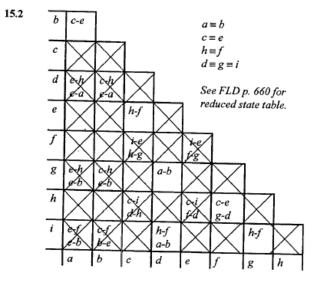
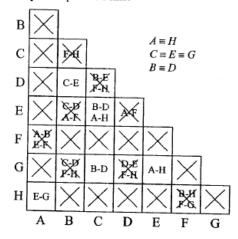

Winter, 2006.

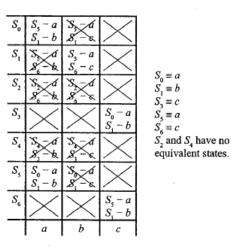

Solutions for Homework #8

15.1 (a) Implication chart after one pass:



Reduced state table:

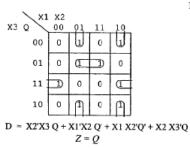
State	Next $X = 0$	State X≈1	Out X=0	
A	A	С	1	0
B	С	F	0	0
С	В	A	0	0
F	В	F	1	0

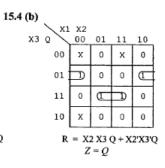

Complete implication chart

15.1 (b) $B \neq C$ because $F \neq H$, (and also because $C \neq D$) $F \neq H$ because $B \neq H$, (and also because $F \neq G$), and $B \neq H$ because the output differs for X = 0. So use the sequence X = 100.

Input:	<i>X</i> :	1	0	0
Starting	Z:	0	1	0
in <i>B</i> :	State: (B) F		3
Starting	<i>Z:</i>	0	1	1
in <i>G</i> :	State: (G) H		H

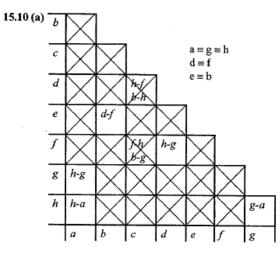
So $\lambda_1(B, 100) = 010 \neq 011 = \lambda_2(G, 100)$, and $B \neq G$. (Alternative: $\lambda_1(B, 110) = 001 \neq 000 = \lambda_2(G, 110)$. Also, $\lambda_1(B, 00101) \neq \lambda_2(G, 00101)$, but this requires an <u>X</u> of length 5. 15.3



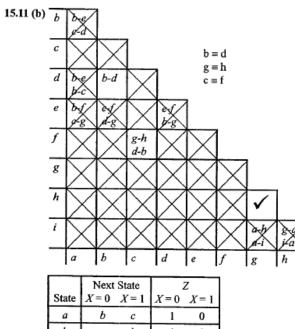

15.3 (a)
$$a \equiv S_0, S_5$$

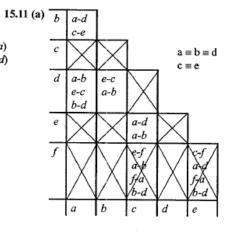
 $b \equiv S_1$
 $c \equiv S_3, S_6$

Since S_2 and S_4 do not have corresponding states, the circuits are *not* equivalent.


15.3 (b) Starting from S_0 , it is not possible to reach S_2 or S_4 . So then the circuits would perform the same.

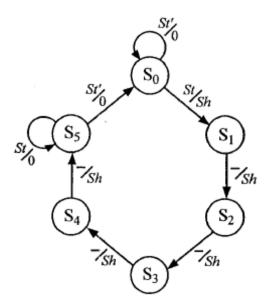
15.4 (a)


x3 Q X1	X2 00	01	11	10		
00	0	IJ	0	U		
01	0	х	х	0		
11	х	0	0	х		
10	0	ſĨ	0	ſĨ		
S = X1'X2 Q' + X1 X2'Q'						

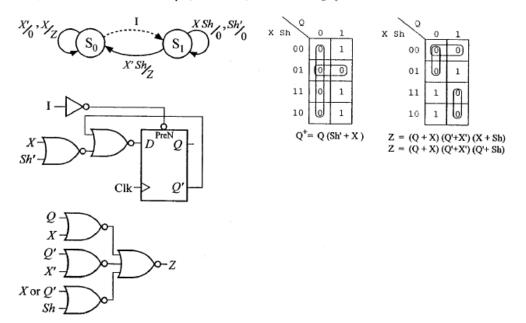


State		State	Out X = 0	
State	<u> </u>	<u>A - 1</u>	A = 0	A - 1
a	a	с	1	0
b	с	d	0	1
с	а	b	0	0
d	d	а	0	0

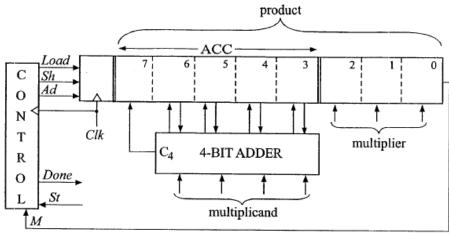
Output starting in state c: 01 (state c^{0} state a^{0} state a) Output starting in state d: 00 (state d^{0} state d^{0} state d)

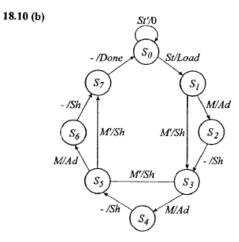


Present State	Next State 00 01 11 10	z
a	acca	0
с	cafa	1
f	faaa	1


	a	Ь	C	d	e
			State		Z
	State	X = 0	X = 1	X = 0	X = 1
	а	b	с	1	0
•	b	е	b	1	0
1	с	g	b	1	1
	е	С	g	1	0
	g	g	i	0	1
	i	а	a	0	1

18.3 See FLD p. 669 for circuit. Notice that the Q output of the flip-flop is b_{in} , while the D input is b_{out} .

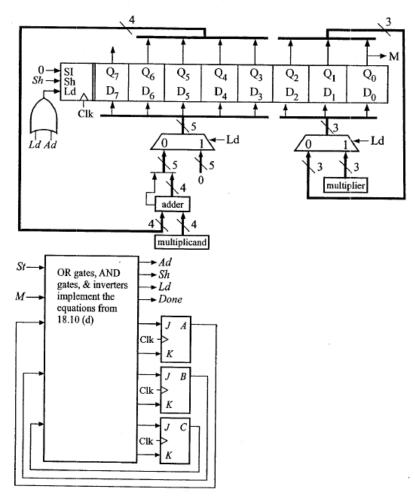



18.9 The ONE ADDER is similar to a serial adder, except that there is only one input. This means that the carry will be added to X. Thus, if the carry flip-flop is initially set to 1, 1 will be added to the input. The signal I can be used to preset the carry flip-flop to 1.

Let S_0 represent Carry = 0, and let S_1 represent Carry = 1. The state graph is as follows:

18.10 (c)	0	0 1	0 0	0 1	0 1	1	0	1	add
	0	1	0	1	1	1	0	1	shift
	0	0	1	0	1	1	1	0	shift
	0	0	0	1	0	1	1	1	add
-		1	0	1	1				
	0	1	1	0	1	1	1	1	shift
	0	0	1	1	0	1	1	1	

18.10	(a)	Pre


1	Present	Next State	A	d Sh L	oad Do	ne
l	State	StM:00 01 10 11	00	01	10	11
	S_0	$S_0 S_0 S_1 S_1$	0000	0000	0010	0010
	<i>S</i> ,	$S_3 S_2 S_3 S_2$	0100	1000	0100	1000
	S2	S_3 S_3 S_3 S_3	0100	0100	0100	0100
ļ	<i>S</i> ,	$S_5 S_4 S_5 S_4$	0100	1000	0100	1000
ļ	S_4	$S_5 S_5 S_5 S_5$	0100	0100	0100	0100
ļ	<i>S</i> ₅	$S_7 S_6 S_7 S_6$	0100	1000	0100	1000
l	S_6	$S_7 S_7 S_7 S_7 S_7$	0100	0100	0100	0100
L	<i>S</i> ₇	S ₀ S ₀ S ₀ S ₀	0001	0001	0001	0001

I. $(S_0, S_7) (S_1, S_2) (S_3, S_4) (S_5, S_6)$
II. $(\tilde{S}_{0}, \tilde{S}_{1}) (\tilde{S}_{2}, \tilde{S}_{3}) (\tilde{S}_{4}, \tilde{S}_{5}) (\tilde{S}_{6}, \tilde{S}_{7})$
III. $(S_1, S_3, S_5) (S_2, S_4, S_6)$ etc.

всА	0	1	(Other assignments are possible.)
00	s ₀	s_1	
01	S_3	S2	
11	S ₅	s4	
10	s,	s ₆	

18.10 (d) For this assignment, from LogicAid:

(contd) $J_A = StB'C' + MC; \quad K_A = M' + B + C; \quad J_B = A'C; \quad K_B = A'C'; \quad J_C = AB'; \quad K_C = A'B; \quad Ad = MAB'C' + MA'C, \quad Sh = M'A + M'C + AB + AC; \quad Load = StA'B'C'; \quad Done = A'BC'$

