
(1) Complete the excitation table for the following storage element:

Q _n	Q _{n+1}	A	В
0	0		
0	1		
1	0		
1	1		

SOLUTION

Q _n	Q _{n+1}	A	В
0	0	-	0
0	1	0	1
1	0	1	0
1	1	0	-

(2) Write the characteristic equation for this storage element.

$Q_{n+1} =$

SOLUTION

 $Q_{n+1} = B + A'Q_n$

The following characteristic table describes a storage element A-B

Α	В	Q _{n+1}	Operation
0	0	Q _n	Hold
0	1	0	Reset
1	0	Q n	Hold
1	1		Toggle

(1) Write the characteristic equation for the storage element A-B.

 $Q_{n+1} =$

SOLUTION

$$Q_{n+1} = Q Q \overline{Q} \overline{Q} + \overline{Q} Q_n$$

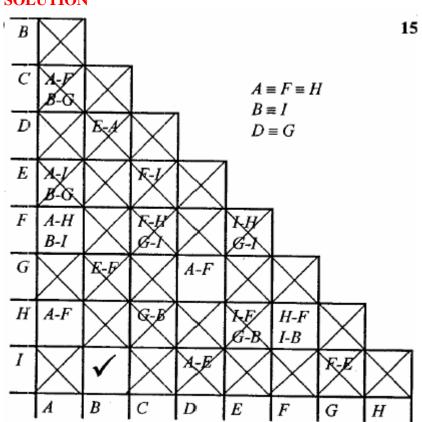
(2) Implement the A-B storage element using additional gates and an S-R Latch. Show your schematic diagram and derivation process.

S	Q
R	Q

2 & Qm 0 0 0 0 0 1	Qn44 0 1	S O X	r × O	a { [] x [] a { x []
010	0 10 0		× 1 ×	5=aba R=ba
101	1 1 0	× 1 0	001	ā Dro

Design a 3-bit counter which counts in the sequence: 010, 101, 011, 110, 001, 111, 000, 100, 010, ...

Implement the 3-bit counter using J-K Flip-Flops. Draw the state transition table, appropriate K-maps and derive the J-K flip-flop input equations


CBA 0 06 0 01 0 10 0 11 1 00 1 0 1 1 1 0 1 1 1	C ⁺ B ⁺ A ⁺ 1 00 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0	Jc Kc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JEKO OX AX X 1 X 0 AX AX X 1 X 1	jak a 0× ×0 4× ×4 0× ×4 0× ×4 ×4	
Jc Jo		1 X B	Ko T	X X A	
c SE					

$$J_{c} = 1 \quad K_{c} = 1$$

$$J_{B} = C + A \ _{1}K_{B} = \overline{A} + C$$

$$J_{A} = B \ _{1}K_{A} = B$$

Present State S _n	Next S _r X=0		Output Z
а	а	b	1
b	с	е	0
С	f	g	1
d	с	а	0
е	i	g	1
f	h	i	1
g	С	f	0
h	f	b	1
i	С	е	0

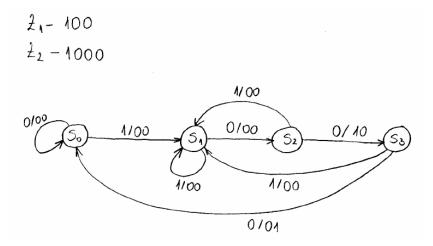
Reduce the following state table to a minimum number of states.

(1) Write the resulting state table. Determine the equivalent states – show them.

[extra space for Problem 4]

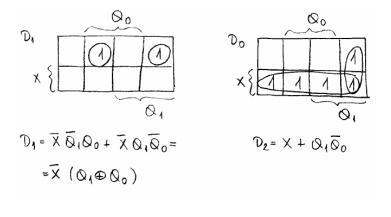
(2) Draw the resulting state diagram with all states, transitions and outputs.

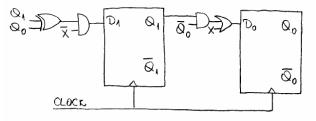
	Next State		
State	X = 0	X = 1	X
A	A	В	1
В	С	Ε	0
С	A	D	1
D	С	A	0
Ε	B	D	1


Design a Mealy sequential circuit which has one input (X) and two outputs (Z_1 and Z_2) which meets the following specifications:

1) Output Z_1 is 1 when the sequence 100 is detected, otherwise it is 0.

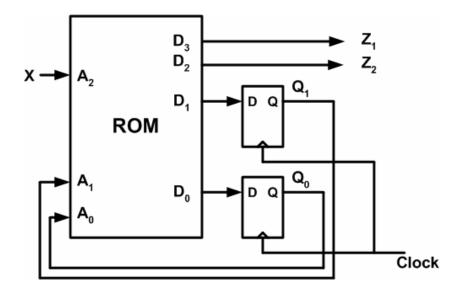
2) Output Z_2 is 1 when the sequence 1000 is detected, otherwise it is 0.


(1) Draw the state diagram


SOLUTION

(2) Derive the input equations for an implementation using D Flip Flops. **SOLUTION**

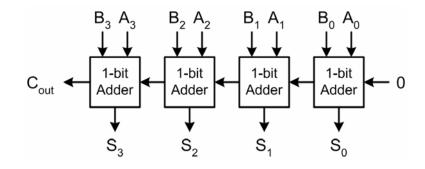
X Q Q Q O 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0	$ \begin{array}{c} $		D1 D0 0 0 1 0 1 0 1 0 0 1 0 1 0 1
111	01	00	01


(3) Determine the output equations for Z_1 and Z_2 .

 $Z_1 = Z_2 =$

SOLUTION

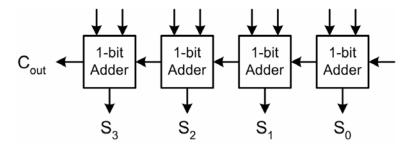
 $\begin{array}{l} Z_1 = X'Q_1Q_2'\\ Z_2 = X'Q_1Q_2 \end{array}$


(4) Implement the FSM using ROM and D-Latch Registers

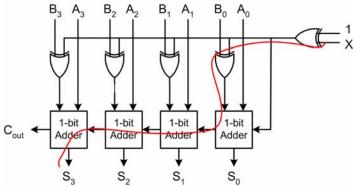
Address A ₂ A ₁ A ₀	$\begin{array}{c} \text{Content of ROM} \\ \text{D}_3 \text{D}_2 \text{D}_1 \text{D}_0 \end{array}$
000	
001	
010	
011	
100	
101	
110	
111	

Address A ₂ A ₁ A ₀	Content of ROM D ₃ D ₂ D ₁ D ₀
000	0000
001	0010
010	10 1 1
011	01 00
100	00 01
101	00 04
110	00 01
111	00 01
×Q,Qo	ZiZ2 DiDo

Analyze the following 2's complement 4-bit Ripple Carry Adder


(1) Draw the critical path on the adder.

(2) Show a sequence of input vectors that creates this critical path.


SOLUTION

Vector1 [A,B] = [0000, 0000] Vector2 [A,B] = [1111, 0001]

(3) Using only XOR gates, modify the four-bit ripple carry adder below to perform 2's complement addition when a control signal X = 1, and 2's complement subtraction (A-B) when X = 0.

(4) Draw the critical path. **SOLUTION**

