If-then else : 2-1 mux

mux: process (A, B, Select)
begin
If (select="1") then
 <=A;
else
Z <= B;
end If;
end process;



Conditional signal assignment
2-1 Mux

Z <= A when (Select="1")
else B;

Concurrent statement - |.e. outside process.



Case statement: 2-1 Mux

MUX: Process
begin
case Select Is
when ‘0’ => Z <= B;
when ‘1’ => Z <= A;
when others => Z <= "‘-"; -- cover all cases
end case;
end process;




Priority Encoder using If-then-
elsif

Z<=E; --default

if (SELECT_D ='1’) then Z <= D;
elsif (SELECT_C =1’) then Z <=C;
elseif (SELECT B =‘1")then Z<=B;
elseif (SELECT_A='1")then Z<=A;
end If;




Decoder using case statement

case value:=A & B & C; -- concatenate bits
CASE case valuelS
WHEN “000” => Z <= *“00000001";
WHEN “001” => Z <=*“00000010";

WHEN others=> Z <=“00000000":
END CASE:;



Case statements

* Truth table can be directly translated into
CASE statement. (l.e. hex to 7-segment)

e State transition table can also be
Implemented using CASE statement.

e Synthesized as combinational logic (unless
iIncompletely specified.)



Case vs. If-then-elsif

e Case statement generates hardware with
more parallelism.

o If-then-elseif has built-in priority; Can
require lots of logic for low-priority
conditions.

e If conditions are mutually exclusive, use
case statement to simplify logic.



Inferred Latch (undesirable!)

process (A, Select)
begin
If (Select="1") then
L <=A,
end If;
end process;



Preventing Latch Inference

e |f-statements and case statements must be
completely specified or VHDL compiler
Infers latches.

e A default assignment must be made so that
an assignment occurs for all conditions.

e #1 synthesis problem for Xilinx - although
simulation will work, the final hardware
most likely will NOT work!




D-FF Simulation M odel

process (CLK) begin
If CLK='1" then
Q <=D;
end If;
end process;

e Incomplete sensitivity list
 What will be synthesized??



D flip-flop

DFF : process

begin
wait until clk’event and clk="'1",
Q<=D;

end process;



D flip-flop with Asynch Reset

process (clk, reset, D)
begin
If (reset='1") then
Q<="0;
elsif (clk’event and clk="1") then
Q<=D;
end If;
end process;



D-FF with async reset and enable

process (clk, reset, D, enable) begin
If (reset="1") then
Q<="0%
elself (clk’'event and clk='1’) then
If (enable=‘1") then
Q <=D;
end If;
end If;
end process;



D-FF with Synch Reset

process begin
wait until clk’'event and clk="1";
If (reset='1") then

Q<="'0";
else

Q <=D;
end If;

end process;



Synthesis Guidelines

Avoid inferring latches.
Don’t specify time delays.
Avoid incomplete sensitivity lists.

Don’t specify initial values in entity, signal
or variable declarations.

Use basic constructs and behavioral code.
Use std logic and std_logic_vector types.



Synthesis Guidelines (cont.)

* A process must have a sensitivity list or one
or more wait statements.

 All paths through process code must be
balanced. l.e. If one path has a wait
statement, all paths must have a walit
statement.



|EEE-1164 Standard Logic

‘v, ‘X, 0,1, Z,'W','L’, ‘H’,’-)

accurately models hardware.

std_logic replaces type bit

std _logic_vector replace bit_vector
Recommended for simulation and synthesis

Special operator overloading functions and
resolution functions.



Using |EEE-1164

Library |IEEE;
use |IEEE.std logic 1164.all;
use |EEE.std logic _unsigned.all;

e Library source code available on our system.

e Can add std _logic vectors, model tri-state
buffers, etc.



How will this code be
synthesized?

Process
begin

wait until clk’event and clk="'1",

synch_in <= asynch_in;

stage out <= synch_in;
end process;



Variables

e Local to a process.
 Instantaneously updated - no delta delay.

« Useful for algorithmic description which
needs to generate/use intermediate values.
(l.e. Inside for loop)

e Contrast: signals are global to process only
e Signals arecheduled, not updated instantly.



Parity generator using variable

process (WORD) -- bit_vector(0 to 4)
variable ODD : bit;
begin

ODD =0’

for 1'in O to 4 loop

ODD := ODD xor WORD(I);

end loop;
PARITY <= ODD;
end process;



Summary

Know how to usévasic constructs to produce
predictable, reliable synthesis results.

Know how to avoid inferring latches!
Signals arescheduled; Variables update instantly.

Model state machines usiisgoarate processes
for state registers and for next-state
combinational logic.



