
18-747 Lecture 23:
Shared Memory Multiprocessors

James C. Hoe
Dept of ECE, CMU
November 26, 2001

Reading Assignments: Two papers below
Announcements: Office hour cancelled, come to my Talk at 4:30 instead

On Wednesday
Exam Review
Guest Lecture by Prof. D. Marculescu on

Power-Aware Processor Design
Handouts: “Shared Memory Consistency Models: A Tutorial”,

Adve and Gharachorloo
“Using Cache Memory to Reduce Processor-Memory Traffic”,

Jim Goodman
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 23-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Uniprocessor Load and Store Semantics
The programmer (or compiler) believes memory reads
and writes are going to be executed in program order
Given Wi(a, v) << Rj(a)
Rj(a) must return v if there does not exist another Wk
such that

Wi(a, v) << Wk(a, v’) << Rj(a)
In short, a read should return the value of the “last” write
to the same memory address
Processors can guaranteed this semantics by obeying
the ordering of memory data dependent operations
- RAW: W(a, v) << R(a)
- WAW: W(a, v’) << W(a, v)
- WAR: R(a) << W(a, v’)

(“<<“ means precedes)

CMU 18-747
Lecture 23-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Uniprocessor Reordering of Loads & Stores

Reordering of memory Op’s to different addresses
Buffered stores (some stores may never show up in memory)

Load forwarding and load bypassing
Note: one should not be able to write a program to

differentiate this from a true program-ordered execution!

Reservation Station

Load
unit

Address Generation
Address Translation
Memory Access

Data Cache

Store
unit

Address Generation
Address Translation

(Finished)
Store Buffer
(Completed)
Store Buffer

Memory Update

AddressData
Speculative

State
Committed

In-order
State

CMU 18-747
Lecture 23-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Memory Ordering for
Shared Memory Multiprocessors

Consider these two programs running on two processors
that communicate via shared memory locations X and Y

Can the orders of Loads and Stores be swapped during
dynamic execution?
Can the two programs perceive different order of events?

Proc A:
Y is initially 1
……
compute V
Store (X, V)
Store (Y, 0)
……

Proc B:
……
do {

lock=Load Y
} while (lock)
data = Load X
……

CMU 18-747
Lecture 23-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Simplified Multiprocessor/Memory Arch.

P1 P2 P3 Pn

Memory

Ignore caches for now

CMU 18-747
Lecture 23-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Multiprocessor Memory Consistency
A memory consistency model tells the programmer
for each load which store operation bound the value
to be returned
Intuition: a load should return the value of the “last”
store to the same memory address
In multiprocessor, each processor performs a stream
of reads and writes
. WP1(x)

. WP2(x),WP2(y), RP2(x), RP2(y)
.WP3(x). . . . WP3(y).WP3(x)

Who performed the last write to x before R(x) by P2?

How do you establish a global ordering of memory
operations? Do you need a global ordering?

CMU 18-747
Lecture 23-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Sequential Consistency (SC)
What if every one can agree on a single point of
serialization, for example at the memory bus?
Sequential Consistency [Lamport]
- a thread on a processor perceives its own memory ops in program

order
- memory ops from different processors can be interleaved arbitrarily

(different interleaving are allowed on different runs)
- For each run, all threads on all processors must agree on the

same total ordering
- i.e. execution of a parallel program appear as some interleaving of

the execution of parallel processes on a sequential machine”
Example: Concurrent tasks T1 and T2 and shared variables X and Y
(initially X = 0, Y = 0)

T1: ……… T2: …….
Store(X, 1); Y’ = Load(Y);
Store(Y, 1); X’ = Load(X);

SC says ⇒ Y’ and X’ may be assigned different values from run to
run, but if Y’ is 1 then X’ cannot be 0

CMU 18-747
Lecture 23-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Implementation Implications of SC
SC requires a processor to
preserve the following
program-specified orderings
at the common point of
serialization

Ri(x) < Rj(x)
Ri(x) < Rj(y)

Ri(x) < Wj(x) RAW
Ri(x) < Wj(y)

Wi(x) < Rj(x) WAR
Wi(x) < Rj(y)

Wi(x) < Wj(x) WAW
Wi(x) < Wj(y)

Memory

core
Store
Buf

core
Store
Buf

Shared location X and Y initially 0

T1: Store(X, 1)

print X Y

Is it possible that T1 prints “1 0” but
T2 prints “0 1”?

T2: Store(Y, 1)

print X Y

CMU 18-747
Lecture 23-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Performance Implications of SC
SC memory model places sever restrictions on the
applicability of high-performance memory flow
techniques from Lecture 12
Solutions are
- disallow reordering of memory operations (not good enough)
- speculatively reorder memory operations and repair if it made

an “observable” difference (MIPS R10000)
e.g. allow a load to issue as early as possible without

violating uniprocessor dependence. If no other
processors issue any memory operations between the
time of advanced load and the would be time of the in-
order load, then no problem, else “rewind and reload”

- support weaker memory models (PowerPC)
• Only a small minority of the processors sold will be used

in shared-memory systems
• SC is not always needed even in parallel applications

CMU 18-747
Lecture 23-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

By default, WC processors only obey basic uniprocessor
memory dependence Ri(x)<Wj(x), Wi(x)<Rj(x), Wi(x)<Wj(x)

A special barrier instruction lets SW explicitly serialize
memory operations when it matters
Bi < Rj(y)
Bi < Wj(y)
Bi < Bj
Ri(x) < Bj
Wi(x) < Bj

You rarely need to serialize so we can use a low-cost
(low-performance) implementation, i.e. on a sync, stop all
instructions from issuing until all earlier instructions have
finished

Other models, between SC and WC, have been used

Weak Consistency (WC)

Proc A:
Y is initially 1
……
compute V
Store (X, V)
Sync
Store (Y, 0)

Proc B:
……
do {

lock=Load Y
} while (lock)
Sync
data = Load X

CMU 18-747
Lecture 23-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Memory Coherence
If P1 writes to X, “later” P2 reads X, and no one else
writes to X in between, P2 should read the value
written by P1
Example:

Under WC interpretations, Load X by P2 occurs after
Store(X, V) by P1, P2 should get V
This is absolutely unambiguous if there is only one
place where the value of memory location X is kept

P1:
Y is initially 1
……
compute V
Store (X, V)
Sync
Store (Y, 0)
……

P2:
……
do {

lock=Load Y
while (lock)
Sync
data = Load X
……

CMU 18-747
Lecture 23-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Multiprocessor/Cache/Memory Arch

The Goal of Cache Coherence is to make all the processors
believe they are connected to the same memory directly?

(warning: slightly oversimplified statement)

P1 P2 P3 Pn

$1
$2

Memory

$1
$2

$1
$2

$1
$2

CMU 18-747
Lecture 23-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Extreme Solutions to Cache Coherence
Disallow caching of shared variables
Only allow only one copy of a mem location at a time
- If location X is cached in one cache then it is not valid in

memory or another cache
- Another processor must have a way to find out who has

location X and take over ownership before reading or writing
- thus, can only have one reader/writer per location

Allow multiple copies, but make sure they all have the
same value at all time
- update to one copy must be visible to all copies where ever

they might be (memory and all of the caches)
- thus, can have multiple readers and writers at once

A cache coherence protocol is the “rules of conduct”
between caches to enforce a particular policy

CMU 18-747
Lecture 23-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CC Protocol for Bus-based Systems
Bus is a broadcast medium, bus “snooping” allows
every cache to see what everyone else wants to do
A cache can even intervene in another cache’s bus
transaction, e.g. a cache might ask another cache to
“retry” the transaction later or respond in place of the
memory
Besides the usual status bits, additional information
might have to be recorded with each cache line, aka
cache coherence states, e.g.
- Invalid: cache line does not have valid data
- Modified: cache line has been written to since it was brought in
- Shared: valid line, but other caches may have copies

(presumably all identical and unchanged from memory)
- Exclusive: valid line, unchanged from memory but no other

cache has a copy

CMU 18-747
Lecture 23-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example: Multiple Identical Copies
A cache line can be either Valid or Invalid
Based on a write-through scheme
- a cache issues a read transaction on a read or write miss
- a cache issues a write transaction to memory whenever the

cache line is changed by the processor
- a cache do not need to write back when a line is displaced

All writes are write-through so the writer’s cache is
coherent with memory
All caches “snoop” the bus for other’s write transactions
- Check if the write is to a currently cached location
- If a write goes to a cached location, overwrite the old (aka stale)

value with the new snooped value
- else do nothing

A read miss can fetch directly from memory (always
current)

CMU 18-747
Lecture 23-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example: One Copy at All Time
A cache line can be either Valid or Invalid
Based on a write-back scheme
- a cache issues a read transaction on a read or write miss
- a cache issues a writes-back to memory when a line is

displaced

All caches “snoop” the bus for other’s read transactions
- If a cache observes a request to a currently cached line then

respond with a value in place of memory, mark its own copy
Invalid

- Alternatively, a cache can also ask the requester to retry later
and, in the meanwhile, write-back its copy to memory

Why don’t caches need to snoop for write-back
transactions?

CMU 18-747
Lecture 23-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

MESI Cache Coherence Protocol
An efficient policy for single-writer/multi-reader usage
- Allow multiple read-only copies (all identical) (Shared)
- Allow only a single writable copy (Exclusive, Modified)
- Minimizes the number of bus transactions

Based on a write-back scheme
- On a read miss, issue a read transaction for a read-only copy
- On a write miss, issue a “read-with-intent-to-modify” for an

exclusive copy
- On a write hit to a read-only copy, issue a “invalidate” transaction
- When displacing a “clean” line, do nothing
- When displacing a Modified line, write the dirty value back to

memory

All caches “snoop” the bus for other caches’ read,
RWITM and invalidate transactions

What happens on a snoop hit is kind of complicated
to describe in words

CMU 18-747
Lecture 23-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Cache A Cache B

Memory

Modified in Cache A
Cache A Cache B

Memory

Shared in Cache A

Cache A Cache B

Memory

Exclusive in Cache A
Cache A Cache B

Memory

Invalid in Cache A

M S

E I

data valid data invalid data valid don’t care

data validdata invalid

data valid data invalid data invalid don’t care

don’t caredata valid

MESI States

Given the state of an address in one cache, what can one infer about
the possible state of the same address else where?

except that it
must be valid
somewhere

shared or
invalid

