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Flow Path Model of Superscalars
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Instruction Fetch Buffer

Fetch buffer smoothes out the rate mismatch 
between fetch and execution
- neither the fetch bandwidth nor the execution bandwidth is 

consistent

Fetch bandwidth should be higher than execution 
bandwidth
- we prefer to have a stockpile of instructions in the buffer to 

hide cache miss latencies.  This requires both raw cache 
bandwidth + control flow speculation
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Instruction Flow Bandwidth
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Instruction Cache Basic
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Spatial Locality and Fetch Bandwidth
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IBM RS/6000 Auto-alignment
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- 2-way set associative I-Cache, 8 256-inst SRAM modules
- 16 instruction per cache line (**What is a cache line?)
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Instruction Decoding Issues

Primary tasks:
- Identify individual instructions
- Determine instruction types
- Detect inter-instruction dependences

Two important factors:
- Instruction set architecture
- Width of parallel pipeline



CMU 18-747
Lecture 8-10
J. C. Hoe

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Intel Pentium Pro Fetch/Decode Unit

Instruction Buffer 16 bytes

x86 Macro-Instruction Bytes from IFU

Decoder
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Predecoding in the AMD K5

I-Cache

ROP1 ROP2 ROP3 ROP4
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64

From Memory

Up to 4 ROP’s
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Logic
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Predecode Bits

Predecode Bits

Predecoding is also useful for 
RISC ISAs!!

Cost: cache size, refill time
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Control Dependence
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IBM’s Experience on Pipelined Processors 
[Agerwala and Cocke 1987]

Code Characteristics (dynamic)
- loads - 25%
- stores - 15%
- ALU/RR - 40%
- branches - 20% 

• 1/3 unconditional (always taken)
unconditional - 100% schedulable

• 1/3 conditional taken
• 1/3 conditional not taken

conditional - 50% schedulable
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Control Flow Graph
Shows possible paths of control flow through basic 
blocks

Control Dependence
- Node X is control dependant on Node Y if the computation in 

Y determines whether X executes

BB 1

BB 2

BB 3 BB 4

BB 5

             main:
           addi r2, r0, A   
           addi r3, r0, B   
           addi r4, r0, C      BB 1
           addi r5, r0, N   
           add  r10,r0, r0  
           bge  r10,r5, end 
     loop:
           lw   r20, 0(r2)  
           lw   r21, 0(r3)     BB 2
           bge  r20,r21,T1  
           sw   r21, 0(r4)     BB 3
           b    T2              
     T1:                    
           sw   r20, 0(r4)     BB 4
     T2:
           addi r10,r10,1   
           addi r2, r2, 4   
           addi r3, r3, 4      BB 5
           addi r4, r4, 4   
           blt  r10,r5, loop
     end: 
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Mapping  CFG  to
Linear Instruction Sequence
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Branch Types and Implementation

Types of Branches
- Conditional or Unconditional?
- Subroutine Call (aka Link), needs to save PC?
- How is the branch target computed?

• Static Target      e.g. immediate, PC-relative
• Dynamic targets  e.g. register indirect

Conditional Branch Architectures
- Condition Code ‘N-Z-C-V’ e.g. PowerPC
- General Purpose Register e.g. Alpha, MIPS
- Special Purposes register e.g. Power’s Loop Count
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Condition Resolution
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Target Address Generation
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What’s So Bad About Branches?

Performance Penalties
- Use up execution resources
- Fragmentation of I-Cache lines
- Disruption of sequential control flow

• Need to determine branch direction (conditional 
branches)

• Need to determine branch target

Robs instruction fetch bandwidth and ILP
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Riseman and Foster’s Study

7 benchmark programs on CDC-3600
Assume infinite machine:
- Infinite memory and instruction stack, register file, fxn units

Consider only true dependency at data-flow limit

If bounded to single basic block, i.e. no bypassing of 
branches  ⇒ maximum speedup is 1.72
Suppose one can bypass conditional branches and 
jumps (i.e. assume the actual branch path is always 
known such that branches do not impede instruction 
execution)

Br. Bypassed: 0 1 2 8 32 128
Max Speedup: 1.72 2.72 3.62 7.21 24.4 51.2
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Determining Branch Direction

Problem: Cannot fetch subsequent instructions until branch 
direction is determined

Minimize penalty
- Move the instruction that computes the branch condition 

away from branch (ISA&compiler)

Make use of penalty
- Bias for not-taken
- Fill delay slots with useful/safe instructions (ISA&compiler)
- Follow both paths of execution (hardware)
- Predict branch direction (hardware)
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Determining Branch Target

Problem: Cannot fetch subsequent instructions until 
branch target is determined

Minimize delay
- Generate branch target early in the pipeline

Make use of delay
- Bias for not taken
- Predict branch target

PC-relative vs Register Indirect targets
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Branch Prediction
Target Address Generation
- Access register

• PC, GP register, Link register
- Perform calculation

• +/- offset, auto incrementing/decrementing

⇒ Target Speculation

Condition Resolution
- Access register

• Condition code register, data register, count register
- Perform calculation

• Comparison of data register(s)

⇒ Condition Speculation
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Branch Condition Speculation
Biased For Not Taken
- Does not affect the instruction set architecture
- Not effective in loops

Software Prediction
- Encode an extra bit in the branch instruction

• Predict not taken: set bit to 0
• Predict taken: set bit to 1

- Bit set by compiler or user; can use profiling
- Static prediction, same behavior every time

Prediction Based on Branch Offsets
- Positive offset: predict not taken
- Negative offset: predict taken

Prediction Based on History
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Branch Instruction Speculation
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A small “cache-like” memory in the instruction fetch stage

Remembers previously executed branches, their addresses, 
information to aid prediction, and most recent target 
addresses
Instruction fetch stage compares current PC against those 
in BTB to “guess” nPC
- If matched then prediction is made else nPC=PC+4
- If predict taken then nPC=target address in BTB else nPC=PC+4

When branch is actually resolved, BTB is updated

Branch Target
(Most Recent)

Branch 
History

Branch Inst.
Address (tag)

………….…….

Branch Target Buffer (BTB)

current
PC
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UCB Study [Lee and Smith, 1984]
Benchmarks
- 26 programs (traces on IBM 370, DEC PDP-11, CDC 6400)
- Use trace-driven simulation with parameterized machine models

Branch types
- Unconditional: always taken or always not taken
- Subroutine call: always taken
- Loop control: usually taken (loop back)
- Decision: either way, e.g. IF-THEN-ELSE
- Computed GOTO: always taken, with changing target
- Supervisor call: always taken
- “Execute”: always taken (IBM 370)

Branch behavior: Taken vs Not Taken

IBM1 IBM2 IBM3 IBM4 DEC CDC Average
T 0.640 0.657 0.704 0.540 0.738 0.778 0.676
NT 0.360 0.343 0.296 0.460 0.262 0.222 0.324
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Branch Prediction Function
Based on opcode only (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
66 69 71 55 80 78

Based on history of branch
- Branch prediction function F (X1, X2, .... )
- Use up to 5 previous branches for history (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
0 64.1 64.4 70.4 54.0 73.8 77.8
1 91.9 95.2 86.6 79.7 96.5 82.3
2 93.3 96.5 90.8 83.4 97.5 90.6
3 93.7 96.7 91.2 83.5 97.7 93.5
4 94.5 97.0 92.0 83.7 98.1 95.3
5 94.7 97.1 92.2 83.9 98.2 95.7
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Prediction accuracy approaches maximum with as 
few as 2 preceding branch occurrences used as 
history

Results (%)
IBM1 IBM2 IBM3 IBM4 DEC CDC
93.3 96.5 90.8 83.4 97.5 90.6

Example Prediction Algorithm
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Combining prediction accuracy with BTB hit rate 
(86.5% for 128 sets of 4 entries each), branch 
prediction can provide the net prediction accuracy of 
approximately 80%.  This implies a 5-20% 
performance enhancement.
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Counter
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IBM RS/6000 Study [Nair, 1992]

Five different branch types
- b: unconditional branch
- bl: branch and link (subroutine calls)
- bc: conditional branch
- bcr: conditional branch using link register (subroutine 

returns)
- bcc: conditional branch using count register (system calls)

Separate branch function unit to overlap of branch 
instructions with other instructions

Two causes for branch stalls
- Unresolved conditions
- Branches downstream too close to unresolved branches
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Branch Instruction Distribution

% of diff. types of % of bc inst. with
branch instructions: penalty cycles:

Benchmark b bl bc bcr 3 cyc. 2 cyc. 1 cyc.

spice2g6 7.86 0.30 12.58 0.32 13.82 3.12 0.76
doduc 1.00 0.94 8.22 1.01 10.14 1.76 2.02
matrix300 0.00 0.00 14.50 0.00 0.68 0.22 0.20
tomcatv 0.00 0.00 6.10 0.00 0.24 0.02 0.01
gcc 2.30 1.32 15.50 1.81 22.46 9.48 4.85
espresso 3.61 0.58 19.85 0.68 37.37 1.77 0.31
li 2.41 1.92 14.36 1.91 31.55 3.44 1.37
eqntott 0.91 0.47 32.87 0.51 5.01 11.01 0.80
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Exhaustive Search for Optimal Predictors
There are 220 possible state machines of 2-bit predictors
Pruning uninteresting and redundant machines leaves 5248
It is possible to exhaustively search and find the optimal predictor for a 
benchmark

*

*

*

*

*

predict NT predict T
Benchmark Best Pred. %

spice2g6 97.2

doduc 94.3

gcc                         89.1

espresso                89.1

li                             87.1

eqntott 87.9

TN

Saturation Counter is near optimal in all cases!
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Number of Counter Bits Needed

Branch history table size: Direct-mapped array of 2k entries
Programs, like gcc, can have over 7000 conditional branches
In collisions, multiple branches share the same predictor
Variation of branch penalty with branch history table size level out 
at 1024

62.4 (0.142)82.5 (0.063)86.8 (0.048)88.3 (0.042)li

78.4 (0.049)82.9 (0.046)87.2 (0.033)89.3 (0.028)eqntott

58.5 (0.176)87.2 (0.054)89.1 (0.047)89.5 (0.045)espresso

50.0 (0.128)86.0 (0.033)89.1 (0.026)89.7 (0.025)gcc

69.2 (0.022)90.2 (0.004)94.3 (0.003)94.2 (0.003)doduc

76.6 (0.031)96.2 (0.013)97.0 (0.009)97.0 (0.009)spice2g6

0-bit1-bit2-bit3-bit

Prediction Accuracy (Overall CPI Overhead)Benchmark


