13.3 (b) X =

Winter, 2006.

Solutions for Homework #7

13.2 Notice that this is a shift register. At each falling clock edge, Q_1 takes on the value Q_2 had right before the clock edge, Q_2 takes on the value Q_1 had right before the clock edge, and Q_1 takes on the value X had right before the clock edge. For example, if the initial state is 000 and the input sequence is X = 1100, the state sequence is = 100, 110, 011, 001, and the output sequence is Z = (0)0011. Z is always Q_3 , which does not depend on the present value of X. So it's a Moore machine. See FLD p. 653 for the state graph.

х

00 0

11 1

10

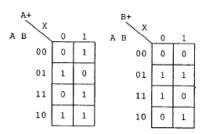
0

С 01

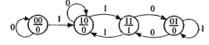
1

01 02

13.3 (a) $A^+ = AK'_A + A'J_A = A(B' + X) + A'(BX' + B'X)$ $B^+ = B'J_B + BK'_B = AB'X + B(A' + X')$ Z = AB



Present State	Next State (A^+B^+)		
AB	X = 0	X = 1	Ζ
00	00	10	0
01	11	01	0
11	01	10	1
10	10	11	0



13.3 (c) See FLD p. 653 for solution.

13.7 (a) Notice that Z depends on the input X, so this is a Mealy machine. $\begin{array}{l} Q_1^{+} = J_1 Q_1^{\prime} + K_1^{\prime} Q_1 = X Q_1^{\prime} Q_2 + X^{\prime} Q_1 \\ Q_2^{+} = J_2 Q_2^{\prime} + K_2^{\prime} Q_2 = X Q_1^{\prime} Q_2^{\prime} + X^{\prime} Q_2 \end{array}$ \tilde{Q}_{2}^{1}

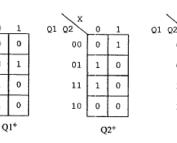
0 1 1 0 0

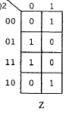
AB = 00 00 10 11 01 11 $Z = (0) \ 0 \ 0 \ 1 \ 0 \ 1$

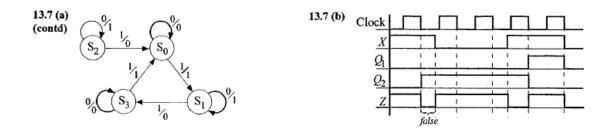
$$= Q_2 \oplus X = XQ_2' + X'Q_2$$

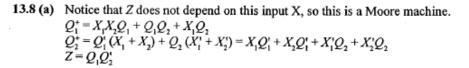
State	Present State	Next State $(Q_1^+Q_2^+)$		Z	
	Q_1Q_2	X = 0	X = 1	X=0	X = 1
S ₀	00	00	01	0	1
<i>S</i> ,	01	01	10	1	0
S2	11	11	00	1	0
S_3	10	10	00	0	1

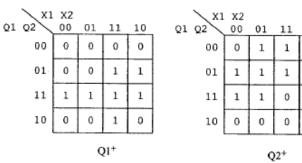
Alternate solution: Swap states S, and S,.

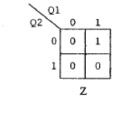




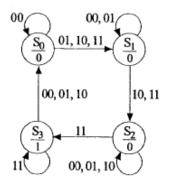


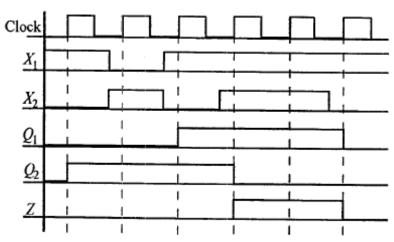






State	Present State	Next State $X_1 X_2$			z	
	Q_1Q_2	00	01	11	10	
S _o	00	00	01	01	01	0
S_1	01	01	01	11	11	0
S_2	11	11	11	10	11	0
S_3	10	00	00	10	00	1

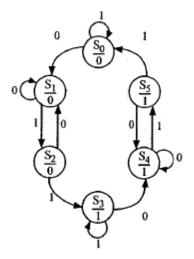




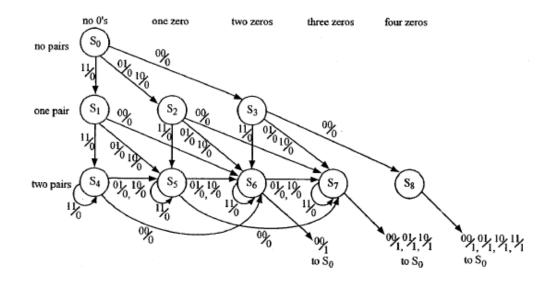
Correct output: Z = 0, 0, 0, 1, 1, 0

14.17 There are two identical parts: one with an output of 0 and one with an output of 1.

State	Meaning
S_{1}, S_{4}	Previous input was 0
S_{2}, S_{5}	Previous inputs were 01
S_{1}, S_{0}	Previous input was $1 / \text{Reset}(S_{o})$



14.19 This is another problem similar to 14.10. Plot the number of 0's horizontally and the number of pairs vertically:



Pairs	0's	Present State	Next State 00 01 10 11	00	Z, 01	Z ₂ 10	11
0	0	S ₀	S_3 S_2 S_2 S_1	0	0	0	0
1	0	S ₁	S6 S5 S5 S4	0	0	0	0
1	1	S_2	S, S, S, S, S,	0	0	0	0
1	2	S_3	$S_{8} S_{7} S_{7} S_{6}$	0	0	0	0
_ 2	0	S_4	S 5, S, S, S4	0	0	0	0
2	1	S_{s}	$S_7 S_6 S_6 S_5$	0	0	0	0
2	2	S_6	$S_0 S_7 S_7 S_6$	1	0	0	0
2	3	S_{7}	$S_0 S_0 S_0 S_7$	1	1	1	0
2	4	S ₈	$S_0 S_0 S_0 S_0$	1	1	1	1

.

Note: There is a seven-state solution.

 14.23
 Example: $X = 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1$
 $Z = 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1$

 Note:
 Overlapping sequences are allowed.

State	Meaning
S,	No sequence
S_1	0
S_2	00
S_{3}	001
S_4	0011

	Next State		Z		
State	X = 0	X = 1	X = 0	X = 1	
S_0	S_1	S _o	0	1	
S_1	S_2	S _o	0	1	
S_2	S_2	S_3	0	1	
<i>S</i> ,	S_1	S4	0	1	
S_4	S,	S ₀	1	1	

