6% (FP) of loads are aliased
~80% of aliases are predicted correctly (no AGI)
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go m88ksim gcc compress li ijpeg perl vortex HM0.0
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Finite memory bandwidth only slightly degrades 
performance down to 4 cache ports
At 16-wide, 4 cache ports, ROB=128, ---> IPC = 6.7 
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FP more sensitive to memory bandwidth
Fewer aliases, more cache misses, limited by ROB size
At 16-wide, 4 cache ports, ROB=256, ---> IPC = 7.2
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Performance Potential of Superspeculation
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