
18-747 Lecture 18:
Advanced ILP Scheduling

James C. Hoe
Dept of ECE, CMU
November 5, 2001

Reading Assignments:

Announcements: Project 2 (and HW3) due on coming Friday (coming Monday)
Quiz 2 on December 3rd

Handouts:

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 18-2
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Scheduling [Josh Fisher]

Generate multi-basic block traces based on profiling
information
- find the most often executed control path

List schedule a trace at a time
- optimize the execution of the trace (common case)
- fix any problem with off-trace paths as necessary (infrequently

executed)

Good for very biased and predictable branching
behavior
Trace scheduling engendered the VLIW architecture
innovation and was implemented in the Multiflow TRACE
compiler, which provided the basis for superscalar
compilation techniques now being used by Intel, HP, and
DEC

CMU 18-747
Lecture 18-3
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Scheduling Overview

Trace Selection
- select seed (the highest frequency basic block)
- extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)
backward (predecessor of the first block of the trace)

- don’t cross loop back edge
- bound max_trace_length heuristically

Trace Scheduling
- build data precedence graph for a whole trace
- perform list scheduling and allocate registers
- add compensation code to maintain semantic correctness

Speculative Code Motion (upward)
- Move an instruction above branches if safe

CMU 18-747
Lecture 18-4
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code for Downward Motion
Split Compensation Code:
- Instruction with more than one successor (conditional

branch)

Join Compensation Code:
- Instruction with more than one predecessor

B
A
C
D

A’ XA
B
C
D

X
Original
trace

Scheduled
trace

A
C
B
D
E

X
C’

A
B
C
D

X

E

Original
trace

Scheduled
trace

CMU 18-747
Lecture 18-5
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Copied Split Instruction

A
B
C
D
E

X

Y

D
B
E
A
C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB
C
D Y

Correctness

C’’’

CMU 18-747
Lecture 18-6
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Trace Scheduling Example

beq r1, $0

fdiv f1, f2, f3
fadd f4, f1, f5

ld r2, 0(r3)

add r2, r2, 4

ld r2, 4(r3)

add r3, r3, 4

beq r2, $0

fsub f2, f2, f6 fsub f2, f3, f7st.d f2, 0(r8)

add r8, r8, 4

990

990

800

800

10

10

200

200

fdiv f1, f2, f3
fadd f4, f1, f5
beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live

live out

out

CMU 18-747
Lecture 18-7
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code Example

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code

CMU 18-747
Lecture 18-8
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code Example

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4 B3 B6

fadd f4, f1, f5

Split

add r3, r3, 4
add r8, r8, 4

Join comp. code

fadd f4, f1, f5

comp. code

CMU 18-747
Lecture 18-9
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code Example

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3
fadd f4, f1, f5

fadd f4, f1, f5

Split
add r2, r2, 4
beq r2, $0
fsub f2, f2, f6
st.d f2, 0(r8)
add r3, r3, 4
add r8, r8, 4

B6

add r3, r3, 4
add r8, r8, 4

Join comp. code

Copied

comp. code

split
instructions

CMU 18-747
Lecture 18-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compensation Code Illustration
fdiv f1, f2, f3

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

fadd f4, f1, f5

add r3, r3, 4
add r8, r8, 4

fadd f4, f1, f5
ld r2, 4(r3)

fadd f4, f1, f5

fsub f2, f3, f7

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)
add r3, r3, 4
add r8, r8, 4

add r3, r3, 4
add r8, r8, 4

B3

B6

CMU 18-747
Lecture 18-11
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Binding
Perform register allocation for a trace
• After scheduling a trace, do register allocation
+ Most frequently executed traces have maximum freedom of

register usage
- Do not use graph coloring due to inappropriate framework

x =

x

x =

x

x ---> r1 x ---> r2
move r1, r2

CMU 18-747
Lecture 18-12
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock Scheduling

Motivation
- Trace scheduling is a good idea
- Maintaining semantic correctness (compensation code) is a

pain

Superblock
- Trace with one entry point (multiple entries create control

flow joins)
- May have multiple exits

CMU 18-747
Lecture 18-13
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock Formation Example

Identify traces using profiling information
Use tail duplication to eliminate side entry points

C

D

Trace

C

D

Trace

C’

D’

B B

Tail
duplication

CMU 18-747
Lecture 18-14
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock Formation Example

A

B

C D

E F

G

H

A

B

C D

E F

G

H

G’

CMU 18-747
Lecture 18-15
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock Enlarging

Branch Target Expansion
- Expand along likely-taken path

Loop Unrolling & Loop Peeling

A

B

C

D

A

B

C

D

B

C

B

C

CMU 18-747
Lecture 18-16
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

ILP Optimization

Basic Block Size
Average Block Size:

Basic block: 3 instructions
Superblock-original: 4 instructions
Superblock-formation: 10 instructions
Superblock-enlargement: 13 instructions

Dependence Elimination
- Code transformations to eliminate data dependencies
- Give code scheduler more freedom to move instructions

CMU 18-747
Lecture 18-17
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Operand Migration

Move instructions whose results are not used within
trace to less frequently executed paths

x =

x

x =

x
x =

CMU 18-747
Lecture 18-18
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Induction Variable Expansion
Eliminate redefinitions of induction variables within
unrolled loops
Insert code to maintain semantic correctness

i = 0

i = i +1

i = i +1

a[i]

a[i]

i = 0

i = i +2

k = k +2

a[i]

a[k]

k = 1

use i

i = i - 1

i = k - 1

use i

CMU 18-747
Lecture 18-19
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Accumulator Variable Expansion
Accumulate a sum or product in each iteration
Insert code to maintain semantic correctness
May not be safe for floating point

sum = 0

sum = sum + t

sum = sum + t’

t = ...

t’ = ...

use sum
use sum

sum = 0

sum = sum + t

k = k + t’

t = ...

t’ = ...

k = 0

sum = sum + k

CMU 18-747
Lecture 18-20
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Symbolic Memory Disambiguation
Simple Example:

It is easy to determine at
compile time that a and b
have different addresses.
It is also easy to determine if
they are in separate memory
banks.

Symbolic analysis of the source code (or the dataflow graphs)
answers these questions
The scheduler then embeds this information within the program

More complex situations arise when arrays or pointers are used:
– Is a[j] independent of a[j+k]?
– Is a[j] independent of b[j]?

– Is a[j] independent of a[j+1]?
– Is a[j] independent of *msg?

load r1, r29+_a
load r2, r29+_b
add r3, r1, r2
store r0+_c, r3

c = a + b;

CMU 18-747
Lecture 18-21
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Predicated Execution
Predicated Execution removes
branches by conditionally
executing operations
Removing branches combines
multiple basic blocks into larger
basic blocks
Branch related stalls are
eliminated
Additional opportunities for
scheduling optimizations appear

Example: if (x<y) then
z+=x;

else
z+=y;

x=i+j;
y=k+m;
w=x+y;

cc=(x<y)

branch (cc)

z+=xz+=y

x=i+j
y=k+m

w=x+y

Traditional
Branching

cc=(x<y)

if (cc) z+=y
x=i+j

y=k+m

w=x+y

if (cc) z+=x

Predicated
Execution

Execution time is reduced from
5 cycles to 3 cycles.

CMU 18-747
Lecture 18-22
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Speculative Execution
Speculative Execution involves computing results
before it is known if they will be used in the program.

cc=(x<y)

branch (cc)

z=z1z=z2

x=i+j
y=k+m

w=x+y

Speculative
Execution

z1=z+x
z2=z+y

cc=(x<y)

if (cc) z=z1
if (cc) z=z2

x=i+j
y=k+m

w=x+y

Speculative
& Predicated

z1=z+x
z2=z+y

cc=(x<y)

branch (cc)

z+=xz+=y

x=i+j
y=k+m

w=x+y

No Speculative
Execution

CMU 18-747
Lecture 18-23
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Superblock List Scheduling

Restricted percolation
- No architecture support
- Instructions that could cause exceptions are not moved

beyond branches
- Memory load/store, integer divide and floating point

instructions

General percolation
- Architecture support (non-trapping instructions)
- Write garbage value when exceptions occur for non-trapping

instructions
We will see this when we discuss Intel EPIC

CMU 18-747
Lecture 18-24
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Compiler/Hardware Interactions

[B. Rau & J. Fisher, 1993]

Front end & Optimizer

Determine Depend.

Determine Independ.

Bind Resources

Execute

Bind Resources

HardwareCompiler

Sequential
(Superscalar)

Dependence
Architecture

(Dataflow)

Independence
Architecture
(Attached

Array
Processor)

Independence
Architecture
(Intel EPIC)

Determine Independ.

Determine Depend.

DSI

CMU 18-747
Lecture 18-25
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Attached Array Processors
The FPS-120B (1975) and FPS-164 (1980) were
early user programmable microcoded engines 64-bit
instruction word

contained ten fields
called parcels - each
specified one operation.

- six functional units
executed the instructions

- Data path topology is optimized
for vector (or array) dot products,
FFT, and convolution

A FORTRAN compiler could schedule vectorizable
loops with software pipelining.
Most users relied on hand-coded library routines
(supplied by the manufacturer)

Peak performance was 12MFLOPS.

ADDER MULT

Auxiliary
Memory

Main
Memory

X Data
Registers

Y Data
Registers

CMU 18-747
Lecture 18-26
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Principles of VLIW Operation
Statically scheduled ILP architecture.
Wide instructions specify many independent simple operations.

Multiple functional units executes all of the operations in an
instruction concurrently, providing fine-grain parallelism within
each instruction
Instructions directly control the hardware with no interpretation
and minimal decoding.
A powerful optimizing compiler is responsible for locating and
extracting ILP from the program and for scheduling operations to
exploit the available parallel resources

The processor does not make any run-time control decisions
below the program level

VLIW Instruction
100 - 1000 bits

CMU 18-747
Lecture 18-27
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW Execution Characteristics

Basic VLIW architectures are a generalized form of horizontally
microprogrammed machines

Functional
Unit

Global Multi-Ported Register File

Instruction
Memory

Functional
Unit

Functional
Unit

Functional
Unit

Sequencer
Condition Codes

