
18-747 Lecture 10:
Trace Caching

James C. Hoe
Dept of ECE, CMU

October 1, 2001

Reading Assignments:  2 papers below

Announcements: Midterm Exam on Monday 10/15
Condor Usage

Handouts:  “Critical Issues Regarding the Trace Cache Fetch Mechanism”
“The Block-based Trace Cache”
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Control Flow Speculation

Leading Speculation
- Tag speculative instructions 
- Advance branch and following instructions
- Buffer addresses of speculated branch instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3
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Mis-speculation Recovery

Eliminate Incorrect Path
- Must ensure that the mis-speculated instructions produce no 

side effects

Start New Correct Path
- Must have remembered the alternate (non-predicted) path

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3 tag3tag3

tag2
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Mis-speculation Recovery

Eliminate Incorrect Path
- Use branch tag(s) to deallocate completion buffer entries 

occupied by speculative instructions (now determined to be 
mis-speculated).

- Invalidate all instructions in the decode and dispatch buffers, as 
well as those in reservation stations

How expensive is a misprediction?

Start New Correct Path
- Update PC with computed branch target (if it was predicted NT)
- Update PC with sequential instruction address (if it was 

predicted T)
- Can begin speculation once again when encounter a new 

branch

How soon can you restart?
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Trailing Confirmation

Trailing Confirmation
- When branch is resolved, remove/deallocate speculation tag
- Permit completion of branch and following instructions
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tag2

tag3tag3 tag3

tag2
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Fast Branch Rewind and Restart: 
Metaflow DRIS

Discard all DRIS entries 
(and corresponding 
operations) younger than 
the mispredicted branches

Can restart immediately 
from the corrected branch 
target because the DRIS 
has sufficient information 
(rename & value) to 
continue from where left off

Works with nested 
mispredictions!!

youngest

oldest

misprediction

oldestoldestoldest

another miss

another miss
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To reinitiate renaming:
- wait for all instructions older than the rewind point to drain 

clear of the pipeline and then reset register remapping to null
Long restart latency

- Reorder buffer has to remember how to restored the map 
table to the point of the mispredicted branch 

Complicated multi-cycle logic
- Cache rename map after branch prediction

Rewinding/Flushing of Rename Table 
data busy tag

logical
register
name

ARF Map Table
data

RRF
rdy next to

free
next to
allocate

Operand Value/Tag
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Instruction Fetching for Wide Superscalars
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Wide Instruction Fetch Issues

Average Basic Block Size
- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

Three Major Challenges:

- Multiple-Branch Prediction

- Multiple Fetch Groups

- Alignment and Collapsing

Instruction

Fetch

Decode

Branch
Prediction

Instruction

Dispatch

Cache

Buffer

Cannot be solved with just longer cache blocks
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Multiple Branch Predictions
Issues with multiple branch predictions:
- Latency resulting from sequential predictions
- Later predictions based on stale/speculative history
- Don’t forget, 0.95x0.95x0.95=0.85

BTB

BTB

BTB

Fetch
address

Block 1 Block 2 Block 3
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Examples of Multi-Branch Predictors

bn b0
BHSR

PHT

p0 p1 p2

How do you update this thing after a branch resolves?
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Examples of Multi-Branch Predictors

bn b0
BHSR

bn:2
bn-1:1

bn-2:0

b1
b0

p0

b0
p0

p0
p1

p1p2

PHT

2n-2 x 4 entries
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Multiple Predicted Taken Branches

Issues with multiple taken branches:
- Long latency with multiple sequential I-cache accesses
- or, multi-ported I-cache with slower access latency
- or, multi-banked I-cache to approximate multi-port

Block 2 FA

Block 1 FA

Block 3 FA

Block 1
instructions

Block 2
instructions

Block 3
instructions

Multi-ported I-cache
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Instruction Alignment and Collapsing

Issues with alignment and collapsing:
- Misalignment between fetch group and cache line.
- Packing of variable-sized blocks into fetch buffer.

I-cache
Port 1

I-cache
Port 2

I-cache
Port 3

Fetch buffer
How do you 
know where 
this is?
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Mapping  CFG  to
Linear Instruction Sequence
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The Trace Cache Proposal

A

B

C

D

E F

G

A

B
C

D

E

F
G

A

B
C

D

F
G
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Trace-
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10% static
90% dynamic

static 90%
dynamic 10%
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A Typical Trace Cache Organization

Trace Cache
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Next
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Trace Fill Unit
Observe the dynamic execution sequence 
Gather instructions into a trace segment (or trace 
cache block)
Some simple heuristics for forming trace segments
- stop after collecting up to N instructions  

(N is the trace cache block size)
- stop after B conditional branches 

(B is the limit of the multi-branch predictor)
- stop after seeing an register-indirect jump
- Don’t split basic blocks
- In some designs, unconditional and conditional branches 

can be dropped from the traces 

Can include pre-decoded dependence information 
Can even dynamically re-order instructions (don’t 
need an out-of-order core!!)
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Intel Pentium Pro Fetch/Decode Unit

Instruction Buffer 16 bytes

x86 Macro-Instruction Bytes from IFU

Decoder
0

Decoder
1

Decoder
2

Branch
Address

Calc.

To Next
Address

Calc.

4 uops 1 uop 1 uop

Up to 3 uops Issued to dispatch

uop Queue (6)

uROM
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Predecoding in the AMD K5

I-Cache

ROP1 ROP2 ROP3 ROP4

128 + 80

64

From Memory

Up to 4 ROP’s

Predecode
Logic

64 + 40

8 Instruction Bytes

8 Instr. Bytes + 

16 Instr. Bytes +

Decode, Translate
and Dispatch

Byte1 Byte2 Byte8

5 Bits

Byte1 Byte2 Byte8• • •

• • •

5 Bits 5 Bits

Predecode Bits

Predecode Bits
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Intel P4 Trace Cache
A 12K-uop trace cache replaces the L1 I-cache
6-uop per trace line, can include branches
Trace cache returns 3-uop per cycle
IA-32 decoder can be simpler and slower

Only needs to decode one IA-32 instruction per cycle

Front End BTB
4K Entries

ITLB &
Prefetcher L2 Interface

IA32 Decoder

Trace Cache
12K uop’s

Trace Cache BTB
512 Entries
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Trace Selection/Prediction
Basic
- find the trace that starts at the predicted next-PC

Multiple cached traces may have the same starting PC
- difference is in the internal branch decisions
⇒ need multi-branch predictors

Partial Traces
- predicted next-PC points to the middle of a cached 

trace (cached ABC, but predicted BC)
- multi-branch prediction may say not to use the entire 

length of a cached trace  (cached ABC, but only 
needs AB)
⇒ need alignment and collapsing buffer

So how is this better?
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Redundant Traces
Suppose B,C and D are 
instructions in a loop
- 3 different traces of 3-instructions are 

possible
- Which one should we keep in the trace 

cache?
- How do we detect the beginning and 

the end of basic blocks?

Suppose A,B,C,D and E are basic 
blocks
- don’t cache BC if BCD is cached
- what about CDB and CDE?
- what about ABC and DBC? 
- How to cut down on redundant  

instruction storage?

A

B

C

D

E
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Replicated Block Cache
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What about fragmentation?
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Predict and Fetch Trace

Trace Table

Global History

Final Collapse

Fetch Buffer
16

Fetch Cycle

Predict Cycle

Block Cache

More efficient: redundancy is in the trace table and not the block cache
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Next Trace Prediction

tag index
tag

global history

block_ids

1 2 ... wv

=

Hit

...

b_id0 b_id1 b_id2 b_id3

w pred. block_ids

Trace Table

Hash
Function

Next trace_id

to the block cache

predicted branch path
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The Block-Based Trace Cache

Fetch Buffer
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1. Next trace prediction
2. Trace cache fetch

Proposed
Trace Cache

Enhanced
Instruction Cache

Fetch

Completion

Execution Core

1. Multiple-branch prediction
2. Instruction cache fetch
3. Instruction alignment & 

collapsing

1. Multiple-branch predictor 
update

Execution Core

Wide-Fetch I-cache vs. T-cache

1. Trace construction and fill
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Trace Cache Trade-offs

Fetch time complexity

Trace cache:

Enhanced instruction cache:

Pros → Moves complexity to backend
Cons → Inefficient instruction storage

Pros → Efficient instruction storage
Cons → Complexity during fetch time

Instruction storage redundancy
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As Machines Get Wider (… and Deeper)
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