MH‘\?[& Dw'\'fw‘(’ Gramds Exa.u.vy \e

§,= (23,528, 9,10, 1,13,5)

-'-(z = 2“"" (7‘3‘5) €. 3, /o, i, M, lS)
Fy e T (63,82, 1315)

e
2 oy \
‘Y Fn 2
1] g \
Q{ DAL /
:S & }E l
St | & |
-3 al Y : d
o & a 6
.§‘ = be+abe +¢a\+au®
@ .ty - :
-f?_=4.bd+\>6+b@ = ald +c
et =
s 1 R CATES
{z" 23 I TS
% ey 2\ (ko TamsT)
oo




s
-‘

&.,:at-l—).,(.\.c,l .‘—”‘P D V()

Lets@bd  pirh

"3=LC+&\=4+1‘\:: o -
_g ?D =1

10 : f4TES 3}—‘
£s




2w (ob+ ) dae 1-43. ) +£
- /)1 e g




— pmmn —

Z=(AB+C)*D+E<+FG) + H A B F G
Level 4 — A
C DE
Level 3 ——— A
Level 2 ————» A
H
<+—— Level | FAN

Z
t=4a
(a) (b)
Figure 8-1
Four-Level Realization of Z
Z=ABD+E)+C(D + E)+ABFG+CFG+H D E
2 * <— Level 3 —»
AB C ABFG CFG
g
- 5 «——— Level | - '*.
* The same gate can be used for
both appearances of (D + E) Z .t
(a) (b) a
Figure 8-2

Three-Level Realization of Z



2=(ab+e ) A-tg.t.qg)Hs







Figure 8-11

8.3

Functionally Complete Sets of Logic Gates

A set of logic operations is said to be functionally complete if any Boolean func-
tion can be expressed in terms of this set of operations. The set AND, OR, and
NOT is obviously functionally complete since any function can be expressed in
sum-of-products form, and a sum-of-products expression uses only the AND,
OR, and NOT operations. Similarly, a set of logic gates is functionally complete
if all switching functions can be realized using this set of gates. Since the set of
operations AND, OR, and NOT is functionally complete, any set of logic gates
which can realize AND, OR, and NOT is also functionally complete. AND and
NOT are a functionally complete set of gates since OR can also be realized using
AND and NOT:

p
»® XYY =X+Y

y—{>oi

If a single gate forms a functionally complete set by itself, then any switching
function can be realized using only gates of that type. The NAND gate is an
example of such a gate. Since the NAND gate performs the AND operation

followed by an inversion, NOT, AND, and OR can be realized using only NAND
gates as shown in Fig. 8-11.

X A— (AB)’
‘ X' — ¥
3 B — } AB/
A ‘E A’
3 }(A'B')'zA +B

NAND Gate Realization of NOT, AND, and OR



§ 3.0

Network Conversion Using Alternative
Gate Symbols

Logic designers who design complex digital systems often find it convenient to
use more than one representation for a given type of gate. For example an inverter
can be represented by

A—DO—A' or A~(1>—A'

In the second case, the inversion “bubble” is at the input instead of the output.
Figure 8-17 shows some alternative representations for AND, OR, NAND, and
NOR gates. These equivalent gate symbols are based on the identities

AB=(A'+B"), A+B=(A'B), (AB))=A"+B’, (A+B)=A4'B

A AB A—q >A+B A (AB)) A—Q (A+B)
B B —Q B B —Q

(a) AND (b) OR (c) NAND (d) NOR

Figure 8-17
Alternative Gate Symbols



. MULTI-LEVEL GATE NETWORKS / NAND AND NOR GATES 195

A —
P
B — 2
=D
[ >—

D —

E —

(a) NAND-gate network

- (A" +B) C)
C — F Z=(A"+B)C+F +DE

D — 5 (PE)’
E 43

(b) Alternate form for NAND-gate network

B ]
3
E —
(c) Equivalent AND-OR network

Figure 8-18
NAND-Gate Network Conversion



tf=a +L:+£eo\ e ©

|
|
®

F o g (Dae)lpatad) @
fea+Grasliaza)~®




