#### UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering

#### **EEC180A**

#### DIGITAL SYSTEMS I

Winter 2006

# LAB 7: SEQUENTIAL CIRCUIT DESIGN

In this lab, you will gain experience in the design and testing of sequential circuits. It is essential that you prepare thoroughly for this lab.

#### Hardware Required:

| 2 pcs.    | 74LS73A    | Dual negative-edge-triggered J-K Flip-Flops |
|-----------|------------|---------------------------------------------|
| as needed | 74LS00     | Quad 2-input NAND gate                      |
| as needed | 74LS10     | Triple 3-input NAND gate                    |
| 1 pc.     | PALCE22V10 | Programmable Logic Device                   |

## **Preparation** (**Pre-lab**)

Do the *complete* paper design of the state machine specified below implemented using J-K flip flops. Derive a state diagram and a state transition table. Encode the states, draw appropriate K-maps and derive the J-K flip-flop input equations. Determine the output equation based on the state bits.

### **State Machine Specifications**

Design a Moore sequential network which monitors a serial input X and produces an output of Z=1 when a specific sequence, described below, is detected. Otherwise, Z=0. A block diagram of the circuit is shown in Figure 1.



Figure 1: Block diagram

The sequence detector that you will design should meet the following specifications:

- a) An output of Z=1 must be produced whenever the last string of four input bits started with a 1 and contained <u>either two or four</u> 1's total.
- b) After receiving a 1 to start the string, the sequence detector must analyze the next three bits of the string before it looks for the next string. This must occur regardless of whether an output of Z=1 is produced.

An example input / output sequence is shown below, where the sequence proceeds from left to right. The start of a string of four inputs to be analyzed is shown by an up arrow beneath the input. Note that the output will be delayed slightly from the input by propagation delays.

# Part I: Using Gates and JK Flip-flops

Build your circuit using a minimal number of JK flip-flops, 2- and 3- input NAND gates. Don't forget to build the debounce circuit for the switch input. Demonstrate the circuit to your TA.

# Part II: Using a Programmable Logic Device

Your entire sequential network can be implemented in a PALCE22V10. In a previous lab, you used a PALCE22V10 to implement a combinational network. Here, you will use the registered outputs for implementing your state machine. An example file which illustrates a simple state machine design is shown in Figure 2. Notice that your clock input must be on pin 1. Your state bits must be defined as **registered** outputs. As mentioned in lab 5, you should specify the device as PALCE22V10. Follow the example shown in Figure 2 for implementing a global reset input.

The PALCE22V10 has internal D-type flip-flops. Therefore, you will need to use the state transition table and next-state K-maps to derive the D input equations.

Using the PALASM software, enter your design equations for the state machine. Program your PALCE22V10 and verify its operation in circuit. <u>Demonstrate your circuit to the TA for verification</u>.

## Lab Report

Each student must submit a lab report. Your lab report should include the minimized state diagram, the state encoding you selected, the state transition table, the K-maps and the final equations. Also include the final schematic of your circuit and your PALASM file.

#### Grading

| Prelab       | 20 points |
|--------------|-----------|
| Lab Checkoff | 60 points |
| Lab Report   | 20 points |

;----- PALASM EXAMPLE FILE --PALASM Design Description

;------ Declaration Segment -----TITLE EXAMPLE SEQUENCE DETECTOR PATTERN REVISION AUTHOR LH COMPANY UCD DATE 12/19/94

CHIP MOORE PALCE22V10

; Design specifications: Moore sequential network which investigates ; an input sequence X and produces an output of Z=1 for any input ; sequence ending in 0110 or 101.

| ;      |        | PIN Declarations |          |  |
|--------|--------|------------------|----------|--|
| PIN 1  | CLOCK  |                  | ; INPUT  |  |
| PIN 2  | RESET  |                  | ; INPUT  |  |
| PIN 3  | Х      |                  | ; INPUT  |  |
| PIN 12 | GND    |                  | ; INPUT  |  |
| PIN 20 | Q0     | REGISTERED       | ; OUTPUT |  |
| PIN 21 | Q1     | REGISTERED       | ; OUTPUT |  |
| PIN 22 | Q2     | REGISTERED       | ; OUTPUT |  |
| PIN 23 | Ζ      | COMBINATORIAL    | ; OUTPUT |  |
| PIN 24 | VCC    |                  | ; INPUT  |  |
| NODE 1 | GLOBAL |                  | ; INPUT  |  |
|        |        |                  |          |  |

;----- Boolean Equation Segment -----

EQUATIONS

GLOBAL.RSTF = RESET ; When reset input is high, registered outputs reset

 $Q0 = Q2^{*}/X + Q2^{*}Q1^{*}/Q0 + /Q2^{*}Q0^{*}X + /Q1^{*}/X$ 

Q1 = /Q1\*X + Q2\*Q0\*X + /Q2\*/Q0\*X + Q2\*/Q1\*Q0

 $Q2 = Q2^* / Q0^* X + Q1^* Q0^* X + / Q2^* Q1^* / X + Q2^* / Q1^* Q0^* / X$ 

Z = Q2\*Q1

;----- Simulation Segment ------

SIMULATION

trace\_on CLOCK X Z Q0 Q1 Q2 RESET setf RESET X clockf CLOCK setf /RESET clockf CLOCK setf /X clockf CLOCK setf X clockf CLOCK check Z clockf CLOCK setf /X clockf CLOCK check Z setf X clockf CLOCK check Z trace\_off

;-----

Figure 2: Example PALASM input file