

(a) A switch with the opposite behavior of Figure 3.2(a)

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

Figure 3.3 PMOS transistor as a switch.

McGrow, Hamacher, Zacky

3.2 NMOS LOGIC GATES

(a) NMOS transistor

(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits.

Figure 3.5 A NOT gate built using NMOS technology.

Figure 3.6 NMOS realization of a NAND gate.

CHAPTER 3 • IMPLEMENTATION TECHNOLOGY

Figure 3.7 NMOS realization of a NOR gate.

3.3 CMOS LOGIC GATES

Figure 3.8 NMOS realization of an AND gate.

CHAPTER 3 • IMPLEMENTATION TECHNOLOGY

Figure 3.9 NMOS realization of an OR gate.

Figure 3.10 Structure of an NMOS circuit.

Figure 3.11 Structure of a CMOS circuit.

(a) Circuit

(b) Truth table and transistor states

Figure 3.12 CMOS realization of a NOT gate.

Figure 3.1 Representation of logic values by voltage levels.

Figure 3.14 CMOS realization of a NOR gate.

Figure 3.13 CMOS realization of a NAND gate.

Figure 3.17 The circuit for Example 3.2.

(a) When $V_{GS} = 0$ V, the transistor is off

(b) When $V_{GS} = 5$ V, the transistor is on

Figure 3.43 Physical structure of an NMOS transistor.

Figure 3.44 The current-voltage relationship in the NMOS transistor.

define the low noise margin as

$$NM_L = V_{IL} - V_{OL}$$

A similar situation exists when N_1 produces its high output voltage V_{OH} . Any existing noise in the circuit may alter the voltage level, but it will be interpreted correctly by N_2 as long as the voltage is greater than V_{IH} . The high noise margin is defined as

$$NM_H = V_{OH} - V_{IH}$$

(a) A NOT gate driving another NOT gate

(b) The capacitive load at node A

Figure 3.47 Parasitic capacitance in integrated circuits.

Figure 3.53 High fan-in NMOS NAND gate.

(a) Inverter that drives n other inverters

(b) Equivalent circuit for timing purposes

(c) Propagation times for different values of n

Figure 3.55 The effect of fan-out on propagation delay.

Voltage waveforms for logic gates.

.48

Figure 3.60 A transmission gate.

3.10 IMPLEMENTATION DETAILS FOR SPLDS, CPLDS, AND FPGAS

Figure 3.62 A 2-to-1 multiplexer built using transmission gates.

129

CHAPTER 3 • Implementation Technology

$\frac{x_1}{x_1}$	\mathfrak{r}_2	$f = x_1 \oplus x_2$	
0 (0	0	
0]	1	1	
1 ()	1	$\begin{array}{c} x_1 \\ x_2 \end{array} \longrightarrow f = x_1 \oplus x_2$
1 1	1	0	

(a) Truth table

(b) Graphical symbol

(c) Sum-of-products implementation

(d) CMOS implementation

Figure 3.61 Exclusive-OR gate.

3.10 Implementation Details for SPLDs, CPLDs, and FPGAs

Figure 3.62 A 2-to-1 multiplexer built using transmission gates.