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EEC180B Lab 7: MISP Processor Design Spring 1995

Objective:  In this lab, you will complete the design of the MISP processor, making use of your
work from the register file design, ALU design, and memory interface design labs done
previously.  Using the PowerView CAD tools, you will enter your design as a schematic and
verify it through functional simulation.  Then, using the XACT software, you will implement
your design in a Xilinx 4005 FPGA and download it to a demo board for testing and
verification.

I. Instruction Set  

The MISP processor has an instruction set consisting of only 11 instructions.  There are three
memory access instructions (load immediate, load and store), four ALU instructions (add,
increment, negate and subtract), three program control instructions (jump, branch if zero and
branch if negative) and the nop instruction.  The instruction formats are shown in Figure 1
below.

Opcode Operands

no operation

load immediate

load

store

Instruction 

add

increment

negate

subtract

jump

branch if zero

branch if negative

NOP

LDI  Rd

LD   Rd, Ra

ST   Rd, Ra

Mnemonic

ADD  Rd,Ra

INC  Rd

NEG  Rd,Ra

SUB  Rd,Ra

JMP  Ra

BRZ  Ra

BRN  Ra

Rd M[IAR+1]

Rd M[Ra]

M[Ra] Rd

Function

Rd Rd + Ra

Rd Rd + 1

Rd - Ra

Rd Rd - Ra

IAR Ra

IAR Ra if Z=1

IAR Ra if N=1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

xx xx

Rd xx

Rd Ra

Rd Ra

Rd Ra

Rd xx

Rd Ra

Rd Ra

xx Ra

xx Ra

xx Ra

Figure 1:  MISP Instruction Formats



The upper four bits of the instruction contain the op-code which identifies each specific
instruction.  The lower four bits are divided into two two-bit operand fields which are each used
to specify a register in the register file.  Operand fields which contain "xx" are considered "don’t
cares", since those bits are not used by the instruction.

II.  Instruction Operations  

The register transfer operations shown in Figure 2 are similar to those presented in the memory
interface design lab, with the addition of three new instructions: JMP, BRZ and ADD.  The BRZ
instruction operations are essentially identical to the BRN instruction except that a different
status flag is involved.  The ADD instruction register transfer operations also apply to the other
ALU instructions as well.  (Note that Rd2 refers to the Rd register specified in the instruction,
which has been passed through two delay stages).

Load IR 
Inc IAR

Load DR 
Inc IAR 
Clr IR (Stall)

Clr IR (Stall) RF[Rd2] <- DRLDI

Load IR 
Inc IAR

Load MAR 
Clr IR (Stall)

DR <- M[MAR] 
Clr IR (Stall)

LD

ST Load IR 
Inc IAR

Load MAR 
Load DR 
Clr IR (Stall)

M[MAR] <- DR 
Clr IR (Stall)

Clr IR (Stall)

RF[Rd2] <- DR

JMP Load IR 
Inc IAR

Load IAR

BRZ Load IR 
Inc IAR

If Z=1, load IAR 
 else inc IAR

ADD Load IR 
Inc IAR

Load SR_A 
Load SR_B

Load SR_C 
Load Z, N

RF[Rd2] <- SR_C

Figure 2:  MISP Instruction Operations

In order to understand the MISP instruction operations shown in Figure 2, you should refer to
Figure 3, the MISP data path, which shows the interconnections between important registers and



major components such as the register file, ALU, control unit and the external memory.  This
figure does not show control signals or the actual components to use in your design.

The MISP processor has a four-stage pipeline consisting of the following stages: Instruction
Fetch (IF), Instruction Decode (ID), Execute (EX), and Write-Back (WB).  The staging
registers, SR_A, SR_B, and SR_C, are used to divide the pipeline stages.  For an ALU
instruction, the operation may be described as follows:

IF: Fetch instruction from EPROM and latch into the Instruction Register (IR).

ID: Decode operand fields from IR and use to address registers in RF.  Latch contents into
staging registers SR_A and SR_B.

EX: The ALU operates on the contents of SR_A and SR_B.  The result is latched into SR_C.
For an ALU instruction, the status signals, Z and N, are latched into the status register.

WB: For an ALU instruction, the result in SR_C is written into the appropriate register in RF.

For simplicity of control, the staging registers, SR_A, SR_B and SR_C, should be loaded on
every clock cycle.  However, the status register will only be updated and the ALU result will
only be written into the RF for valid ALU instructions .

For the JMP, BRZ and BRN instructions, the instruction following the jump or branch
instruction will always be executed, regardless of whether the branch is taken or not.  The
instruction following the jump or branch instruction is said to be in the "branch-delay slot".  A
useful instruction can often be moved from before the branch or jump instruction into the branch
delay slot.  However, the instruction must not affect the outcome of a conditional branch.  If a
useful instruction cannot be found for the branch delay slot, then a NOP instruction can be used
to insure correct program operation.

As described in the memory interface design lab, most of the cycles of the memory-access
instructions cannot be overlapped with other instructions because of the architectural restriction
of a common memory address bus and a common memory data bus for both instructions and
data.  Thus, it is necessary for your control unit to insert "stalls" into the IR during some of the
memory-access instruction cycles.  The control unit can insert a stall by synchronously clearing
the IR.  The IAR (instruction address register) should be incremented each time an instruction,
including a NOP instruction,  is loaded from EPROM or a data byte is read during an LDI
instruction.  However, it should not be incremented when a stall is inserted into the IR by the
control unit.

III.  Data Forwarding  

The MISP processor has a feature known as data-forwarding.  Notice from the MISP data path
that the staging registers SR_A and SR_B can be loaded from three different sources: the
register file, the ALU output, or the SR_C output.  An example will help to illustrate the need
for data forwarding.  First, we will analyze the execution of the following code fragment cycle
by cycle:



inc r0 ; increment r0
inc r1 ; increment r1
st r0,r1 ; M[r1] <- r0

Cycle Instruction Operation
1 inc r0 IF: load IR

2 inc r0 ID: SR_B <- R0
inc r1 IF:  load IR

3 inc r0 EX: SR_C <- R0+1
inc r1 ID:  SR_B <- R1
st r0,r1 IF:   load IR

4 inc r0 WB: RF[R0] <- SR_C
inc r1 EX:  SR_C <- R1+1
st r0,r1 ID:   DR <- R0,  MAR <- R1

5 inc r1 WB: RF[R1] <- SR_C
st r0,r1 EX:  M[MAR] <- DR

The need for data-forwarding can be seen in clock cycle 4.  Here the MAR and DR registers are
latched in the store instruction’s ID cycle.  However, if these registers are loaded from the
register file, then the old values of R0 and R1 will be used, resulting in incorrect operation.  In
order to use the incremented values of R0 and R1 in the store instruction, we can load DR with
the output of SR_C and MAR with the output of the ALU.

In order to implement data-forwarding, the control unit must compare the destination register,
Rd, of instructions in the pipeline with the source and destination registers, Ra and Rd, of the
current instruction.  The rules for data-forwarding in the MISP processor can be summarized as
follows:

SR_A <- ALU output if Ra = Rd1 and op1 is a valid ALU instruction  
else SR_C output if Ra = Rd2 and op2 is a valid ALU instruction  
else RF[Ra]

SR_B <- ALU output if Rd = Rd1 and op1 is a valid ALU instruction  
else SR_C output if Rd = Rd2 and op2 is a valid ALU instruction  
else RF[Rd]

Rd1 and op1 refer to the Rd field and op-code of the previous instruction, which is one stage
ahead of the current instruction in the pipeline.  Rd2 and op2 refer to the Rd field and op-code of
the instruction which is two stages ahead of the current instruction in the pipeline.  The data
forwarding logic will be used to generate the MUX control signals for the two MUXes which
provide the inputs for SR_A and SR_B.  As shown in the MISP data path, these MUXes also
provide inputs for the MAR, IAR and DR registers, which provides data forwarding for the load,



store, jump and branch instructions which follow ALU instructions.

Data forwarding could also be implemented to allow a BRZ or BRN instruction immediately
following an ALU instruction.  However, for simplicity, we will not implement this feature in
the MISP.  Instead, the programmer will be required to insert a NOP or a non-ALU instruction
before a BRZ or BRN instruction.

IV.  Practical Hints  

• In order to manage your schematic, you may want to use the following three techniques:

1.  Use symbols for large circuit modules such as the ALU, register file, and control unit.

2.  Connect control signals by name, rather than using nets.  This can help to make your
schematic more readable.  Nets within the same symbol which have the same name
are logically connected.

3.  Use more than one sheet for your top-level schematic.  When your top-level
schematic is open in ViewDraw, select FILE LEVEL PUSH SHEET to start a new
sheet.  The new sheet is like an extension of the sheet from which you pushed.  Thus,
signals may be connected by name.

• The 7-segment display port should be memory-mapped to location FF as in the memory
interface design lab.

V.  Lab Requirements  

1.  Using PowerView and the Xilinx component libraries, complete the design as specified.

2.  Create a test schematic with the RAM (ram256x8.1) and EPROM (rom256x8.1) components
used in the memory interface design.  An example circuit is shown in Figure 4.  Run xfsim on
your test schematic and perform a functional simulation.  Use the eprom.dat file found in
the /afs/ece/classes/eec180b/lab7 directory.  The simulation program, which is included below,
calculates the Fibonacci numbers and displays them on the 7-segment displays.  Verify that your
processor executes the program correctly.

3.  When your design has been successfully simulated, run xmake on your MISP schematic to
create a Xilinx bit file.  Download your final design to a demo board and verify that it runs the
Fibonacci program correctly.

4.  Demonstrate your simulation and working circuit to your TA.  Turn in your schematics and
the number of Xilinx resources that your design used.

Fibonacci number generator test program  

Address Binary Data Hex Instruction Comment



  00  00010000 10 -- ldi r0 ; r0 <- 0 (first Fib. number)
  01  00000000 00 -- 0
  02  00010100 14 -- ldi r1 ; r1 <- 80 (RAM address)
  03  10000000 80 -- 80
  04  00110001 31 -- st r0,r1 ; M[80] <- 0
  05  01010000 50 -- inc r0 ; r0 <- 1 (second Fib. number)
  06  01010100 54 -- inc r1 ; r1 <- 81 (RAM address)
  07  00110001 31 -- st r0,r1 ; M[81] <- 1
  08  00010000 10 -- ldi r0 ; r0 <- 80 (RAM address)
  09  10000000 80 -- 80
  0a  00010100 14 -- ldi r1 ; r1 <- 81 (RAM address)
  0b  10000001 81 -- 81

  0c L 00101000 28 -- ld r2,r0 ; r2 <- lower Fib. number
  0d  00101101 2d -- ld r3,r1 ; r3 <- higher Fib. number
  0e  01001011 4b -- add r2,r3 ; r2 <- next Fib. number
  0f  00011100 1c -- ldi r3 ; r3 <- branch address X
  10  00011010 1a -- 1a ; address X
  11  10100011 a3 -- brn r3 ; if N, done - exit loop by branching to X
  12  00000000 00 -- nop ; branch delay slot
  13  01010000 50 -- inc r0 ; increment memory pointer
  14  01010100 54 -- inc r1 ; increment memory pointer
  15  00111001 39 -- st r2,r1 ; store new Fib. number in RAM buffer
  16  00011100 1c -- ldi r3 ; r3 <- branch address L
  17  00001100 0c -- 0c ; address L
  18  10000011 83 -- jmp r3 ; jump to L (loop)
  19  00000000 00 -- nop ; branch delay slot

  1a X 00010000 10 -- ldi r0 ; r0 <- 80
  1b  10000000 80 -- 80
  1c  01110100 74 -- sub r1,r0 ; r1 has address of last Fib. number
  1d  01010100 54 -- inc r1 ; get number of values stored in buffer
  1e  00010000 10 -- ldi r0 ; r0 <- 8f (RAM address)
  1f  10001111 8f -- 8f
  20  00110100 34 -- st r1,r0 ; M[8f] <- number of Fib. values in buffer

  21 P 00010000 10 -- ldi r0 ; r0 <- 80 (beginning of RAM buffer)
  22  10000000 80 -- 80
  23  00010100 14 -- ldi r1 ; r1 <- 8f (address of number of values)
  24  10001111 8f -- 8f
  25  00100101 25 -- ld r1,r1 ; r1 <- M[8f] (number of values in buffer)
  26  01100101 65 -- neg r1,r1 ; r1 <- -r1 (two’s complement)
  27  00011000 18 -- ldi r2 ; r2 <- display port address
  28  11111111 ff -- ff

  29 Q 00101100 2c -- ld r3,r0 ; r3 <- Fib. number from RAM buffer



  2a  00111110 3e -- st r3,r2 ; display Fib. number on 7-segment displays
  2b  00011100 1c -- ldi r3 ; r3 <- branch address Z
  2c  00110110 36 -- 36 ; address Z
  2d  01010000 50 -- inc r0 ; increment RAM buffer pointer
  2e  01010100 54 -- inc r1 ; increment loop counter
  2f  00000000 00 -- nop ; delay for Z, N status flags to be set
  30  10010011 93 -- brz r3 ; if r1=0, branch to Z (exit loop)
  31  00000000 00 -- nop ; branch delay slot
  32  00011100 1c -- ldi r3 ; r3 <- branch address Q (top of loop)
  33  00101001 29 -- 29 ; address Q
  34  10000011 83 -- jmp r3 ; branch to Q
  35  00000000 00 -- nop ; branch delay slot

  36 Z 00011100 1c -- ldi r3 ; r3 <- branch address P
  37  00100001 21 -- 21 ; address P
  38  10000011 83 -- jmp r3 ; jump to P to re-display Fib. numbers
  39  00000000 00 -- nop ; branch delay slot


