
18-747 Lecture 4:
Simple Superscalar Execution

James C. Hoe
Dept of ECE, CMU

September 10, 2001

Reading Assignments: S&L Ch2 pp 51-76, Ch3 pp1-36, MJ Ch1,Ch2 (Ch3)

Announcements: First recitation this Friday, 2:30-3:30 DH1112 (this room)

Handouts: Handout #4 Project 0
SimpleScalar Tech. Report

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 4-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Architectures for
Instruction-Level Parallelism

Scalar Pipeline (baseline)
Instruction Parallelism = D
Operation Latency = 1
Peak IPC = 1

1
2

3 4
5

6

IF DE EX WB

1 2 3 4 5 6 7 8 90

TIME IN CYCLES (OF BASELINE MACHINE)

S
U

C
C

E
S

S
IV

E
IN

S
TR

U
C

TI
O

N
S

D

CMU 18-747
Lecture 4-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superpipelined Machine
Superpipelined Execution

IP = DxM
OL = M minor cycles
Peak IPC = 1 per minor cycle (M per baseline cycle)

1
2

3
4

5

IF DE EX WB
6

1 2 3 4 5 6

major cycle = M minor cycle
minor cycle

CMU 18-747
Lecture 4-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superscalar Machines
Superscalar (Pipelined) Execution

IP = DxN
OL = 1 baseline cycles
Peak IPC = N per baseline cycle

IF DE EX WB

1
2
3

4
5
6

9

7
8

N

CMU 18-747
Lecture 4-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superscalar and Superpipelined

Superscalar and superpipelined machines of equal degree have
roughly the same performance, i.e. if n = m then both have about
the same IPC.

Superscalar Parallelism
Operation Latency: 1

Issuing Rate: N

Superscalar Degree (SSD): N

(Determined by Issue Rate)

Superpipeline Parallelism
Operation Latency: M

Issuing Rate: 1

Superpipelined Degree (SPD): M

(Determined by Operation Latency)

Time in Cycles (of Base Machine)
0 1 2 3 4 5 6 7 8 9

SUPERPIPELINED

10 11 12 13

SUPERSCALAR Key:

IFetch
Dcode

Execute
Writeback

CMU 18-747
Lecture 4-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Limitations of Inorder Pipelines
CPI of inorder pipelines degrades very sharply if the
machine parallelism is increased beyond a certain point,
i.e. when NxM approaches average distance between
dependent instructions
Forwarding is no longer effective

⇒ must stall more often
Pipeline may never be full due to frequent

dependency stalls!!

IF DE EX WB

1
2
3

4
5
6

9

7
8

CMU 18-747
Lecture 4-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

What is Parallelism?

Work
T1 - time to complete a computation

on a sequential system

Critical Path
T∞ - time to complete the same

computation on an infinitely-
parallel system

Average Parallelism
Pavg = T1 / T∞

For a p wide system

Tp ≥ max{ T1/p, T∞ }

Pavg>>p ⇒ Tp ≈ T1/p

+

+-

*

*2

a b

x y

x = a + b;
y = b * 2
z =(x-y) * (x+y)

CMU 18-747
Lecture 4-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ILP: Instruction-Level Parallelism

ILP is is a measure of the amount of inter-dependencies
between instructions

Average ILP = no. instruction / no. cyc required
code1: ILP = 1

i.e. must execute serially

code2: ILP = 3
i.e. can execute at the same time

code1: r1 ← r2 + 1
r3 ← r1 / 17
r4 ← r0 - r3

code2: r1 ← r2 + 1
r3 ← r9 / 17
r4 ← r0 - r10

CMU 18-747
Lecture 4-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Inter-instruction Dependences
Data dependence

r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW)

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR)

Output dependence
r3 ← r1 op r2 Write-after-Write
r5 ← r3 op r4 (WAW)
r3 ← r6 op r7

Control dependence

CMU 18-747
Lecture 4-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scope of ILP Analysis

r1 ⇐ r2 + 1
r3 ⇐ r1 / 17
r4 ⇐ r0 - r3
r11 ⇐ r12 + 1
r13 ⇐ r19 / 17
r14 ⇐ r0 - r20

ILP=2
ILP=1

Out-of-order execution permits more ILP to be
exploited

CMU 18-747
Lecture 4-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Purported Limits on ILP
Weiss and Smith [1984] 1.58
Sohi and Vajapeyam [1987] 1.81
Tjaden and Flynn [1970] 1.86
Tjaden and Flynn [1973] 1.96
Uht [1986] 2.00
Smith et al. [1989] 2.00
Jouppi and Wall [1988] 2.40
Johnson [1991] 2.50
Acosta et al. [1986] 2.79
Wedig [1982] 3.00
Butler et al. [1991] 5.8
Melvin and Patt [1991] 6
Wall [1991] 7
Kuck et al. [1972] 8
Riseman and Foster [1972] 51
Nicolau and Fisher [1984] 90

CMU 18-747
Lecture 4-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

CMU 18-747
Lecture 4-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superscalar Pipeline Design

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

Instruction
Flow

Data Flow

CMU 18-747
Lecture 4-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Inorder Pipelines

IF

D1

D2

EX

WB

Intel i486

IF IF

D1 D1

D2 D2

EX EX

WB WB

Intel Pentium

U - Pipe V - Pipe

Inorder pipeline, no WAW no WAR (almost always true)

CMU 18-747
Lecture 4-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Out-of-order Pipelining 101

• • •

• • •

• • •

• • •IF

ID

RD

WB

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

EX

Program Order

Ia: F1 ← F2 x F3
.

Ib: F1 ← F4 + F5

What is the value of F1? WAW!!!

Out-of-order WB
Ib: F1 ← “F4 + F5”

.
Ia: F1 ← “F2 x F3”

CMU 18-747
Lecture 4-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Output Dependences (WAW)

Superscalar Execution Check List

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences

Control Dependences Data Dependences

True Dependences

Anti-Dependences

Storage Conflicts

(Structural Dependences)

(RAW)

(WAR)

CMU 18-747
Lecture 4-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

In-order Issue into
Diversified Pipelines

• • •

• • •

• • •

• • •

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

RD ← Fn (RS, RT)

Dest.
Reg.

Func
Unit

Source
Registers

Issue stage needs to check:
1. Structural Dependence
2. RAW Hazard
3. WAW Hazard
4. WAR Hazard

Inorder
Inst.

Stream

CMU 18-747
Lecture 4-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Simple Scoreboarding

Scoreboard: a bit-array, 1-bit for each GPR
- if the bit is not set, the register has valid data
- if the bit is set, the register has stale data

i.e. some outstanding inst is going to change it

Dispatch in Order: RD ← Fn (RS, RT)

Complete out-of-order
- update GPR[RD], clear SB[RD]

- else dispatch to FU, set SB[RD]
- if SB[RD] is set is set ⇒ WAW, stall
- if SB[RS] or SB[RT] is set ⇒ RAW, stall

CMU 18-747
Lecture 4-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Out-of-Order Issue

• • •

INT LD/ST

• • •

• • •

• • •Inorder
Inst.

Stream
Dispatch

RD

WB

EX

ID

IF

Fmult
Fadd

CMU 18-747
Lecture 4-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scoreboarding for Out-of-Order Issue

Scoreboard: one entry per GPR
(what do we need to record?)

Dispatch in order: “RD ← Fn (RS, RT)”
- if FU is busy ⇒ structural hazard, stall
- if SB[RD] is set is set ⇒ WAW, stall
- if SB[RS] or SB[RT] is set is set ⇒ RAW (what to do??)
Issue out-of-order: (when?)
Complete out-of-order
- update GPR[RD], clear SB[RD]

(what about WAR?)

CMU 18-747
Lecture 4-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scoreboard for Out-of-Order Issue
[H&P pp242~251]

Function Unit Status

LD/ST
FMult
FAdd

NoYesRTRSRDFnInteger
RkRjQkQjFkFjFiiOpBusyName

.R6
FU

R5R4R3R2R1R0
Register Results Status (a.k.a Scoreboard)

RD ← Fn (RS, RT)”

Which FU is computing the new value if not ready?

Which FU is going to update the register?

CMU 18-747
Lecture 4-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scoreboard Management: “RD ← Fn (RS, RT)”

∀f (if Qj(f)==FU then Rj(f) ← yes);
∀f (if Qk(f)==FU then Rk(f) ← yes);
Result(Fi(FU)) ← 0; Busy(FU) ← no;

∀f ((Fj(f)≠Fi(FU) or Rj(f)==No)
and

(Fk(f)≠Fi(FU) or Rk(f)==No))

Write
Result

Functional unit doneExecution
Complete

Rj(FU) ← no; Rk(FU) ← no;
Qj(FU) ← 0; Qk(FU) ← 0;

Rj(FU) and Rk(FU)Issue
(Read
operands)

Busy(FU) ← yes; Op(FU) ← Fn;
Fi(FU) ← ’RD’; Fj(FU) ← ’RS’; Fk(FU) ← ’RT’;
Qj(FU) ← Result(‘RS’); Qk(FU) ← Result(‘RT’);
Rj(FU) ← not Qj(FU); Rk(FU) ← not Qk(FU);
Result(’RD’) ← FU;

not busy (FU) and
not Result (‘RD’)

Dispatch
BookkeepingWait untilStatus

Legends: FU -- the fxn unit used by the instruction;
Fj(X) -- content of entry Fj for fxn unit X;
Result(X) -- register result status entry for register X;

CMU 18-747
Lecture 4-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scoreboarding Example 1/3

XDIVD F10, F0, F6

ADDD F6, F8, F2

XMULTD F0, F2, F4

XSUBD F8, F6, F2

XXXLD F2, 45(R3)

XXXXLD F6, 43 (R2)

Write
Result

Execution
Complete

Read
Operands

DispatchInstruction

Instruction Status

YesNoMult1F6F0F10DIVDYesDiv(40)

Function Unit Status

NoYesIntegerF2F6F8SUBDYesAdd(2)

NoMult2(10)

YesNoIntegerF4F2F0MULTDYesMult1(10)

NoR3F2LDYesInteger (1)

RkRjQkQjFkFjFiiOpBusyName

.F12

DivideAddIntegerMult1FU

F10F8F6F4F2F0

Register Results Status (a.k.a Scoreboard)

CMU 18-747
Lecture 4-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scoreboarding Example 2/3

XDIVD F10, F0, F6

XXXADDD F6, F8, F2

XXXMULTD F0, F2, F4

XXXXSUBD F8, F6, F2

XXXXLD F2, 45(R3)

XXXXLD F6, 43 (R2)

Write
Result

Execution
Complete

Read
Operands

DispatchInstruction

Instruction Status

YesNoMult1F6F0F10DIVDYesDiv(40)

Function Unit Status

NoNoF2F8F6ADDDYesAdd(2)

NoMult2(10)

NoNoF4F2F0MULTDYesMult1(10)

NoInteger (1)

RkRjQkQjFkFjFiiOpBusyName

.F12

DivideAddMult1FU

F10F8F6F4F2F0

Register Results Status (a.k.a Scoreboard)

CMU 18-747
Lecture 4-25
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scoreboarding Example 3/3

XXXDIVD F10, F0, F6

XXXXADDD F6, F8, F2

XXXXMULTD F0, F2, F4

XXXXSUBD F8, F6, F2

XXXXLD F2, 45(R3)

XXXXLD F6, 43 (R2)

Write
Result

Execution
Complete

Read
Operands

DispatchInstruction

Instruction Status

NoNoF6F0F10DIVDYesDiv(40)

Function Unit Status

NoAdd(2)

NoMult2(10)

NoMult1(10)

NoInteger (1)

RkRjQkQjFkFjFiiOpBusyName

.F12

DivideFU

F10F8F6F4F2F0

Register Results Status (a.k.a Scoreboard)

CMU 18-747
Lecture 4-26
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Limitations of Scoreboarding

Consider a scoreboard processor with infinitely wide
datapath
In the best case, how many instructions can be

simultaneously outstanding?

Hints
- no structural hazards
- can always write a RAW-free code sequence

addi r1,r0,1; addi r2,r0,1; addi r3,r0,1; …….
- think about x86 ISA with only 8 registers

CMU 18-747
Lecture 4-27
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Contribution to Register Recycling

9 $34: mul $14 $7, 40
10 addu $15, $4, $14
11 mul $24, $9, 4
12 addu $25, $15, $24
13 lw $11, 0($25)
14 mul $12, $9, 40
15 addu $13, $5, $12
16 mul $14, $8, 4
17 addu $15, $13, $14
18 lw $24, 0($15)
19 mul $25, $11, $24
20 addu $10, $10, $25
21 addu $9, $9, 1
22 ble $9, 10, $34

COMPILER REGISTER ALLOCATION

INSTRUCTION LOOPS

Single Assignment, Symbolic Reg.

Map Symbolic Reg. to Physical Reg.
Maximize Reuse of Reg.

CODE GENERATION

REG. ALLOCATION

Reuse Same Set of Reg. in
Each Iteration
Overlapped Execution of
Different Iterations

For (k=1;k<= 10; k++)
t += a [i] [k] * b [k] [j] ;

CMU 18-747
Lecture 4-28
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Resolving False Dependences

(2) R3 R5 + 1

Must Prevent (2) from completing •
•
•

(1) R4 R3 + 1
before (1) is dispatched

Stalling: delay Dispatching (or write back) of the 2nd
instruction

Copy Operands: Copy not-yet-used operand to prevent
being overwritten (WAR)

Register Renaming: use a different register (WAW & WAR)

Must Prevent (2) from completing
before (1) completes

(1) R3 R3 op R5

R3

(2) R3 R5 + 1

•
•
•

•
•
•

CMU 18-747
Lecture 4-29
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Renaming
Anti and output dependencies are false dependencies

The dependence is on name/location rather than data
Given infinite number of registers, anti and output
dependencies can always be eliminated

r3 ← r1 op r2
r5 ← r3 op r4
r3 ← r6 op r7

Renamed
r1 ← r2 / r3
r4 ← r1 * r5
r8 ← r3 + r6
r9 ← r8 - r4

Original
r1 ← r2 / r3
r4 ← r1 * r5
r1 ← r3 + r6
r3 ← r1 - r4

CMU 18-747
Lecture 4-30
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Rename
Register

File
(t0 ... t63)

Rename
Table

Hardware Register Renaming

maintain bindings from ISA reg. names to rename registers
When issuing an instruction that updates ‘RD’:
- allocate an unused rename register TX
- recording binding from ‘RD’ to TX

When to remove a binding? When to de-allocate a rename register?

ISA name
e.g. R12

rename
T56

R1 ← R2 / R3
R4 ← R1 * R5
R1 ← R3 + R6

To be continued
next lecture!!

