18-747 Lecture 10:
Trace Caching

James C. Hoe
Dept of ECE, CMU
October 1, 2001

Reading Assignments: 2 papers below

Announcements: Midterm Exam on Monday 10/15
Condor Usage

Handouts: “Critical Issues Regarding the Trace Cache Fetch Mechanism”

“The Block-based Trace Cache”
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Comput CMU 18-747
¥ ENGINEER et

“PPC604 Speculative Execution ™

Lo NP
<
instruction .
ins BHT BTAC +2 4
cache
fetch |
Prediction Logic | Target | | Seq Addr|
(4 instructions) \|
decode |
Prediction Logic | Target | | Seq Addr|
(4 instructions) \|
dispatch =
Prediction Logic Target Seq Addr
branch (4 instructions) \|
execute L
Target Exception Logic
__/ ~
PC
complete L

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

((3 Electrical & Computer CMU 18-747
ENGINEERIN Lecturs 103

Control Flow Speculation

N~
NT T t NT T
ag2
NT T NT T NT C T NT T
tag3

¢ Leading Speculation
- Tag speculative instructions
- Advance branch and following instructions
- Buffer addresses of speculated branch instructions

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

{U. Electrical & Compurer CMU 18-747
ENGINEERING Cecture 10-4

Mis-speculation Recovery

NT/KT tag1
<~

NT T NT T

¢ Eliminate Incorrect Path

- Must ensure that the mis-speculated instructions produce no
side effects

¢ Start New Correct Path
- Must have remembered the alternate (non-predicted) path

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

((3 Electrical & Computer CMU 18-747
ENGINEERING Lecurs 105

Mis-speculation Recovery

¢ Eliminate Incorrect Path

- Use branch tag(s) to deallocate completion buffer entries
occupied by speculative instructions (now determined to be
mis-speculated).

- Invalidate all instructions in the decode and dispatch buffers, as
well as those in reservation stations

How expensive is a misprediction?

+ Start New Correct Path
- Update PC with computed branch target (if it was predicted NT)

- Update PC with sequential instruction address (if it was
predicted T)

- Can begin speculation once again when encounter a new

branch
How soon can you restart?
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel
*(3 Electrical & Computer CMU 18-747
ENGINEERING Lecture 10.6

J. C. Hoe

Trailing Confirmation

NT T tag1

NT T NT T
N~ tag2

NT T NT T NT T NTC T
“l'ag{ Yag;’;~ tag3

¢ Trailing Confirmation
- When branch is resolved, remove/deallocate speculation tag
- Permit completion of branch and following instructions

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

CMU 18-747

({a’ Eﬁ%tl‘i&?ﬁlﬁ‘a) ‘Ije(c:tu';eol 0-7
Fast Branch Rewind and Restart:
Metaflow DRIS

+ Discard all DRIS entries
(and corresponding
operations) younger than

the mispredicted branches oldest
¢ Can restart immediately another miss
from the corrected branch
target because the DRIS
has sufficient information _
another miss

(rename & value) to
continue from where left off

¢ Works with nested j’

mispredictions!!

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747

A ERGEERRG
Rewinding/Flushing of Rename Table
~ARE__ _Map Xable RRE

RETE] DSyl 1ag RETZ T
.............. .] __—next to
logical RS, » free
register J_—next to
name allocate
D —

Operand Value/Tag
< To reinitiate renaming:

- wait for all instructions older than the rewind point to drain
clear of the pipeline and then reset register remapping to null
Long restart latency
- Reorder buffer has to remember how to restored the map
table to the point of the mispredicted branch
Complicated multi-cycle logic

- Cache rename map after brangh pregdijction

oY James C. Hoe, CMU and John P. Shen. Intel

(U. Electrical & Computer CMU 18-747
ENGINEERING Lecurs 10

J. C. Hoe

Instruction Fetching for Wide Superscalars

Integer Floating-point ' 1‘%@ Mezory
-~ - = 2

E:E<_
fin=l= il g ==
\i Y EXECUTE y 'E E'
Reorder A
Buffer ENEEEEEEEEENEEEEEEEEEn]
o
Store M
Queue
v |
> 8 way

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

QEeeeane e
Wide Instruction Fetch Issues
¢ Average Basic Block Size

- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

¢ Three Major Challenges: L

) o Instruction
- Multiple-Branch Prediction Cache

A 4

- Multiple Fetch Groups Branch Fetch
Prediction
_ ; ; Instruction
Alignment and Collapsing Buffer

Dispatch

v
CannOt be SO/Ved Wlth -IUSt longer Céghﬁﬂlp\gnég§c Hoe, CMU and John P. Shen, Intel

il

O ERERREARE
Multiple Branch Predictions

¢ Issues with multiple branch predictions:
- Latency resulting from sequential predictions
- Later predictions based on stale/speculative history
- Don't forget, 0.95x0.95x0.95=0.85

BTB
Fetch __, |
address
BTB
> BTB
\ v
Block 1 Block 2 Block 3
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel
*(,} Electrical & Computer CMU 18-747
ENGINEERING Leciure 1012

J. C. Hoe

Examples of Multi-Branch Predictors

PHT

BHSR
b s b

(T —

Po Pq P>

How do you update this thing after a branch resolves?
Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

O e
Examples of Multi-Branch Predictors
PHT
b, BHSR b,
T @
b,., : by
bulj— by
o bp2g....
—[[T]
by
—[[[]] Py
Po
- Py
22 x 4 entries
P2 P4 Po
Copyright 2001, James C. Hoe CMU and John P. Shen, Infel |
@ ENGiNERR e

Multiple Predicted Taken Branches

+ Issues with multiple taken branches:
- Long latency with multiple sequential I-cache accesses
- or, multi-ported I-cache with slower access latency
- or, multi-banked I-cache to approximate multi-port

Block 1 FA ——
Block 2 FA —» Multi-ported I-cache

oo

Block 1 Block 2 Block 3
instructions instructions instructions

Block 3 FA —

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

Electrical & Computer CMU 18-747

) ENGINEER 005

J. C. Hoe

Instruction Alignment and Collapsing

+ Issues with alignment and collapsing:
- Misalignment between fetch group and cache line.
- Packing of variable-sized blocks into fetch buffer.

|-cache I-cache I-cache
Port 1 Port 2 Port 3

How do you \ / /

know where TT1TT11] Fetch buffer

this is?
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel
(U. Electrical & Computer CMU 18-747
ENGINEERING

Lecture 10-16
J. C. Hoe

Mapping CFG to
Linear Instruction Sequence

O

Electrical & Computer CMU 18-747

ENGINEERIN Leonure 1047

The Trace Cache Proposal

|
A A
LI
— C -+ C
I b -1 | B 1 1
static 90%~N"/] E| - =
dynagmic 1% 10% static | _
@ 90% dynamic T G
I ,F, 1L 1
6 -1 | Trace-
G cache line
1T boundaries

I-cache line

b&lbjng?{(i%s@mgg C. Hoe, CMU and John P, Shen. Intel

€O

Electrical & Comput CMU 18-747

ENGINEERING Lecure 101
A Typical Trace Cache Organization
predicted PC LTI ITITITITTI I

’7’
Next Trace Cache I-Cache
Trace
Predict. ‘
ml Fetch Buffer |
Execution
Core
L Fill Unit -

Completion

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

((3 Electrical & Computer CMU 18-747
ENGINEERING Lecturo 10419

Trace Fill Unit

¢ Observe the dynamic execution sequence

¢ Gather instructions into a trace segment (or trace
cache block)

¢ Some simple heuristics for forming trace segments
- stop after collecting up to N instructions
(N is the trace cache block size)
- stop after B conditional branches
(B is the limit of the multi-branch predictor)
- stop after seeing an register-indirect jump
- Don't split basic blocks
- In some designs, unconditional and conditional branches
can be dropped from the traces
¢ Can include pre-decoded dependence information

¢ Can even dynamically re-order instructions (don’t

need an out-of-order core!!)
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

{U. Electrical & Compurer CMU 18-747
ENGINEERING Leciure 10.20

J. C. Hoe

Intel Pentium Pro Fetch/Decode Unit

x86 Macro-Instruction Bytes from IFU

;

To Next
Address

Calc.

Y ' T
Decoder . Decoder <_Decoder

Branch
| | | .| Address
Calc.

| '| l Up to 3 uops Issued to dispatch

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

((.; Electrical & Computer CMU 18-747
ENGINEERING Lecturs 1021

Predecoding in the AMD K5

From Memory
8 Instruction Bytes oj'64 | Byte1| Byt92| . | Bytegl

Predecode
Logic 5Bits 5 Bits 5 Bits

T 64 + 40 eeevens > -|Byte8
h

8 Instr. Bytes +
Predecode Bits

I-Cache

16 Instr. Bytes +

Predecode Bits 7128+ 80

Decode, Translate
and Dispatch

Lol

ROP1 ROP2 ROP3 ROP4

Up to 4 ROP’s
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel
{U. Electrical & Computer CMU 18-747
ENGINEERING Lecture 10.22

J. C. Hoe

Intel P4 Trace Cache

¢ A 12K-uop trace cache replaces the L1 I-cache
¢ 6-uop per trace line, can include branches
¢ Trace cache returns 3-uop per cycle
¢ |A-32 decoder can be simpler and slower
Only needs to decode one IA-32 instruction per cycle

Front End BTB ITLB & 1 2 Inferface
4K Entries Prefetcher
|
IA32 Decoder
|
Trace Cache BTB Trace Cache
512 Entries 12K uop’s

Loovriaht2001 James C. Hoe, CMU and John P. Shen. Intel

CMU 18-747

(U' Eﬁ%tl‘i&?ﬁlﬁm beguﬁol 0-23
Trace Selection/Prediction

¢ Basic
- find the trace that starts at the predicted next-PC
¢ Multiple cached traces may have the same starting PC
- difference is in the internal branch decisions
= need multi-branch predictors
¢ Partial Traces

- predicted next-PC points to the middle of a cached
trace (cached ABC, but predicted BC)

- multi-branch prediction may say not to use the entire
length of a cached trace (cached ABC, but only
needs AB)
= need alignment and collapsing buffer

So how is this better?
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Electrical & Comput CMU 18-747

A ERGiNERRNG Ceciure 10.24

Redundant Traces -

¢ Suppose B,C and D are
instructions in a loop

- 3 different traces of 3-instructions are
possible

- Which one should we keep in the trace
cache?

- How do we detect the beginning and
the end of basic blocks?

¢ Suppose A,B,C,D and E are basic
blocks
- don’t cache BC if BCD is cached
- what about CDB and CDE?
- what about ABC and DBC?

- How to cut down on redundant
instruction storage?

PO

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

Q B
Replicated Block Cache
Instructions from
Wcl)\r/gl?ies the fi‘ll unit
block_id [[{ FA] i1] i2 ib]
(n-bD_, &1 & Block Cache
© | direct mapped cache
N [sp) <
b inst > > >
o o o
8 8 8
- v v v
\ Final Collapse /
161
| Fetch Buffer |

V0t ghout fragmentation?.

€ EiNeERve

CMU 18-747
Lecture 10-26
J. C. Hoe

Predict and Fetch Trace
Global History

Predict Cycle,/’
k Trace Table !
»|

o ” Fetch Cycle

’

e
’
7

-,
|
-,

L, Block Cache

]

— >
> >

] e W
i \ Final Collapse /
‘ 161

| Fetch Buffer |

More efficient: redundancy is in the fracedable and not the blpck sache

CMU 18-747
Lecture 10-27

& Comy
) ENGiNEERING
J. C. Hoe

Next Trace Prediction

predicted branch path

|b ido| b id1] b idd b id3 | global history |
Next trace id [tag | index] Trace Table

v tag 1 2 .- w

+ block_ids
I | I |I |I I |

/é) w pred. block_ids
Hit to the block cache
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

CMU 18-747
Lecture 10-28

{U. Electrical & Com
ENGINEERING
J. C. Hoe

The Block-Based Trace Cache

.]
block_ids l_v_| l_v_|
Trace ock Cac
Table | pre-collapse

<+ |-Cache

trace_id \ Final Collapse/

v
% Fetch Buffer |
Rename| Fill —Lore
Table Unit

Completion

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

((.; Electrical & Computer CMU 18-747
ENGINEERING Lecture 1029

Wide-Fetch I-cache vs. T-cache

Enhanced Proposed
Instruction Cache Trace Cache
Fetch 1. Multiple-branch prediction 1. Next trace prediction
2. Instruction cache fetch 2. Trace cache fetch
3. Instruction alignment &
collapsing

Completlon 1. Multiple-branch predictor 1. Trace construction and fill
update
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel
a, Electrical & Computer CMU 18-747
() ENGNERRIE Leciure 10.30

J. C. Hoe

Trace Cache Trade-offs

Trace cache:

Pros — Moves complexity to backend
Cons — Inefficient instruction storage

<«+—— |Instruction storage redundancy

Fetch time complexity ——»

Enhanced instruction cache:

Pros — Efficient instruction storage
Cons — Complexity during fetch time

Copyright 2001, James C. Hoe, CMU and John P. Shen. Intel

O

Electrical & Computer CMU 18-747

ENGINEERIN Lecturs 1091

J. C. Hoe

As Machines Get Wider (... and Deeper)

1. Eliminate Stages
2 Relocate work to
the backend

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

