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Introduction 
Digital computer arithmetic is an aspect of logic design with the objective of developing 
appropriate algorithms in order to achieve an efficient utilization of the available hardware [1-4]. 
Given that the hardware can only perform a relatively simple and primitive set of Boolean 
operations, arithmetic operations are based on a hierarchy of operations that are built upon the 
simple ones. Since ultimately, speed, power and chip area are the most often used measures of 
the efficiency of an algorithm, there is a strong link between the algorithms and technology used 
for its implementation. 

High-speed Addition: Algorithms and VLSI Implementation: 
First we will examine a realization of a one-bit adder which represents a basic building block for 
all the more elaborate addition schemes. 

Full Adder: 
Operation of a Full Adder is defined by the Boolean equations for the sum and carry signals:  

iiiiiiiiiiiiiiii cbacbacbacbacbas ⊕⊕=+++=  

iiiiiiiiiiiii cbacbacbacbac +++=+1  
Where: ai, bi, and ci are the inputs to the i-th full adder stage, and si and ci+1 are the sum and 
carry outputs from the i-th stage, respectively. 
From the above equation we realize that the realization of the Sum function requires two XOR 
logic gates. 
The Carry function is further rewritten defining the Carry-Propagate pi   and Carry-Generate   gi 
terms:  

iii bap ⊕=    ,    iii bag •=  
At a given stage i, a carry is generated if gi is true (i.e., both ai and bi are ONEs), and if pi is true, 
a stage propagates an input carry to its output (i.e., either ai or bi is a ONE). The logical 
implementation of the full adder is shown in Fig. 1.a.  
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Fig. 1.a.b. Full-Adder implementation (a) regular (b) using multiplexer in the critical path 
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For this implementation, the delay from either a or bi to si is two XOR delays and the delay from 
ci to ci+1 is 2 gate delays. Some technologies, such as CMOS, implement the functions more 
efficiently by using pass-transistor circuits. For example, the critical path of the carry-in to carry-
out uses a fast pass-transistor multiplexer  [8] in an alternative implementation of the Full Adder 
shown in Fig.1.b. 
 
The ability of pass-transistor logic to provide an efficient multiplexer implementation has been 
exploited in CPL and DPL logic families [10,11]. Even an XOR gate is more efficiently 
implemented using multiplexer topology. A Full-Adder cell which is entirely multiplexer based 
as published by Hitachi [11] is shown in Fig.2. Such a Full-Adder realization contains only two 
transistors in the Input-to-Sum path and only one transistor in the Cin-to-Cout path (not counting 
the buffer). The short critical path is a factor that contributes to a remarkable speed of this 
implementation. 
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 Fig.2. Pass-Transistor realization of a Full-Adder in DPL [11] 
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Ripple Carry Adder:   
A ripple carry adder for N-bit numbers is implemented by concatenating N full adders as shown 
on Figure 3.  At the i-th bit position, the i-th bits of operands A and B and a carry signal from the 
preceding adder  stage are used to generate the i-th bit of the sum, s , and a carry, c , to the next 
adder stage.  This is called a Ripple Carry Adder (RCA), since the carry signal “ripple” from the 
least significant bit position to the most significant [3,4].  If the ripple carry adder is 
implemented by concatenating  N full adders, the delay of such an adder is 2N gate delays  from 
C -to-C . 

i i+1

in out
 
The path from the input to the output signal that is likely to take the longest time is designated as 
a "critical path". In the case of a RCA, this is the path from the least significant input a0 or b0 to 
the last sum bit sn. Assuming a multiplexer based XOR gate implementation, this critical path 
will consist of N+1 pass transistor delays. However, such a long chain of transistors will 
significantly degrade the signal, thus some amplification points are necessary. In practice, we can 
use a multiplexer cell to build this critical path using standard cell library as shown in Fig.3 [8]. 
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Fig. 3. Carry-Chain of an RCA implemented using multiplexer from the standard cell library [8] 
 
 
Carry Skip Adder:  
Since the Cin-to-Cout represents the longest path in the ripple-carry-adder an obvious attempt is to 
accelerate carry propagation through the adder. This is accomplished by using Carry-Propagate 
pi signals within a group of bits. If all the pi signals within the group are pi = 1, the condition 
exist for the carry to bypass the entire group:   

121 ...... −+++ ••••= kiiii ppppP  
The Carry Skip Adder (CSKA) divides the words to be added into groups of equal size of k-bits. 
The basic structure of an N-bit Carry Skip Adder is shown on Fig. 4.  Within the group, carry 
propagates in a ripple-carry fashion. In addition, an AND gate is used to form the group 
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propagate signal P. If P = 1 the condition exists for carry to bypass (skip) over the group as 
shown in Fig.4. 
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Fig.4. Basic Structure of a CSKA: N-bits, k-bits/group, r=N/k groups 
 
The maximal delay ∆ of a Carry Skip Adder is encountered when carry signal is generated in the 
least-significant bit position, rippling through k-1 bit positions, skipping over N/k-2 groups in the 
middle, rippling to the k-1 bits of most significant group and being assimilated in the Nth bit 
position to produce the sum SN: 

SKIPrcarcaSKIPrcaCSA k
Nkk

k
Nk ∆−+∆−=∆−+∆−+∆−=∆ )2()1(2)1()2()1(  

Thus, CSKA is faster than RCA at the expense of a few relatively simple modifications. The 
delay is still linearly dependent on the size of the adder N, however this linear dependence is 
reduced by a factor of 1/k [3].  
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Variable Block Adder: 
The idea behind Variable Block Adder (VBA) is to minimize the longest critical path in the carry 
chain of a CSKA, while allowing the groups to take different sizes [2,7]. Such an optimization in 
general does not result in an enhanced complexity as compared to the CSKA. A carry-chain of a 
32-bit VBA is shown in Fig.5.  
The first and last blocks are smaller, and the intermediate blocks are larger. That compensates for 
the critical paths originating from the ends by shortening the length of the path used for the carry 
signal to ripple in the end groups, allowing carry to skip over larger groups in the middle. 
There are two important consequences of this optimization: 

(a.) First, the total delay is reduced as compared to CSKA 
(b.)  Second, the delay dependency is not a linear function of the adder size N as in CSKA. 

This dependency follows a square root function of N instead. 

For an optimized VBA, it is possible to obtain a closed form solution expressing this delay 
dependency which is given as:      321 cNccVBA ++=∆   where:  c1, c2, c3 are constants. 
It is also possible to extend this approach to multiple levels of carry skip as done in [7].  A 
determination of the optimal sizes of the blocks on the first and higher levels of skip blocks is a 
linear programming problem, which does not yield a closed form solution. Such types of 
problems are solved with the use of dynamic programming techniques. The speed of such a 
multiple-level VBA adder surpasses single-level VBA and that of fixed group Carry-Lookahead 
Adder (CLA). [15]. There are two reasons why this is possible: 

(1.) First, the speed of the logic gates used for CMOS implementation depends on the output 
load: fan-out, as well as the number of inputs: fan-in. CLA implementation is characterized 
with a large fan-in which limits the available size of the groups. On the other hand VBA 
implementation is simple. Thus, it seems that CLA has passed the point of diminishing 
returns as far as an efficient implementation is concerned. This example also points to the 
importance of modeling and incorporating appropriate technology parameters into the 
algorithm. Most of the computer arithmetic algorithms developed in the past use a simple 
constant gate delay model. 

(2.) Second, a fixed-group CLA is not the best way to build an adder. It is a sub-optimal structure 
which after being optimized for speed, consists of groups that are different in size yielding a 
largely irregular structure [15]. 

 
There are other advantages of VBA adder that are direct result of its simplicity and efficient 
optimization of the critical path. Those advantages are exhibited in the lower area and power 
consumption while retaining its speed. Thus, VBA has the lowest energy-delay product as 
compared to the other adders in its class. [9]. 

 
Carry Lookahead Adder:   
A significant speed improvement in the implementation of a parallel adder was introduced by a 
Carry-Lookahead-Adder (CLA) developed by Weinberger and Smith in 1958 [13]. The CLA 
adder is theoretically one of the fastest schemes used for the addition of two numbers, since the 
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delay to add two numbers depends on the logarithm of  the size of the operands:  ⎡ ⎤Nlog≈∆  
The Carry Loookahead Adder uses modified full adders (modified in the sense that a carry 
output is not formed) for each bit position and Lookahead modules which are used to generate 
carry signals independently for a group of k-bits. In most common case k=4. In addition to carry 
signal for the group, Lookahead modules produce group carry generate (G) and group carry 
propagate (P) outputs that indicate that a carry is generated within the group, or that an incoming 
carry would propagate across the group. 
Extending the carry  equation to a second stage in a Ripple-Carry-Adder we obtain: 

 

  

iiiiii

iiiii

iiii

cppgpg
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cpgc
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+++

++

++++

++=
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+=

  

 

This carry  equation  results from evaluating the carry equation for the i+1-st stage and 
substituting ci+1.  Carry ci+2 exits from stage i+1 if: 

(a.) a carry is generated in the stage i+1 or  

(b.) a carry is generated in stage i and propagates across stage i+1 or   

(c.) a carry  enters  stage i and propagates across both stages i and i+1, etc.   
 

Extending the carry equation to a third stage yields: 
 

  

iiiiiiiiii

iiiiiiii

iiii
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1212122
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2223

   
)(   

+++++++

+++++

++++

+++=
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Although it would be possible to continue this process indefinitely, each additional stage 
increases the size (i.e., the number of inputs) of the logic gates.  Four inputs (as required to 
implement ci+3 equation ) is frequently the maximum number of inputs per gate for current 
technologies.  To continue the process, Carry-Lookahead utilizes group generate and group 
propagate signals over four bit groups (stages i to i+3), Gj and Pj, respectively: 

 
 iiiiiiiiiij cpppgppgpgG 123123233    +++++++++ +++=

 
and: 

 
 

 
iiiij ppppP 123 +++=
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The carry  equation can be expressed in terms of the four bit group generate and propagate 
signals:       jjjj cPGc 4)1(4 +=+

 
Thus, the carry out from a 4-bit wide group ci+4 can be computed in four gate delays: one gate 
delay to compute pi and gi for i = i through i+3, a second gate delay to evaluate Pj, the second 
and the third to evaluate Gj, and the third and fourth to calculate carry signals ci+1, ci+2 , ci+3 and 
ci+4.  Actually, if not limited by fan-in constraints, ci+4 could be calculated concurrently with Gj 
and will be available after three gate delays. 
In general, an k bit lookahead group requires 0.5(3k+k2) logic gates, where k is the size of the 
group. In a recursive fashion, we can create a "group of groups" or a "super-group". The inputs 
to the "super-group" are G and P signals from the previous level. The "super-group" produces P* 
and G* signals indicating that the carry signal will be propagated across all of the groups within 
the "super-group" domain, or that the carry will be generated in one of the groups encompassed 
by the "super-group". Similarly to the group, a "super-group" produces a carry signal out of the 
"super-group" as well as an input carry signal for each of the groups in the level above: 

  

 

 

 
 

jjjjjjjjjjk GPPPGPPGPG 123123233
*G +++++++++

+++=

jjjjk PPPPP 123
*

+++=

kkkk cPGc 16
**

)1(16 +=+

A construction of a 32-bit Carry Lookahead Adder is illustrated in Fig. 6. 
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Fig. 6. 32-bit Carry Lookahead Adder 
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As opposed to RCA or CSA the critical path in the CLA travels in vertical direction rather than a 
horizontal one as shown in Fig.6. Therefore the delay of CLA is not directly proportional to the 
size of the adder N, but to the number of levels used. Given that the groups and super-groups in 
the CLA resemble a tree structure the delay of a CLA is thus proportional to the log function of  
the size N.  
CLA delay is evaluated by recognizing that an adder with a single level of carry lookahead (four 
bit words) contains three gate delays in the carry path. Each additional level of lookahead 
increases the maximum word size by a factor of k and adds two additional gate delays.  
Generally the number of lookahead levels for an N-bit adder is ⎡logk N⎤ where k+1 is the 
maximum number of inputs per gate.  Since an k-bit group carry-lookahead adder introduces 
three gate delays per CLA level, and there are two additional gate delays: one for gi and pi, and 
other for the final sum si, CLA delay ∆ is:  

⎡ ⎤ ⎡ ⎤NN kkCLA log21)1log =+−2( + 1 = ∆    
This log dependency makes CLA one of the theoretically fastest structures for addition [2,3,4]. 
However, it can be argued that the speed efficiency of the CLA has passed the point of 
diminishing returns given the fan-in and fan-out dependencies of the logic gates and inadequacy 
of the delay model based on counting number of gates in the critical path. In reality, CLA is 
indeed achieving lesser speed than expected, especially when compared to some techniques that 
consume less hardware for the implementation as shown in [7,8]. 
One of the simple schemes for addition that was very popular at the time when transition into 
MOS technology was made, is Manchester Carry Chain (MCC) [6,38]. MCC is an alternative 
switch based technique implemented using pass-transistor logic. The speed realized using MCC 
is impressive which is due to its simplicity and the properties of the pass-transistor logic. MCC 
does not require a large area for its implementation, consuming substantially less power as 
compared to CLA or other more elaborate schemes. A realization of the MCC is shown in Fig. 7. 
Due to the RC delay properties of the MCC the signal needs to be regenerated by inserting 
inverters at appropriately chosen locations in the carry chain. 
 
 

Vdd

Carry out Carry in

Propagate
device

Predischarge
& kill device

Generate
device

++++++++

VddVddVddVddVddVddVdd

 
 

 
 

Fig. 7. Manchester Carry-Chain realization of the ripple carry path. 
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In the same way a CLA can be built using MCC for the implementation of the lookahead group. 
Further, pass-transistor MCC structure can be incorporated in the logic group of the circuit 
technology used for CLA realization. One such an example is shown in Fig. 8.a. representing a 
four bit group of an 64-bit CLA built using CMOS Domino logic [14]. Each CLA group is 
implemented as a separate CMOS Domino function. This adder built by Motorola using 1.0u 
CMOS technology achieved a remarkable speed of 4.5nS at VDD=5V and 25oC. The critical path 
of this design is shown in Fig. 8.b. Using selection technique and careful analysis of the critical 
path the same adder was extended to 96-bits at the same speed of 4.5nS. 
As with RCA, the carry lookahead adder complexity grows linearly with the word size (for k = 4, 
this occurs at a 40% faster rate than the RCA). 
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Fig. 8.a. CMOS Domino realization of a 64-bit CLA 

11:18 PM September 13, 1999 
 10 



Oklobdzija: HIGH-SPEED VLSI ARITHMETIC UNITS: ADDERS AND MULTIPLIERS 

Critical path: A, B - G0 - G3:0 - G15:0 - G47:0 - C48 - C60 - C63 - S63
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Fig. 8.b. Critical path in Motorola's 64-bit CLA [14] 
 
 
Recurrence Solver Based Adders: 
The class of adders known as based on solving recurrence equations was first introduced by 
Biolgory and Gajski [17] and Brent and Kung [18] based on the previous work by Koggie and 
Stone [16].  
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Fig. 9. Recurrence Solver adder topology 
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They realized that if Cin=0 can be assumed, the carry-lookahead equations can be written in a 
simple form of a recurrence: 

)','(),(),( pppggpgpg +=•  
where an operator •  termed "black" operator was introduced. By application of this recurrence 
equation various topologies of an adder can be obtained with several desirable properties: 

a. a good layout 
b. the fan-out can be controlled and limited to no more than 2 
c. trade-offs between fan-in, fan-out and hierarchical layout topologies can be achieved. 

The above reasons were the cause for a relative popularity of the "recurrence-solver" schemes. 
In essence, "recurrence solver" based adders are nothing else but a variation of many possible 
different CLA topologies [2]. An example of a "recurrence solver" adder is shown in Fig. 9. 
 
Ling Adder:
Ling adder is a scheme developed at IBM to take advantage of the ability of the ECL technology 
to perform wired-OR operation with a minimal additional delay [19]. Ling redefined the 
equations for Sum and Carry by encoding pairs of digit positions: (ai,bi, ai-1, b i-1). To understand 
the advantage of Ling Adder, we will consider the generation of C3 carry-out bit using 
conventional CLA and using modified Ling equations. Without the wired-OR function, C3 can 
be implemented in three gate delays. The expansion of those equation will yield 15 terms and a 
maximum fan-in of 5. Ling equations on the other hand will perform the same evaluation (of 
Ling's modified carry H3) using 8 terms with the maximal fan-in of 4. Thus, in a particular IBM's 
ECL technology (for which this adder was developed) with the limitation of fan-in of 4 for the 
wired-OR term, Ling's adder yields substantial advantage.  
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Fig. 10. a. Organization of a 64-bit Ling adder realized in CMOS technology [20] 

 
Ling adder can realize a sum delay in: 
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The Ling adder was also found to be adequate for realizations using CMOS technology. The 
advantage of high-gain and fan-in capabilities of dynamic CMOS combined with the dual rail 
DCVS logic were used in Hewlett-Packard's sub-nanosecond adder which was design in 0.5u 
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CMOS technology [20]. The organization of this adder is shown in Fig.10.a. while the circuits 
used for generation of H4 and I4 terms are shown in Fig.10.b. 
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Fig. 10. b. Circuit used for generation of H4 and I4 terms [20] 
 
 
Conditional-Sum Addition: 
The theoretically fastest scheme for addition of two numbers is "Conditional-Sum Addition" 
(CNSA) proposed by Sklansky in 1960 [3,5,21]. The essence of the CNSA scheme is in the 
realization that we can add two numbers without waiting for the carry signal to be available. 
Simply, the numbers are added in two instances: one assuming Cin = 0 and the other assuming 
Cin = 1. The conditionally produced results: Sum0, Sum1 and Carry0, Carry1 are selected by a 
multiplexer using an incoming carry signal Cin as a multiplexer control. Similarly to the CLA the 
input bits are divided into groups which are in case of CNSA added "conditionally". 
It is apparent that while building CNSA the hardware complexity starts to grow rapidly starting 
from the Least Significant Bit (LSB) position. Therefore, in practice, the full-blown 
implementation of the CNSA is not found.  
However, the idea of adding the Most Significant (MS) portion of the operands conditionally and 
selecting the results once the carry-in signal is computed in the Least Significant (LS) portion, is 
attractive. Such a scheme (which is a subset of CNSA) is known as "Carry-Select Adder" 
(CSLA) [22]. 
 
Carry Select Adder:   
The Carry Select Adder (CSLA) divides the words to be added into blocks and forms two sums 
for each block in parallel (one with a carry in of ZERO and the other with a carry in of ONE) 
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[2,3,5,22].  As shown in an example of a 16 bit carry select adder in Fig. 11, the carry-out from 
the previous LS 4-bit block controls a multiplexer that selects the appropriate sum from the MS 
portion.  The carry out is computed using the equation for the carry out of the group, since the 
group propagate signal Pi is the carry out of an adder with a carry input of ONE and the group 
generate Gi signal is the carry out of an adder with a carry input of ZERO. This speeds-up the 
computation of the carry signal necessary for selection in the next block. The upper 8-bits are 
computed conditionally using two CSLAs similar to the one used in the LS 8-bit portion. The 
delay of this adder is determined by the speed of the LS k-bit block (4-bit RCA in the example, 
Fig. 11) and delay of multiplexers in the MS path. Generally this delay is: 
 

⎡ ⎤ adderbitkkMUX N −−+=∆ δδ log  
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4-bit RCA

b3:0

CinCin
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4-bit RCA Cin

4-bit RCA Cin

a7:4 b7:4

0

1

2:1 Mux
01

S7:4

0
1

g7:4

p7:4

8-bit CSLA Cin

8-bit CSLA Cin

a15:8 b15:8

0

1

2:1 Mux
01

0
1

C1
15:8

C0
15:8

S15:8C16

Fig. 11: 16-bit Carry-Select Adder

 
 
DEC "Alpha" 21064 Adder: 
The 64-bit adder used in the first 200MHz Digital's WD21064 RISC microprocessor employed a 
combination of techniques in order to reach 5nS cycle required from the 0.75u CMOS 
technology of implementation [23]. There were four different addition techniques used in the 
various sections of this 64-bit adder: 
 
a. In the 8-bit sections Manchester Carry Chain technique was used. MCC seems to be the most 

effective for the short adders, especially when the word length is below 16-bits. The carry 
chain was further optimized by tapering down the size of each chain stage in order to reduce 
the load caused by the remainder of the chain. The chain was pre-discharged at the beginning 
of the operation and three signals were used: Propagate P, Generate G and Carry-Kill 
(assimilate) K. The local carry signals were amplified using ratioed inverters. There were two 
conditional MCC employed: one that assumes Cin = 0 and other that assumes Cin = 1. 

b. Carry-Lookahead Addition (CLA) was used on the least significant 32-bits of the adder. The 
CLA section was implemented as a distributed differential circuit producing the carry signal 
that controls the most-significant 32-bit portion of the adder. 
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Fig. 12. Block diagram of DEC "Alpha" 64-bit adder [23]
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c. Conditional Sum Addition (CNSA) was used for the most-significant 32-bits of the adder. 

There were six 8-bit select switches used to implement conditional summation on the 8-bit 
level. 

d. Finally, Carry Select (CSLA) method was used in order to produce the most-significant 32-
bits of the 64-bit word. The selection of the final result was done using nMOS byte carry-
select switches. 

 
The block diagram of DEC "Alpha's" adder is shown in Fig. 12 [23]. 
 
 
 
Multiplication 
Algorithm: 
In microprocessors multiplication operation is performed in a variety of forms in hardware and 
software depending on the cost and transistor budget allocated for this particular operation. In the 
beginning stages of computer development any complex operation was usually programmed in 
software or coded in the micro-code of the machine. Some limited hardware assistance was 
provided. Today it is more likely to find full hardware implementation of the multiplication in 
order to satisfy growing demand for speed and due to the decreasing cost of hardware [2-5]. For 
simplicity, we will describe a basic multiplication algorithm which operates on positive n-bit 
long integers X and Y resulting in the product P which is 2n bit long: 

in

i

iin

i

i ryXryXXYP ∑∑
−

=

−

=
×=×==

1

0

1

0
 

This expression indicates that the multiplication process is performed by summing n terms of a 
partial product Pi. This product indicates that the i-th term Pi is obtained by simple arithmetic 
left shift of X for the i positions and multiplication by the single digit yi. For the binary radix 
(r=2), yi is 0 or 1 and multiplication by the digit yi is very simple to perform. The addition of n 
terms can be performed at once, by passing the partial products through a network of adders or 
sequentially, by adding partial products using an adder n times. The algorithm to perform the 
multiplication of X and Y can be described as [5]: 

    0 p
)(0 =

)(1)1(
j

njj Xyrp
r

p +=+   for j=0,....,n-1 

It can be easily proved that this recurrence results in p(n)=XY. 
 
High-Performance Multipliers 
The speed of multiply operation is of great importance in digital signal processing as well as in 
the general purpose processors today, especially since the media processing took off. In the past 
multiplication was generally implemented via a sequence of addition, subtraction, and shift 
operations. 
Parallel Multipliers:   
An alternative approach to sequential multiplication involves the combinational generation of all 
bit products and their summation with an array of full adders.  This approach uses an n by n array 
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of AND gates to form the bit products, an array of n x n adders (and half adders) to sum the n2 
bit products in a carry-save fashion. Finally a 2n Carry-Propagate Adder (CPA) is used in the 
final step to finish the summation and produce the result [2-5]. 
 
Wallace/Dadda Multiplier:   
In his historic paper C. S. Wallace introduced a way of summing the partial product bits in 
parallel using a tree of Carry Save Adders which became generally known as the “Wallace 
Tree” [2,25]. This method was further refined by Dadda [26].  
With Wallace method, a three step process is used to multiply two numbers:  

(1) the bit products are formed 
(2) the bit product matrix is “reduced” to a two row matrix by using a carry-save adders 

(known as Wallace Tree)  
(3) the remaining two rows are summed using a fast carry-propagate adder to produce the 

product.   
Although this may seem to be a complex process, it yields multipliers with delay proportional to 
the logarithm of the operand size n. 
 

Step 0

Step 1

Step 2

Step 3

Step 4

 
 

Fig. 13. 8 by 8 Dadda multiplier example [26] 
 

A suggestion for improved efficiency of addition of the partial was published by Dadda [26]. In 
his historic 1965 paper, Dadda introduces a notion of a counter structure which takes a number 
of bits p in the same bit position (of the same "weight") as an input and outputs a number q 
which represent the count of ones at that input position. Dadda introduced several ways of 
compressing the partial product bits using such a counter, which later became known as 
"Dadda's counter". 
This process is shown for an 8 by 8 Dadda multiplier in Fig. 13 [2].  An input 8 by 8 matrix of 
dots (each dot represents a bit product) is shown as matrix 0.  Columns having more than six dots 
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(or that will grow to more than six dots due to carries) are reduced by the use of half adders (each 
half adder takes in two dots and outputs one in the same column and one in the next more 
significant column) and full adders (each full adder takes in three dots and outputs one in the 
same column and one in the next more significant column) so that no column in Matrix 1 will 
have more than six dots.  Half adders are shown by a “crossed” line in the succeeding matrix and 
full adders are shown by a line in the succeeding matrix.  In each case the right most dot of the 
pair that are connected by a line is in the column from which the inputs were taken for the adder.  
In the succeeding steps reduction to Matrix 2 with no more than four dots per column, Matrix 3 
with no more than three dots per column, and finally Matrix 4 with no more than two dots per 
column is performed.  The height of the matrices is determined by working back from the final 
(two row) matrix and limiting the height of each matrix to the largest integer that is no more than 
1.5 times the height of its successor.  Each matrix is produced from its predecessor in one adder 
delay.  Since the number of matrices is logarithmically related to the number of bits in the words 
to be multiplied, the delay of the matrix reduction process is proportional to log(n).  Since the 
adder that reduces the final two row matrix can be implemented as a carry lookahead adder 
(which also has logarithmic delay), the total delay for this multiplier is proportional to the 
logarithm of the word size [2,4]. 
An extensive study of the use of “Dadda’s counters” was undertaken by Stenzel and Kubitz in 
1977. In their paper [27] they have also demonstrated a parallel multiplier built using ROM to 
implement [5,5,4] counters used for partial product summation.  
The quest for making the parallel multiplier even faster continued for almost 30 years. However, 
the pursuit for inventing a fastest "counter" did not result in a structure yielding faster partial 
product summation than the one which uses Full-Adder (FA) cell, or "3:2 counter". Therefore 
"Wallace Tree" was widely used in the implementation of the parallel multipliers.  
 
4:2 Compressor: 
In 1981 Weinberger disclosed a structure which he called "4-2 carry-save module" [28]. This 
structure contained a combination of FA cells in an intricate interconnection structure which was 
yielding a faster partial product compression than the use of 3:2 counters.  
The structure actually compresses five partial product bits into three, however it is connected in 
such a way that four of the inputs are coming from the same bit position of the weight j while 
one bit is fed from the neighboring position j-1 (known as carry-in). The output of such a 4:2 
module consists of one bit in the position j and two bits in the position j+1.  
 

4-2

I4 I1I2I3

C0 Ci

C S

 
Fig. 14. 4:2 Compressor arrangement [28] 
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This structure does not represent a counter (though it became erroneously known as "4:2 
counter") but a "compressor" that would compress four partial product bits into two (while using 
one bit laterally connected between adjacent 4:2 compressors). The structure of 4:2 compressor 
is shown in Fig. 14. The efficiency of such a structure is higher (it reduces the number of partial 
product bits by one half at each stage). The speed of such a 4:2 compressor has been determined 
by the speed of 3 XOR gates in series, in the redesigned version of 4:2 compressor [36], making 
such a scheme more efficient that the one using 3:2 counters in a regular "Wallace Tree". The 
other equally important feature of the use of 4:2 compressor is that the interconnections between 
4:2 cells follow more regular pattern than in case of the "Wallace Tree".  
 
TDM:  
The further work in improving the speed of a multiplier by optimizing Partial Product Reduction 
Tree (PPRT) was extended by Oklobdzija, Villeger and Liu [30]. Their approach was to optimize 
the entire PPRT in one pass, thus the name Three Dimensional optimizaiton Method (TDM). The 
important aspect of this method is in sorting of fast inputs and fast outputs. It was realized that 
the most important step is to properly interconnect the elements used in the PPRT. Thus, 
appropriate counters (3:2 adders in a particular case) were characterized in a way which 
identifies delay of each input to each output. Interconnecting of the PPRT was done in a way in 
which signals with large delays are connected to "fast inputs" and signals with small delay to 
"slow inputs" in a way that minimizes the critical paths in the PPRT.  
 

Sum

Carry

A
B
Cin Sum

Carry

A
B
Cin

I1

I2
I3
I4

Cout

Cin 3 XOR
delays

 
 

Fig. 15. An example of TDM method producing a balanced 4:2 compressor [30] 
 
An example of this method is illustrated in Fig. 15. producing a 3 XOR gate delay 4:2 
compressor, without resorting to a redesign as done in [36]. It was further proven that TDM 
indeed produces an optimal PPRT and that further optimization is not possible [37, 30]. An 
example of TDM generation of PPRT is shown in Fig. 16. 
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Fig. 16. Generation of the Partial Product Reduction Tree in TDM multiplier [30] 
 
 
Booth Recoding Algorithm: 
One of the best known variations of the multiplication algorithm is “Booth Recoding Algorithm” 
described by Booth in 1951[31]. This algorithm allows for the reduction of the number of partial 
products, thus speeding up the multiplication process. Generally speaking, Booth algorithm is a 
case of using the redundant number system with the radix r higher than r=2 [1]. Earlier two’s 
complement multipliers required data dependent correction cycles if either operand is negative. 
Both algorithm can be used for both sign-magnitude numbers as well as 2's complement numbers 
with no need for a correction term or a correction step. 
A modification of the Booth algorithm was proposed by Mac Sorley in which a triplet of bits is 
scanned instead of two bits [32]. This technique has the advantage of reducing the number of 
partial products by roughly one half.  
This method is actually an application of a sign-digit representation in radix 4 [1]. The Booth-
MacSorley Algorithm, usually called the Modified Booth Algorithm or simply the Booth 
Algorithm, can be generalized to any radix. However, a 3-bit recoding (case of radix 8) would 
require the following set of digits to be multiplied by the multiplicand : 0, ±1, ±2, ±3, ±4. The 
difficulty lies in the fact that ±3Y is computed by summing (or subtracting) Y to ±2Y, which 
means that a carry propagation occurs. The delay caused by the carry propagation renders this 
scheme to be slower than a conventional one. Consequently, only the 2 bit (radix 4) Booth 
recoding is used. 
Booth recoding necessitates the internal use of 2's complement representation in order to 
efficiently perform subtraction of the partial products as well as additions. However, floating 
point standard specifies sign magnitude representation which is also followed by most of the 
non-standard floating point numbers in use today. The Booth algorithm [31] is widely used for 
two’s complement multiplication, since it is easy to implement. 
Booth recoding is performed within two steps: encoding and selection. The purpose of the 
encoding is to scan the triplet of bits of the multiplier and define the operation to be performed 
on the multiplicand, as shown in Table 1. 
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     Table 1: Booth Recoding 
xi+2xi+1xi Add to partial 

product 
000 +0Y 
001 +1Y 
010 +1Y 
011 +2Y 
100 -2Y 
101 -1Y 
110 -1Y 
111 -0Y 

 
The advantage of Booth recoding is that it generates roughly one half of the partial products as 
compared to the multiplier implementation, which does not use Booth recoding. However, the 
benefit achieved comes at the expense of increased hardware complexity. Indeed, this 
implementation requires hardware for the encoding and for the selection of the partial products 
(0, ±Y, ±2Y). 
 
Hitachi's DPL Multiplier: 

Hitachi's DPL multiplier was the first one to achieve under 5nS speed for a double-precision 
floating-point mantissa imposed by the increasing demands on the operating frequency of 
modern micro-processors [12,33]. This multiplier is of a regular structure including: (a.) A Booth 
Recoder, (b.) A Partial Product Reduction Tree (Wallace Tree) and (c.) A final Carry Propagate 
Adder (CPA) as shown in Fig. 17. 
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Fig. 17. Organization of Hitachi's DPL multiplier [33] 
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Fig. 18.a. b. (a.) Hitachi's 4:2 compressor structure (b.) DPL multiplexer circuit [12] 

 
The key to performance of Hitachi's multiplier lays in the use of DPL circuits and the efficiency 
with which DPL can realize 4:2 compressor. The structure of Hitachi's 4:2 compressor is shown 
in Fig. 18.a. The realization of the 4:2 function consists entirely of DPL multiplexers which 
introduce only one pass-transistor delay in the critical path as shown in Fig.18.b. Indeed later 
studies [35] recognized this structure as one of the fastest Partial Product Reduction Tree (PPRT) 
realizations. For larger size multipliers this PPRT may start showing degraded performance 
because of the long pass-transistor chain which is equal to the number of 4:2 compressors used in 
the PPRT.  
 
Inoue's Multiplier: 
High speed multiplier published by Inoue, et al. [35] employs two novel techniques in achieving 
very fast (4.1nS delay) 54X54-bit parallel multiplier implemented in 0.25u CMOS technology. 
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The first novelty introduced is in a new design of the Booth Encoder and Booth selector for 
generation of partial products. The encoding used in Inoue's multiplier is shown in Table 2.  
 

Table 2: Truth Table for Second-Order Modified Booth Encoding [35] 

0 0 0

0 0 1

0 1 0

0 1 1
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1 0 1
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1 1 1
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Xj - partial product,  PLj - positive partial product,  Mj - negative partial product
B - Multiplier (encoded),  A - Multiplicand,
P = AxB

 
There are two bits used for generation of sign of the partial product: Mj (for negative) and PLj 
(for positive). Though, this may seem to be redundant at the first sight, it allows for a simpler 
implementation of the Booth Encoder which does not require an XOR gate in the critical path. 
The equations for Booth Selector using regular and modified Booth Encoding are listed: 
 
 

jjijiji MXaXaP ⊕⋅+⋅= − )2( 1,                   2)-n 4,-n0,2,4,...,j  1-n,0,1,2,....(i ==  

.....regular Booth Encoder 
(a.) 

 
jjijijjijiji XMaPLaXMaPLaP ⋅⋅⋅+⋅+⋅+⋅= −− 2)()( 11,       2)-n 4,-n0,2,4,...,j  1-n,0,1,2,....(i ==  

....... Modified Booth Encoder 
(b.) 

A modified equations (b.) obtained from the Table 2. yield simpler Booth Selector 
implementation than the regular case. Modified Booth Selector is shown in Fig. 19. (b.) versus 
regular Booth Selector shown in Fig. 19. (a.). 
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Fig. 19. (a.) Regular Booth Selector (b.) Modified Booth Selector [35] 
 
The modified Booth Selector requires 10 transistors per bit as compared to the regular Booth 
Selector which requires 18 transistors per bit for its implementation. The modification shown in 
Table 2. yields 44% reduction in the transistor count for the Booth Selector of the 54X54-bit 
multiplier. Given that the total number of transistor used for Booth Encoder in a 54X54-bit 
multiplier is only 1.2% of the total, modification of the Booth Encoder resulting from the Table 
2. does not result in significant transistor savings. However, the use of the new Booth Encoder 
resulted in a slight improvement in speed.  
 
The second novelty in Inoue's multiplier is the pass-transistor implementation of the 4:2 
compressor, which is shown in Fig. 20. 
 
Inoue realized that there are 26 possible implementations of the 4:2 compressor. Out of the total 
number of 26 they have chosen the one that yields the minimal transistor count yet maintaining 
the speed within the 5% of the fastest possible realization. This resulted in 24% savings in 
transistor count in the partial product reduction tree as compared to the earlier designs [34]. The 
transistor savings more than offset the 5% speed degradation by yielding more area and power 
efficient design. It could be argued that the area improvement resulted in a better speed in the 
final implementation, which the simulation tools were not able to show. 
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Fig. 20. Pass-Transistor Implementation of the 4:2 Compressor [35] 
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Conclusion 

In the past, a thorough examination of the algorithms with the respect to particular technology 
has only been partially done. The merit of the new technology is to be evaluated by its ability to 
efficiently implement the computational algorithms. In the other words, the technology is 
developed with the aim to efficiently serve the computation. The reverse path; evaluating the 
merit of the algorithms should also be taken. Therefore, it is important to develop computational 
structures that fit well into the execution model of the processor and are optimized for the current 
technology. In such a case, optimization of the algorithms is performed globally across the 
critical path of its implementation. 
Ability to integrate 100 millions of transistors onto the silicon has changed our focus and the way 
we think. Measuring the quality of the algorithm by the minimum number of devices used has 
simply vanished from the picture. However, new concerns such as power, have entered it. 
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