
EEC180A DIGITAL SYSTEMS I Winter, 2006.

Solutions for Homework # 4

Students are allowed to use a maximum of 18 gates.

8.B	ABCD	$X_1 X_2 X_3 X_4 X_5 X_6 X_7$	$X_1 = B' + \underline{C'D} + CD' + A$
	0000	XXXXXX	$X_2 = C + B$
	0001	XXXXXXX	$X_3 = D' + C + A \text{ (used in c}$ $X_3 = D' + C + B'$
	0010	XXXXXXX	$X_4 = \underline{C'D} + \underline{B'D} + \underline{BCD'} +$
	0011	1 1 1 1 1 1 0	$X_4 = \overline{C'D} + \overline{A'C}D' + B'D +$
	0100	0 1 1 0 0 0 0	$X_5 = \underline{C'D} + \underline{B'D}$
	0101 0110	1 1 0 1 1 0 1	$X_6 = CD + \underline{AC'}$
	0111	1 1 1 1 0 0 1	$X_{7} = AD + BC + \underline{CD} + \underline{A}$ $X_{7} = AD + BC + AC' + B$
	1000	1011011	A, - AD+BC+AC+B
	1001	101111	This solution uses 15 gates a
	1010	1 1 1 0 0 0 0	
	1011	1111111	Students are allowed to use a
	1100	1 1 1 1 0 1 1	

$$X_2 = C + B$$

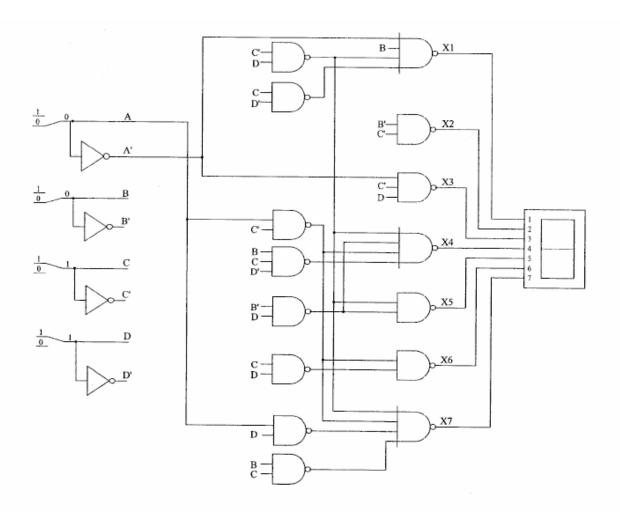
$$X_3 = D' + C + A \text{ (used in circuit)}$$

$$X_3 = D' + C + B'$$

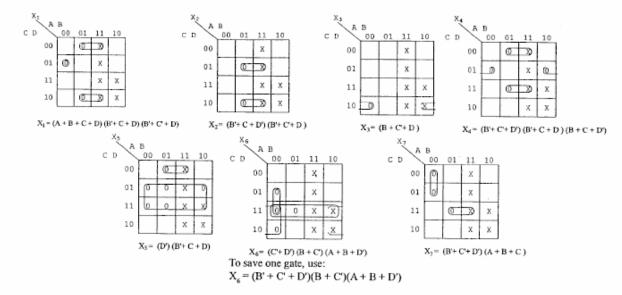
$$X_4 = \underline{C'D} + \underline{B'D} + B C D' + \underline{A C'} \text{ (used in circuit)}$$

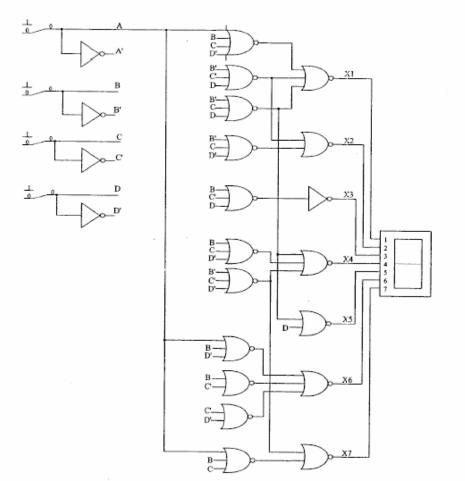
$$X_4 = C'D + A'C D' + B'D + A C'$$

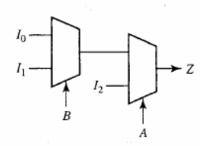
$$X_5 = \underline{C'D} + \underline{B'D}$$

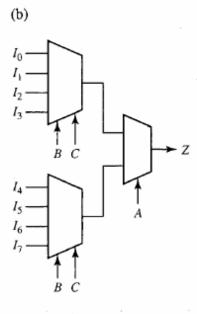

$$X_6 = C D + \underline{A C'}$$

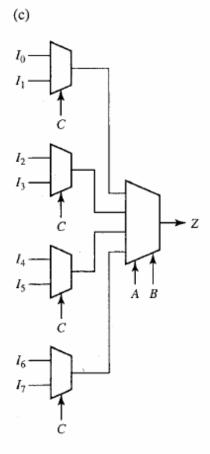
$$X_7 = A D + B C + \underline{C'D} + \underline{A C'} \text{ (used in circuit)}$$

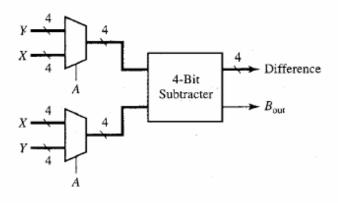

$$X_7 = A D + B C + A C' + B D$$

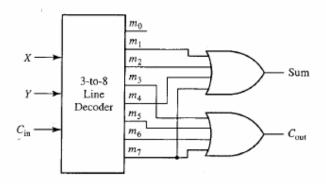

on uses 15 gates and 38 gate inputs.

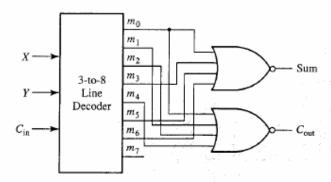

e allowed to use a maximum of 16 gates.

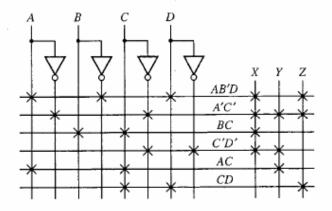



8.O, continued

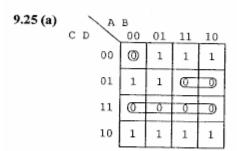




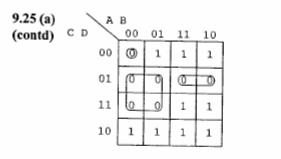

9.2



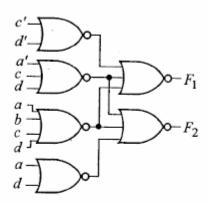
(b)


(b) Truth Table for the ROM

/	4	В	C	D	X	γ	<u>Z</u>
()	0	0	0	1	. 1	1
()	0	0	1	1	1	1
()	0	1	0	0	0	. 0
()	0	1	1	0	0	, 1 -
()	1	0	0	1	1	1
()	1	0 .	1	1	1	1
() .	1	1	0	1	C	.0
. ()	1 -	1	1	1	C) 1
	i	0	0	0	1	1	0
	1	0	0	1	1	C) 1
	1	0	1	0	. 0	1	0
	1	0	1	1	1	1	1
,	1	1	0	0	1	1	0
,	1	1	0	1	0	(0
	1	1	1	0	1	1	1 0
	1	1	1	1	1	- 1	1 1

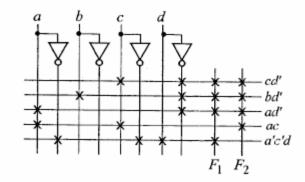

9.10 (a) $A_4 = W' + X'Y'$ $A_3 = WX'Y'$ $A_2 = W'X + XZ + XY$ $A_1 = W'Y + WXY'Z' + YZ$ $A_0 = W'Z + WXZ' + X'Y'Z + WYZ'$ W'X'Y'WX'Y'W'XXZXYW'YWXY'Z'YZW'ZWXZ'

> X'Y'Z WYZ'


(b)	W	X	Y	Z		A4	A_3	A ₂	A_1	Ao
	0	-	-	-		1	0	0	0	0
	-	0	0	-		1	0	0	0	0
	1	0	0	-		.0	1	0	0	0
	0	1	-	-,		0	0	1	0	0
5	-	1	-	1		0	0	1	0	0
	-	1	1	-	١	0	0	1	0	0.
	0	-	1	-		0	0	0	1	0
	1	1	0	0		0	0	0	1	0
	-	-	1	1	١	0	0	0	1	0
	0	-	-	1	١	0	0	0	0	ા .
	1	1	-	0		0	0	0	0	. 1
	-	0	0	1		0	0	0	0	1.
	1	-	1	0		0	0	0	0	1_{f}

 $F_1 = (A + B + C + D)(A' + C + D')(C' + D')$

$$F_2 = (A + B + C + D)(A' + C + D')(A + D')$$


Alternate solution:

$$F_1 = (a+b+c+d) (a+c'+d') (a'+d')$$

$$F_2 = (a+b+c+d) (a+b'+d') (c+d')$$

9.25 (b)

	abcd	F_1F_2
(cd')	1 0	1.1
(bd')	- 1 - 0	11
(ad')	1 0	11
(ac)	1 - 1 -	0 1
(a'c'd)	0 - 0 1	10

