
if-then else : 2-1 mux

mux: process (A, B, Select)
begin

if (select=‘1’) then
Z <= A;

else
Z <= B;

end if;
end process;

Conditional signal assignment
2-1 Mux

Z <= A when (Select=‘1’)

else B;

Concurrent statement - I.e. outside process.

Case statement: 2-1 Mux

mux: process
begin

case Select is
when ‘0’ => Z <= B;
when ‘1’ => Z <= A;
when others => Z <= ‘-’; -- cover all cases

end case;
end process;

Priority Encoder using if-then-
elsif

Z <= E; -- default

if (SELECT_D = ‘1’) then Z <= D;

elsif (SELECT_C = ‘1’) then Z <= C;

elseif (SELECT_B = ‘1’) then Z <= B;

elseif (SELECT_A = ‘1’) then Z <= A;

end if;

Decoder using case statement

case_value := A & B & C; -- concatenate bits

CASE case_value IS

WHEN “000” => Z <= “00000001”;

WHEN “001” => Z <= “00000010”;

…

WHEN others => Z <= “00000000”;

END CASE;

Case statements

• Truth table can be directly translated into
CASE statement. (I.e. hex to 7-segment)

• State transition table can also be
implemented using CASE statement.

• Synthesized as combinational logic (unless
incompletely specified.)

Case vs. If-then-elsif

• Case statement generates hardware with
more parallelism.

• If-then-elseif has built-in priority; Can
require lots of logic for low-priority
conditions.

• If conditions are mutually exclusive, use
case statement to simplify logic.

Inferred Latch (undesirable!)

process (A, Select)

begin

if (Select=‘1’) then

Z <= A;

end if;

end process;

Preventing Latch Inference

• If-statements and case statements must be
completely specified or VHDL compiler
infers latches.

• A default assignment must be made so that
an assignment occurs for all conditions.

• #1 synthesis problem for Xilinx - although
simulation will work, the final hardware
most likely will NOT work!

D-FF Simulation Model

process (CLK) begin
if CLK=‘1’ then

Q <= D;
end if;

end process;

• Incomplete sensitivity list

• What will be synthesized??

D flip-flop

DFF : process

begin

wait until clk’event and clk=‘1’;

Q <= D;

end process;

D flip-flop with Asynch Reset

process (clk, reset, D)
begin

if (reset=‘1’) then
Q <= ‘0’;

elsif (clk’event and clk=‘1’) then
Q <= D;

end if;
end process;

D-FF with async reset and enable

process (clk, reset, D, enable) begin
if (reset=‘1’) then

Q <= ‘0’;
elseif (clk’event and clk=‘1’) then

if (enable=‘1’) then
Q <= D;

end if;
end if;

end process;

D-FF with Synch Reset

process begin
wait until clk’event and clk=‘1’;
if (reset=‘1’) then

Q <= ‘0’;
else

Q <= D;
end if;

end process;

Synthesis Guidelines

• Avoid inferring latches.

• Don’t specify time delays.

• Avoid incomplete sensitivity lists.

• Don’t specify initial values in entity, signal
or variable declarations.

• Use basic constructs and behavioral code.

• Use std_logic and std_logic_vector types.

Synthesis Guidelines (cont.)

• A process must have a sensitivity list or one
or more wait statements.

• All paths through process code must be
balanced. I.e. if one path has a wait
statement, all paths must have a wait
statement.

IEEE-1164 Standard Logic

• (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’,’L’, ‘H’,’-’)

• accurately models hardware.

• std_logic replaces type bit

• std_logic_vector replace bit_vector

• Recommended for simulation and synthesis

• Special operator overloading functions and
resolution functions.

Using IEEE-1164

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

• Library source code available on our system.

• Can add std_logic vectors, model tri-state
buffers, etc.

How will this code be
synthesized?

process

begin

wait until clk’event and clk=‘1’;

synch_in <= asynch_in;

stage_out <= synch_in;

end process;

Variables

• Local to a process.

• Instantaneously updated - no delta delay.

• Useful for algorithmic description which
needs to generate/use intermediate values.
(I.e. inside for loop)

• Contrast: signals are global to process only

• Signals are scheduled, not updated instantly.

Parity generator using variable

process (WORD) -- bit_vector(0 to 4)
variable ODD : bit;
begin

ODD := ‘0’;
for I in 0 to 4 loop

ODD := ODD xor WORD(I);
end loop;

PARITY <= ODD;
end process;

Summary

• Know how to use basic constructs to produce
predictable, reliable synthesis results.

• Know how to avoid inferring latches!

• Signals are scheduled; Variables update instantly.

• Model state machines using separate processes
for state registers and for next-state
combinational logic.

