18-747 Lecture 10:
Trace Caching

James C. Hoe
Dept of ECE, CMU
October 1, 2001

Reading Assignments: 2 papers below

Announcements: Midterm Exam on Monday 10/15
Condor Usage

Handouts: “Critical Issues Regarding the Trace Cache Fetch Mechanism”

“The Block-based Trace Cache”
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Comput CMU 18-747
¥ ENGINEER et

“PPC604 Speculative Execution ™

Lo NP
<
instruction .
ins BHT BTAC +2 4
cache
fetch |
Prediction Logic | Target | | Seq Addr|
(4 instructions) \|
decode |
Prediction Logic | Target | | Seq Addr|
(4 instructions) \|
dispatch =
Prediction Logic Target Seq Addr
branch (4 instructions) \|
execute L
Target Exception Logic
\__/ ~
PC
complete L

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel




((3 Electrical & Computer CMU 18-747
ENGINEERIN Lecturs 103

Control Flow Speculation
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¢ Leading Speculation
- Tag speculative instructions
- Advance branch and following instructions
- Buffer addresses of speculated branch instructions
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Mis-speculation Recovery

NT/KT tag1
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¢ Eliminate Incorrect Path

- Must ensure that the mis-speculated instructions produce no
side effects

¢ Start New Correct Path
- Must have remembered the alternate (non-predicted) path
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Mis-speculation Recovery

¢ Eliminate Incorrect Path

- Use branch tag(s) to deallocate completion buffer entries
occupied by speculative instructions (now determined to be
mis-speculated).

- Invalidate all instructions in the decode and dispatch buffers, as
well as those in reservation stations

How expensive is a misprediction?

+ Start New Correct Path
- Update PC with computed branch target (if it was predicted NT)

- Update PC with sequential instruction address (if it was
predicted T)

- Can begin speculation once again when encounter a new

branch
How soon can you restart?
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Trailing Confirmation
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¢ Trailing Confirmation
- When branch is resolved, remove/deallocate speculation tag
- Permit completion of branch and following instructions
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Fast Branch Rewind and Restart:
Metaflow DRIS

+ Discard all DRIS entries
(and corresponding
operations) younger than

the mispredicted branches oldest
¢ Can restart immediately another miss
from the corrected branch
target because the DRIS
has sufficient information _
another miss

(rename & value) to
continue from where left off

¢ Works with nested j’

mispredictions!!
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Rewinding/Flushing of Rename Table
~ARE__ _Map Xable RRE

RETE] DSyl 1ag RETZ T
.............. . ] __—next to
logical RS, » free
register J_—next to
name allocate
D —

Operand Value/Tag
< To reinitiate renaming:

- wait for all instructions older than the rewind point to drain
clear of the pipeline and then reset register remapping to null
Long restart latency
- Reorder buffer has to remember how to restored the map
table to the point of the mispredicted branch
Complicated multi-cycle logic

- Cache rename map after brangh pregdijction
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Instruction Fetching for Wide Superscalars
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Wide Instruction Fetch Issues
¢ Average Basic Block Size

- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

¢ Three Major Challenges: L

) o Instruction
- Multiple-Branch Prediction Cache

A 4

- Multiple Fetch Groups Branch Fetch
Prediction
_ ; ; Instruction
Alignment and Collapsing Buffer

Dispatch

v
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Multiple Branch Predictions

¢ Issues with multiple branch predictions:
- Latency resulting from sequential predictions
- Later predictions based on stale/speculative history
- Don't forget, 0.95x0.95x0.95=0.85

BTB
Fetch __, |
address
BTB
> BTB
\ v
Block 1 Block 2 Block 3
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Examples of Multi-Branch Predictors
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How do you update this thing after a branch resolves?
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Examples of Multi-Branch Predictors
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Multiple Predicted Taken Branches

+ Issues with multiple taken branches:
- Long latency with multiple sequential I-cache accesses
- or, multi-ported I-cache with slower access latency
- or, multi-banked I-cache to approximate multi-port

Block 1 FA ——
Block 2 FA —» Multi-ported I-cache

oo

Block 1 Block 2 Block 3
instructions instructions instructions

Block 3 FA —
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Instruction Alignment and Collapsing

+ Issues with alignment and collapsing:
- Misalignment between fetch group and cache line.
- Packing of variable-sized blocks into fetch buffer.

|-cache I-cache I-cache
Port 1 Port 2 Port 3

How do you \ / /

know where TT1TT11] Fetch buffer

this is?
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Mapping CFG to
Linear Instruction Sequence
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The Trace Cache Proposal
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A Typical Trace Cache Organization
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Trace Fill Unit

¢ Observe the dynamic execution sequence

¢ Gather instructions into a trace segment (or trace
cache block)

¢ Some simple heuristics for forming trace segments
- stop after collecting up to N instructions
(N is the trace cache block size)
- stop after B conditional branches
(B is the limit of the multi-branch predictor)
- stop after seeing an register-indirect jump
- Don't split basic blocks
- In some designs, unconditional and conditional branches
can be dropped from the traces
¢ Can include pre-decoded dependence information

¢ Can even dynamically re-order instructions (don’t

need an out-of-order core!!)
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Intel Pentium Pro Fetch/Decode Unit

x86 Macro-Instruction Bytes from IFU

;

To Next
Address

Calc.

Y ' T
Decoder . Decoder <_Decoder

Branch
| | | .| Address
Calc.

| '| l Up to 3 uops Issued to dispatch
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Predecoding in the AMD K5

From Memory
8 Instruction Bytes oj'64 ................. . | Byte1| Byt92| . | Bytegl

Predecode
Logic 5Bits 5 Bits 5 Bits

T 64 + 40 eeevens > -|Byte8
h

8 Instr. Bytes +
Predecode Bits

I-Cache

16 Instr. Bytes +

Predecode Bits 7128+ 80

Decode, Translate
and Dispatch

Lol

ROP1 ROP2 ROP3 ROP4

Up to 4 ROP’s
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Intel P4 Trace Cache

¢ A 12K-uop trace cache replaces the L1 I-cache
¢ 6-uop per trace line, can include branches
¢ Trace cache returns 3-uop per cycle
¢ |A-32 decoder can be simpler and slower
Only needs to decode one IA-32 instruction per cycle

Front End BTB ITLB & 1 2 Inferface
4K Entries Prefetcher
|
IA32 Decoder
|
Trace Cache BTB Trace Cache
512 Entries 12K uop’s
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Trace Selection/Prediction

¢ Basic
- find the trace that starts at the predicted next-PC
¢ Multiple cached traces may have the same starting PC
- difference is in the internal branch decisions
= need multi-branch predictors
¢ Partial Traces

- predicted next-PC points to the middle of a cached
trace (cached ABC, but predicted BC)

- multi-branch prediction may say not to use the entire
length of a cached trace (cached ABC, but only
needs AB)
= need alignment and collapsing buffer

So how is this better?
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Redundant Traces -

¢ Suppose B,C and D are
instructions in a loop

- 3 different traces of 3-instructions are
possible

- Which one should we keep in the trace
cache?

- How do we detect the beginning and
the end of basic blocks?

¢ Suppose A,B,C,D and E are basic
blocks
- don’t cache BC if BCD is cached
- what about CDB and CDE?
- what about ABC and DBC?

- How to cut down on redundant
instruction storage?

PO
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Predict and Fetch Trace
Global History
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Next Trace Prediction

predicted branch path

|b ido| b id1] b idd b id3 | global history |
Next trace id [ tag | index ] Trace Table

v tag 1 2 .- w

+ block_ids
I | I |I |I I |

/é) w pred. block_ids
Hit to the block cache
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The Block-Based Trace Cache
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Wide-Fetch I-cache vs. T-cache

Enhanced Proposed
Instruction Cache Trace Cache
Fetch 1. Multiple-branch prediction 1. Next trace prediction
2. Instruction cache fetch 2. Trace cache fetch
3. Instruction alignment &
collapsing

Completlon 1. Multiple-branch predictor 1. Trace construction and fill
update
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Trace Cache Trade-offs

Trace cache:

Pros — Moves complexity to backend
Cons — Inefficient instruction storage

<«+—— |Instruction storage redundancy

Fetch time complexity ——»

Enhanced instruction cache:

Pros — Efficient instruction storage
Cons — Complexity during fetch time
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As Machines Get Wider (... and Deeper)

1. Eliminate Stages
2 Relocate work to
the backend
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