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Basic Electricity Outline

• Charge, Force, Electric Field, Work and Energy

• Work, Energy and Voltage

• The Atom

• Current, Resistance and Ohm’s Law

• Power and Energy

• Conductors, Resistors and Insulators

• Schematics & models

• DC Circuits
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Force between Two Charges

• Consider two charges separated by a distance r

• The force on charge 2 because of  charge 1 is:

• Just like gravity!

Charge 1 Charge 2
r

1 2
2 1224 r

Q Q
rπε

=F a

Electric Field

• We sometimes find it convenient to picture the 
effect one charge has on another by defining an 
electric field vector

• The electric field at point 2 due to the charge at 1 
is

• And the force is then given by

Charge 1 Charge 2

E1

1
1 1224 r

Q
rπε

=E a
1 2

2 2 1 1224 r
Q QQ

rπε
= =F E a
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Electric Field

• If there are more charges, the fields and forces add 
as vectors

Charge 1 Charge 2

Charge 3

Net force
(or field)

r32

r12

1 3Net = +E E E

( )1 3 2 1 3Net Q= + = +F F F E E

Electric Field and Voltage

• It takes work to move a charge in a field

• For example, the work required to move Charge 2 
to the left is

Charge 1 Charge 2

E1

1 1 2
2 1 2 2 2

1 2

4 4

1 1
4

r r r

r r r

Q dr Q Q drW Q E dr Q
r r

Q Q
r r

πε πε

πε

′ ′ ′−
= − = − =

⎛ ⎞= −⎜ ⎟′⎝ ⎠

∫ ∫ ∫
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Electric Field and Voltage

• Because it takes work to move a charge in a field, 
charge possesses electrical potential energy when 
in a field

• Voltage is the electrical potential energy per unit 
charge and is always measured as the difference in 
potential energy between two points – if a second 
point is not explicitly stated, one has been 
assumed (e.g., ground)
– Note that potential only makes sense for a conservative 

field!

Charge 1 Charge 2

E1

Electric Fields

• We saw that the field from a point 
charge is given by 

• The field from an infinitely long 
line of charge is

• The field from an infinite sheet of charge is

1
1 1224 r

Q
rπε

=E a

Charge 1

2
L

L rr
ρ
πε

=E a

2
S

S z
ρ
ε

=E a
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Summary: Consider Test Charge

• Consider a spatial distribution of charges

• Now consider a test charge:

Negative Charge Positive Charge

Test Charge

Force

• There is a force on this test charge
– it is attracted by the opposite charge

– it is repelled by the charge of the same sign

Negative Charge Positive Charge

Test Charge

Force
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Electric Field

• We can visualize this force by saying that there is 
an Electric Field in the region, then if the electric 
field is E, the force on the test charge is F = qE

Negative Charge Positive Charge

F

Electric Field

Work & Energy

• Work is equal to force times distance for a constant 
force (for a variable force we integrate)

• The work done in moving some particle is equal to 
the change in the particle’s energy

• Consider lifting an object off of the floor; the 
gravitational force is approximately constant (mg), 
so the work done in lifting to a height h is mgh

• Equating the work done with the gravitational 
potential energy of the particle, we say the potential 
energy is Um = mgh. We can think of h as the 
gravitational potential energy per unit weight 
(weight = mg)
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Electrical Potential Energy

• If a particle has electric charge, then it may also 
have an electrical potential energy, Uel

• We find Uel by equating it with the work required to 
move the charge in a static electric field 
– If we move in opposition to the field, Uel increases and the 

inner product is negative

• Allowing for the possibility of a field that varies 
with position, we have (in one dimension, assuming 
the charge moves from 0 to x)

0 0

( ) ( ) ( )
x x

elU x F d q E dλ λ λ λ= − ⋅ = − ⋅∫ ∫

Voltage

• It is convenient to define the voltage between two 
points in space, V21, as the integral of the electric 
field, E (V21 > 0 ⇒ the potential at point 2 is higher)

• If we define x1 to be 0 and assume V(x1) = 0, then we 
see from our previous result that the voltage is the 
electrical potential energy per unit charge, i.e.,

• V is, therefore, analogous to h

2

1

21 ( )
x

x

V E dλ λ= − ⋅∫

0 0

( )( ) ( )     ( ) ( )
x x

el
el

U xU x q E d V x E d
q

λ λ λ λ= − ⋅ ⇒ = − ⋅ =∫ ∫
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The Atom
• Start with a model of the atom - the Bohr model

– protons and neutrons make up the nucleus, protons have 
positive charge

– electrons have negative charge and move around the 
nucleus in different orbits

– electrons in the outermost orbit can easily be removed 
if that shell is not full

– These electrons then become mobile charge (e.g., they 
are free to move under the influence of an electric field)

Electrical Conductor

• A conductor is a material that contains a 
substantial number of mobile charges - for now 
let’s just assume that they are always electrons

Conductor
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Electric Field

Conductor in a Field

• Now suppose we apply an electric field to the 
conductor

• According to Newton’s second law (F = ma), the 
electrons will continuously accelerate while in the 
field

Conductor

Electric Field

Conductor in a Field

• But, what do we actually observe when the mobile 
electrons in a conductor are exposed to an electric 
field?

Conductor
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Conductor in a Field

• We find that the electrons move with a constant
average velocity!  Why?

Electric Field

Conductor

Electrical Resistance

• We find that the electrons move with a constant
average velocity!  Why?

• Our simplest model of this situation is that the 
electrons occasionally collide with atoms in the 
conductor and loose energy in each collision

• These collisions are the cause of resistance -
which is the electrical analog of friction
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Ohm’s Law

• Experimentally, we find that the current flowing in 
a conductor is proportional to the field (or voltage) 
and inversely proportional to the resistance

• Stating this law, called Ohm’s law, in terms of 
voltage, as is customary, we have I = V/R
– V is the voltage across the conductor (remember, 

voltage is always a potential difference, therefore it 
appears across things, it does not flow through them)

– I is the electric current (charge per unit time) through 
the conductor defined as positive in the direction a 
positive charge would move

– R is the resistance of the conductor

Units for Ohm’s Law

• Voltage is measure in volts in honor of Alessandro 
Volta (1745-1827)
– One volt is one Joule per Coulomb of charge 

(charge is measured in Coulombs, in honor of Charles 
Augustin de Coulomb, 1736-1806)

• Current is measured in amperes (amps) in honor 
of Andre Marie Ampere (1775-1836)
– One ampere is one Coulomb per second

• Resistance is measured in ohms, Ω, in honor of 
Georg Simon Ohm (1787-1854)
– One ohm means that a one volt drop will produce a 

current of one ampere
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Power and Energy
• Power is the derivative of energy with respect to 

time (i.e., it is the rate of exchange of energy)

• Remembering that voltage is electrical 
potential energy per unit charge, we find the 
power dissipated in the element is

where we have assumed that the voltage is 
constant over time and have recognized that 
current is the time-derivative of charge

• Power is measured in Watts in honor of James Watt 
(1736 – 1819)

P = dUel

dt
= d QV( )

dt
=V

dQ

dt
=VI

Current in a Conductor

• When a current flows in a conductor, energy is 
dissipated (i.e., it is lost to the electrical circuit 
because it has been converted into heat)

• The heat is caused by the energy transferred to the 
material by the electrons colliding with the atoms 
(in fact, heat is modeled as vibrations in the atoms 
comprising the conductor)
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Conductors, Resistors, & Insulators

• Under normal circumstances, all materials have 
some non-zero, finite electrical resistance

• Nevertheless, we often find it convenient to define
– Conductors - materials that conduct electric current 

with very little voltage across them (we usually 
approximate the voltage across them as zero)

– Resistors - materials that have significant resistance 
and, therefore, require a significant voltage across them 
to produce current through them

– Insulators - materials that do not allow significant 
currents to flow (although they will if the voltage gets 
large enough to break them down)

• Ideal conductors and insulators do not dissipate 
any energy because either v or i is zero (P = VI)

Schematics and Models

• We use schematics to show how conductors, 
resistors, batteries, and other components are 
connected together.

• Each of the elements in a schematic is a 
representation of a real or theoretical element
– if the element is a real physical device (e.g., a real 

resistor or a transistor), then we must remember that 
many different models can be used to represent the 
element depending on the desired analysis and accuracy

– in the EIT exam you deal with idealized circuits, so the 
symbols represent specific idealized models (e.g., a 
resistor symbol implies that Ohm’s law is satisfied)
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Schematic Symbols - Resistor

• This symbol is used for a resistor. In 
the EIT it will always imply that 
Ohm’s law holds (i.e., that V = IR)

• But, if the symbol represents a real
resistor in some circuit, we may 
need to use a more complex model 
for that element.
– For example, all real resistors are 

nonlinear and they contain other 
parasitic elements like capacitance and 
inductance

Schematic Symbols - Battery

• The symbol shown here represents a 
battery

• In reality, this symbol is often used for 
any source of constant voltage (called 
DC for direct current, which simply 
means the direction does not change, 
although usually DC also implies that the 
voltage is constant)

• As with the resistor, we may need a more 
complex model if this element represents 
a real battery (e.g., all real batteries have 
internal resistance)
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A Simple DC Circuit

• Here is a very simple example circuit

• This circuit actually uses three models:
– the battery (assumed to be a perfect voltage source)

– the resistor (assumed to follow Ohm’s law perfectly)

– the wires (assumed to be perfect conductors)

• Using Ohm’s law we find

1
1

9 9 mA
1 k

BV VI
R

= = =
Ω

DC Circuits Outline

• Water analogy for electric circuits

• Resistors and sources in series and parallel

• Kirchoff’s voltage law

• Kirchoff’s current law

• Thevenin and Norton equivalent circuits

• Example circuits

• Inductors
– Transformers

• DC transient circuit examples

• AC Circuit examples
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Water Models – Battery

• Our water models will use:
– Pressure analogous to voltage

– Electrical current is analogous to 
water flow

• If a motor with constant torque 
drives a turbine (i.e., an enclosed 
paddle wheel), there will be a 
constant pressure difference 
between the water entering and the 
water leaving the turbine 
independent of the flow
– This is a “battery” for our water 

models

Water Models - Resistor

• One possible water model for a 
resistor is simply a pipe with a 
narrow region to restrict the 
flow

• We are assuming with these 
models that the pipes are 
completely full of water and 
that the flow is laminar (so that 
flow is proportional to pressure 
drop)

• In real pipes, the flow is rarely 
laminar – so water in pipes is 
usually more complex than 
electrical current in wires!
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Water Model – First Circuit

• The water model equivalent of our first circuit is shown 
below along with the water equivalent of Ohm’s law (in all 
of our water models we will assume that the narrow 
regions dominate the resistance – i.e., the “wires” have 
zero resistance)

1
1

BV
I

R
= PressureFlow

Resistance
=

Elements in Series

• When the same exact 
current (not just the 
same value!) flows 
through two 
elements, they are 
in series

• Voltages add for 
elements in series

• Therefore, resistance 
adds for resistors in 
series

1 1V IR= 2 2V IR=

( )1 2 1 2T TV V V I R R IR= + = + =
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Water Model for Elements in Series

• Two water resistors in 
series are equivalent to 
one with the same length 
of narrow region as the 
two together
– This same concept applies 

to the electrical resistance 
of a wire with uniform cross 
section and resistivity, the 
total resistance is 
proportional to length

Elements in Parallel
• When the same exact voltage (not just the same value!) 

appears across two elements, they are in parallel

• Currents add for elements in parallel

• Therefore, the reciprocal of resistance (called conductance) 
adds for resistors in parallel

1 1I V R=

2 2I V R=

1 2

1 2

1 1
T

T

I I I

VV
R R R

= +

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠

1 2

1 2

1 2

1  1 1T
R R

R
R R

R R

∴ = =
++
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Water Model for Resistors in Parallel

• Two water resistors in parallel is equivalent to one with the 
same cross-sectional area as the two combined 
– This same concept applies to electrical resistance – for resistors 

made with identical materials of equal length, the resistance is
inversely proportional to the cross-sectional area

Sources in Series and Parallel

• Voltage sources in series add
– two equal sources in parallel makes no difference

– two unequal sources in parallel makes no sense with the 
simplest model

• Current sources in parallel add
– two equal sources in series makes no difference

– two unequal sources in series makes no sense with the 
simplest model

• Superposition applies for linear circuits; you can 
analyze the circuit for each source individually 
and sum the results
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Kirchoff’s Voltage Law (KVL)

• If you sum all of the 
voltage rises and drops 
around any loop, the 
total must be zero
– Think about walking 

around Kemper Hall up 
and down different 
stairs, but returning to 
the same point

– The signs are arbitrary 
mathematically, but 
meaningful physically ( )

1 2 3

1 2 3

BV V V V

I R R R

= + +

= + +

1 2 3

9 V 1 mA
9 k

BV
I

R R R
= = =

+ + Ω

1 2 3 0BV V V V− − − =

Kirchoff’s Current Law (KCL)

• The sum of all 
currents entering, or 
leaving, a node must 
be zero
– Think of water in 

pipes

– Charge can’t be 
created or destroyed

1 2 3I I I= +

2 3 5kR R = Ω

1
1 2 3

9 V 1 mA
9 k

BV
I

R R R
= = =

Ω+
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DC Circuit Analysis - Practice

• Consider the circuit shown below

• Are R3 and R4 in series or 
parallel with each other?

• Is R2 in series or parallel 
with R3 and R4?

• Is R1 in series or parallel 
with R2, R3 and R4?

DC Circuit Analysis - Practice

• Now let’s find the labeled voltage and currents

( )2 3 4 30k 60k 20 kXR R R R= + = = Ω

1
1

3 V 50 A
60 k

B

X

V
I

R R
μ= = =

+ Ω

1
2

2 2

1 V 33.3 A
30 k

X XV I R
I

R R
μ= = = =

Ω

+

VX

-

3 1 2 16.7 AI I I μ= − =

3 3 3 0.33 VV I R= =
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Equivalent Circuits

• We can find circuits that, in limited ways, are equivalent to 
other circuits

• These equivalent circuits may make analysis and/or design 
much easier

• For example, consider the circuit shown
– It is a one-port network (i.e., it has one pair of terminals to which 

we can connect another circuit)

– Can we come up with a
circuit that is electrically
identical as far as we can
determine from the one
port available?

Equivalent Circuits

• Consider the I-V characteristic shown for the circuit

• Any one-port network that produces the same 
characteristic is, in this limited sense, equivalent

Vary the “load”
to produce this
characteristic
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Thevenin Equivalent
• A one-port network comprising a voltage source and a single resistor 

can be made equivalent to any linear one-port network – this is called 
the Thevenin equivalent

 when  0Th X XV V I= =

 when  0sc X XI I V= =

Th Th scR V I=

VTh

Isc

Slope = 1/RTh

Thevenin Equivalent Example

2

1 2

  when  0

6 V

Th X X

Th B

V V I
R

V V
R R

= =

= =
+

1sc BI V R=

1 2
1 2

1 2

Th
Th

sc

V R R
R R R

I R R
= = =

+

RTh is the resistance seen “looking into” the port with 
the independent source(s) set to zero
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Example Use of Thevenin Equivalent

• Consider finding the current indicated in the circuit below

• It is much easier to do if you find the Thevenin equivalent 
for the entire circuit driving RX

Example - Continued

 when  0Th X XV V I= =

2 VTh A BV V V= − =

3

1 3
6 VA B

R
V V

R R
= =

+

4

2 4
4 VB B

R
V V

R R
= =

+

To find RTh, set VB to zero and “look back into” the output port

2 VTh A BV V V= − =

( ) ( )1 3 2 4 48 kThR R R R R= + = Ω
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Example - Continued

• Using the values just determined for the Thevenin
equivalent circuit, we arrive at the much simpler circuit 
below

2 V 20 A
100 k

Th
X

Th X

V
I

R R
μ= = =

+ Ω

Another Example

• Consider the circuit shown

• You can analyze this using:
– Straightforward application of KVL & KCL

– Superpositon with KVL & KCL

– Thevenin (or Norton) equivalent

– Mesh currents
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Another Example

• Straightforward application of KVL & KCL

• KVL:

• KVL:

• KCL:

• Combine:                                   &

• Solving:

1 1 3 3 0AV I R I R− − =

2 2 3 3 0BV I R I R− − =

3 1 2I I I= +

( )1 1 3 2 3AV I R R I R= + + ( )1 1 2 2 3BV I R I R R= + +

1
120 3.64
33

I A= =

2
15 0.455
11

I A= = −

3
105 3.18
33

I A= =

Another Example

• Straightforward application of KVL & KCL

• KVL:

• KVL:

• KCL:

• Combine:                                   &

• Solving:

1 1 3 3 0AV I R I R− − =

2 2 3 3 0BV I R I R− − =

3 1 2I I I= +

( )1 1 3 2 3AV I R R I R= + + ( )1 1 2 2 3BV I R I R R= + +

1
120 3.64
33

I A= =

2
15 0.455
11

I A= = −

3
105 3.18
33

I A= =

−+
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Another Example

• Superpositon with KVL & KCL

• Consider just VA: 2 3
6 1.2
5

R R = = Ω

1 2 3 2.2R R R+ = Ω ⇒ 1 10 / 2.2 4.55AI A= =

3 4.55(1.2) 5.45AV V= = ⇒ 2 5.45/ 3 1.82AI A= − = −

3 5.45/ 2 2.73AI A= =

Another Example

• Superpositon with KVL & KCL

• Consider just VB:

• Totals:

1 3
2 0.67
3

R R = = Ω

2 1 3 3.67R R R+ = Ω ⇒ 2 5/ 3.67 1.36BI A= =

3 1.36(0.67) 0.913BV V= = ⇒ 1 0.913BI A= −

3 0.913/ 2 0.456BI A= =

1 1 1 3.64A BI I I A= + =

2 2 2 0.455A BI I I A= + = −

3 3 3 3.18A BI I I A= + =
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Another Example

• Thevenin (or Norton) equivalent – remove R2 and 
VB and find Thevenin equivalent looking to the 
left

Another Example

• Thevenin (or Norton) equivalent – remove R2 and 
VB and find Thevenin equivalent looking to the 
left; by inspection, 

3

1 3

2010 6.67
3Th

R
V V

R R
= = =

+

1 3 0.67ThR R R= = Ω
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Another Example

• Thevenin (or Norton) equivalent 

• Now use Ohm’s law to find 

• Then you can find V2, V3 and the other currents

2
6.67 5 0.455

3.67ThI A I−
= = = −

Another Example

• Mesh currents – re-label the currents as loops:
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Another Example

• Mesh currents – re-label the currents as loops:

• Now write KVL around each loop:

• Solve the two equations in two unknowns; then

( )1 1 1 2 3 0A m m mV I R I I R− − + =

( )2 2 1 2 3 0B m m mV I R I I R− − + =

1 1mI I=

2 2mI I=

3 1 2m mI I I= +

More DC Examples

• Do more examples on Board
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AC Circuits Outline

• Uses of DC and AC Circuits

• Notation

• AC Sources

• Time and Frequency Domains

• Capacitors

Uses of DC and AC Circuits

• DC circuits are used to:
– Bias nonlinear elements to put them in a useful 

operating range, this is necessary, for example, to make 
amplifiers (DC power is used in virtually all consumer 
electronics devices)

– Turn on lights, run small motors and other devices

• AC circuits are used to:
– Transfer power 
– Transmit information (e.g., cell phone)
– Store information (e.g., disc drives, CD’s)
– Manipulate information (e.g., computers)

• Note that many systems today use digital signals 
to transmit, store, and manipulate information. 
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Notation Used
• The standard IEEE 

notation for time-varying 
quantities is:
– vAB is the total 

instantaneous voltage 
from A to B

– VAB is the average (DC) 
voltage from A to B

– vab is the time-varying 
(AC) voltage from A to B

– Therefore, we have: 
vAB = VAB + vab

AC Sources

• AC voltages or currents are generated by:
– microphones
– musical instruments
– sensors (e.g., pressure, temperature)
– AC power generators
– Other sources

• Most AC voltages and currents are not sinusoidal
• But, all practical periodic functions of time can be 

represented by summations of scaled and shifted 
sinusoids (Fourier series)
– When the function is not periodic, we can still handle it
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Time and Frequency Domains

• We can represent a 
single sine wave in 
either the 
time domain, 
or the 
frequency domain

• The frequency 
domain 
representation of a 
sine wave is a 
vertical line

( ) sin[2 (1 MHz) ]v t tπ=

frequency (cycles/sec = Hertz)

Complex Signals

• More complex signals 
can be decomposed 
into a sum of scaled 
and shifted sine waves 
(only the amplitude is 
shown here - there is a 
phase plot in the 
frequency domain too)

( ) sin[2 (1 MHz) ] 0.3sin[2 (2 MHz) 0.3]
         0.4sin[2 (3 MHz) 0.5] 0.2sin[2 (4 MHz) 0.1]
v t t t

t t
π π

π π
= + −
− + + −
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Capacitors

• A capacitor is a component that stores electric 
charge, just like a reservoir stores water

• A simple capacitor can be made by putting any 
two conductive plates close to, but not touching, 
each other

Uncharged Capacitor

• When a capacitor is uncharged, the plates are 
globally electrically neutral (i.e., they have equal 
amounts of positive and negative charge)

negative charge
(red)

positive charge (blue)
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Charged Capacitor
• When an electrical potential is 

applied, mobile electrons are 
pulled from one plate and added 
to the other so that there is net 
positive charge on one plate and 
net negative charge on the other

• This global charge separation sets 
up an electric field between the 
plates

• Because the charges on the plates 
attract each other, the charge 
separation will persist if the 
capacitor is removed from the 
circuit

Capacitor Current
• Current cannot flow in one direction through a 

capacitor indefinitely - the cap will eventually charge 
up to the potential driving it and the current will stop
– charges never really flow “through” the capacitor, we speak 

of the displacement current (i.e., charge moving on one 
side displaces charge on the other due to the field)

• The capacitance is defined by C = Q/V and is 
measured in Farads (in honor of Faraday)

• The capacitor current is 

• And the voltage is

( ) ( ) ( )( ) dq t dCv t dv ti t C
dt dt dt

= = =

0

1( ) (0) ( )
t

v t v i t dt
C

= + ∫
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Energy Storage in a Capacitor
• The energy stored in a capacitor can be found by 

integrating the power delivered up to that time

we have assumed that v(- ) = 0

and turns out to only be a function of the voltage 
on the capacitor at the time

2

( ) ( )

( )( )

1( ) ( ) ( )
2

t

c

t

t

U t p d

dvv C d
d

C v dv Cv t

α α

αα α
α

α α

−∞

−∞

−∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= =

∫

∫

∫

∞

DC & Transients in a Capacitor
• Because the current is proportional to the time 

derivative of the voltage, if the voltage is constant 
(i.e., DC), the current is zero and a capacitor looks 
like an open circuit

• Physically, this simply means that the charge on 
the capacitor is not changing

• Notice that because the charge must change in 
order to change the voltage, you cannot change the 
voltage on a capacitor instantly unless you supply 
an impulse of current, so it looks like a short 
circuit to step changes in current

( )( ) dv ti t C
dt

=
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Water Model of a Capacitor

• One water model for a capacitor allows a plunger to 
move left or right depending on the pressure 
difference across it

• Energy is stored in the spring, and current only 
flows while the plunger is moving, i.e., i = C(dv/dt)

RC Circuit Example
• Consider the water circuit shown below

– Turn on the motor at t = 0

– The current flow is largest at the start when the capacitor spring is 
relaxed

– The flow decreases as the spring is stretched and applies more 
back pressure (so the pressure across the resistor is lower)

– Finally, when the capacitor spring applies a back pressure equal to 
the pressure generated by the motor & turbine, the flow stops

Current flow

time

flow
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RC Circuit Example

• The equivalent electrical circuit is shown below
– assume the switch closes at t = 0

– assume the capacitor is initially uncharged

• We have:

using KVL and 
Ohm’s law leads to;

( )( ) Cdv ti t C
dt

=

( ) ( )( ) C B Cdv t V v ti t C
dt R

−
= =

Solving the Differential Equation

• We had

• Which leads to

or,

• The solution is

• Confirm

( ) ( )( ) C B Cdv t V v ti t C
dt R

−
= =

( ) ( )C
B C

dv tRC V v t
dt

= −

( )( ) 0C
B C

dv tV v t RC
dt

− − =

( )( ) 1 t RC
C Bv t V e−= −

( ) t RCC Bdv t V e
dt RC

−= so, ( )1 0t RC t RCB
B B

VV V e RC e
RC

− −− − − =
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One More Solution

• We found

and

• Therefore

RC is called the time constant of the circuit

( ) ( )( ) C B Cdv t V v ti t C
dt R

−
= =

( )( ) 1 t RC
C Bv t V e−= −

( )1
( )

t RC
B B

t RCB

V V e
i t

R
V e
R

−

−

− −
=

= time

i(t)

Develop Your Intuition

• At t = 0, vC = 0, so vR = VB

and i(0) = VB /R, which is the 
maximum value possible

• With current flowing into the 
cap, it charges up and vC > 0, 
so the current decreases

• As the current decreases, rate 
of change of vC decreases, 
and so does the rate of 
change of the current

• Eventually, i(∞) = 0

( )    for 0t RCBVi t e t
R

−= ≥

time

i(t)
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Magnetic Fields
• Magnets also exert force on objects at a distance

• We again represent this force-at-a-distance 
relationship by visualizing a magnetic field

• As with the electric field we define a flux density, 
B, and picture the flux with lines (you can “see”
magnetic flux lines using iron filings)

• Unlike the electric field, there are no magnetic 
monopoles

• Also unlike E fields,
the flux lines are
NOT lines of force!

Magnetic Field Produced by Current
• An electric current in a wire produces a magnetic 

field around the wire that is proportional to the 
magnitude of the current
– The direction of the field follows the “right hand rule”

put your thumb in the direction of the current, and your 
fingers wrap in the direction of
the magnetic field
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Electromagnet

• If we have a coil of wire 
with a current through the 
wire, each turn will 
contribute to the magnetic 
field and we can produce 
an electromagnet

• The magneto-motive force 
(mmf) is the product of the 
current, I, and the number 
of turns, N; mmf = NI

Flux in an Electromagnet
• The flux produced in the 

electromagnet depends on 
the mmf = NI

• If the coil is a linear coil, 
we have

where the flux, φ, is 
measured in Webers, the 
mmf is in ampere-turns, 
and the reluctance,     , is in 
ampere-turns/Wb and is the 
magnetic equivalent of 
electrical resistance

mmf NIφ = =
ℜ ℜ

ℜ

Note: The flux density 
is B = φ/area in Wb/m2
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Magnetic Fields and Moving Charge

• Magnetic fields are caused by moving charges

• If a charge moves in a magnetic field it 
experiences a force given by

• There is energy stored in a magnetic field

• Since a DC current produces a constant magnetic 
field, the power transferred to the field is zero 
(once it is established); therefore, the voltage 
across a length of wire is zero (ignoring electrical 
resistance)

• When the current in a wire is changing, energy 
must be put into or taken out of the field; 
therefore, the voltage cannot be zero

q= ×F B

Inductor Summary

• Inductors are analogous to capacitors
– For a capacitor, Q = CV

– For an inductor, the magnetic field is proportional to 
the current,

– A capacitor stores energy in the electric field

– An inductor stores energy in the magnetic field

– Current must flow into or out of a capacitor to change 
the voltage, so 

– Voltage must appear across an inductor to change the 
current, so 

( )( ) dv ti t C
dt

=

( )( ) di tv t L
dt

=

NIφ = ℜ
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Inductor

• Any wire has the property 
of inductance

• But, to make use of this 
property, we make coils 
so that the magnetic fields 
reinforce one another to 
increase the energy stored

• We experimentally find 
that

• The inductance, L, is 
measured in Henrys

div L
dt

=

Inductor

• This relationship makes 
sense!
– when di/dt is large you are 

changing the energy in the 
field quickly, which 
requires greater power, so v
must be larger

– when di/dt is negative, the 
field is supplying energy to 
the rest of the circuit, so v
must be negative

div L
dt

=
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Inductor Summary

• Inductors are analogous to capacitors
– For a capacitor, Q = CV

– For an inductor, the magnetic field is proportional to 
the current,

– A capacitor stores energy in the electric field

– An inductor stores energy in the magnetic field

– Current must flow into or out of a capacitor to change 
the voltage, so 

– Voltage must appear across an inductor to change the 
current, so 

( )( ) dv ti t C
dt

=

( )( ) di tv t L
dt

=

NIφ = ℜ

Inductor Energy

• To increase the current in an inductor we must put 
energy into its field. 

• Energy is the integral of power

• Therefore, we must supply power to increase 
current, which means that the voltage across the 
inductor must be nonzero

( ) ( ) ( )
2

1

2 1

t

t

E t P d E tα α= +∫

( ) ( ) ( )P t v t i t=
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Energy Storage in an Inductor
• The energy stored in an inductor can be found by 

integrating the power delivered up to that time

we have assumed that i(- ) = 0

and turns out to only be a function of the current 
through the inductor at the time

2

( ) ( )

( )( )

1( ) ( ) ( )
2

t

l

t

t

U t p d

dii L d
d

L i di Li t

α α

αα α
α

α α

−∞

−∞

−∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= =

∫

∫

∫

∞

Inductor Voltage and Current

( )( )L
di tv t L
dt

=

• Constant current:
vL = 0

(no energy transfer)

• Increasing current:
vL > 0

(energy to inductor)

• Decreasing current:
vL < 0

(energy from inductor)
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Inductors Capacitors

• Store energy in the 
magnetic field

• Can act as a current 
source (i.e., it takes 
work to change the 
current)

• Initially are an open 
circuit to step changes

• Steady state are a short 
circuit to DC

• v leads i

• Store energy in the 
electric field

• Can act as a voltage 
source (i.e., it takes 
work to change the 
voltage)

• Initially are a short 
circuit to step changes

• Steady state are an 
open circuit to DC

• i leads v

Water Model of an Inductor

• One water model for an inductor uses a turbine 
connected to a flywheel

• A pressure difference must be applied across the 
turbine to change the current flow

• Energy is stored in the flywheel

• The device resists 
change in the flow
(since the flywheel
has rotational inertia
and wants to keep a
constant speed)
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RL Circuit Example
• Consider the water circuit shown below

– Turn on the motor at t = 0 (the motor has been off a long time)

– The current flow is zero at first since it takes time to put energy 
into the flywheel on the inductor

– As the flow builds up, there is an increasing pressure drop across 
the resistor, so the rate at which the flow increases slows down

– Eventually, the flow reaches a steady-state value and stops 
changing. At that time, all of the pressure is dropped across the 
resistor

Current flow

time

flow

RL Circuit Example

• The equivalent electrical circuit is shown below
– assume the switch closes at t = 0

– assume the initial inductor current is zero

• We have:

using KVL and 
Ohm’s law leads to;

( )( )L
di tv t L
dt

=

( ) ( )( ) B L BV v t V Ldi t dti t
R R
− −

= =
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Solving the Differential Equation

• We had

• Which leads to

or,

• The solution is

• Confirm

( )( ) B
di tRi t V L
dt

= −

( )( ) 1 tR LBVi t e
R

−= −

( ) tR LBVdi t e
dt L

−= so, ( )1 0tR L tR LB
B B

VV L e V e
L

− −− − − =

( ) ( )( ) B L BV v t V Ldi t dti t
R R
− −

= =

( ) ( ) 0B
di tV L Ri t
dt

− − =

Examine the Solution

• We found

L/R is called the time constant of the circuit

( )( ) 1 tR LBVi t e
R

−= −

time

i(t)



49

Develop Your Intuition

• At t = 0, i = 0, sovR = 0 and 
vL = VB, which is the 
maximum value possible

• With voltage across the 
inductor, the current 
increases so i > 0 and vR > 0 

• With vR > 0, vL is smaller and 
the rate of change of the 
current decreases

• Eventually, vL(∞) = 0

( )( ) 1    for 0tR LBVi t e t
R

−= − ≥

time

i(t)

AC Circuit Example

• With a sinusoidal source, the steady-state solution to the 
circuit equation yields sinusoids of the same frequency for 
all voltages and currents

• Say that 
where φ is some as yet unknown phase angle

• Then

( ) ( )( )( ) sin cosC
c c

dv t di t C C V t CV t
dt dt

ω φ ω ω φ⎡ ⎤= = + = +⎣ ⎦

( )( ) sinC cv t V tω φ= +
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Impedance of a Capacitor

• We can write the current as

• We had

• We can then define an impedance, which is much 
like a resistance, but for AC sources, and the 
complex impedance of a capacitor is

where the 1/j accounts for the 90º phase shift

• The magnitude of the impedance is measured in 
Ohms, just like resistance

( ) ( )( ) cos sin 2c ci t CV t CV tω ω φ ω ω φ π= + = + +

( ) 1
( )

C
c

C

v tZ
i t j Cω

= =

( )( ) sinC cv t V tω φ= +

Impedance of an Inductor

• Remember that an inductor has

• If the current is 

• The voltage becomes

• We can rewrite this as

• Therefore, the complex impedance is

( ) ( )( )( ) sin cosl l
di t dv t L L I t LI t
dt dt

ω φ ω ω φ⎡ ⎤= = + = +⎣ ⎦

( )( ) sinli t I tω φ= +

( )L
div t L
dt

=

( )
( )l

v tZ j L
i t

ω= =

( ) ( )( ) cos sin 2l lv t LI t LI tω ω φ ω ω φ π= + = + +
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Using the Impedance

• Note that Ohm’s law applies and |Zc| drops with 
increasing frequency 
(ω = 2πf, f in Hertz and ω in rad/sec)

• Therefore, the resistor and capacitor form a 
voltage divider (similar to two resistors in series), 
but the impedance of the capacitor drops with 
increasing frequency

Combining Impedances

• Impedances add in series and parallel just like 
resistances do, but the quantities are complex

• For two inductors in series, for example, the 
impedance is (i.e., Ls = L1 + L2)

• For two capacitors in parallel the impedance is
(i.e., Cp = C1 + C2)

( )1 2 1 2 1 2sZ Z Z j L j L j L Lω ω ω= + = + = +

( )
1 21 2

1 2 1 2

1 2

1 1
1

1 1p

j C j CZ ZZ
Z Z j C C

j C j C

ω ω
ω

ω ω

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= = =

+ ++
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Combining Impedances

• For two inductors in parallel the impedance is 
(i.e., Lp = L1L2/(L1 + L2))

• For two capacitors in series the impedance is
(i.e., Cs = C1C2/(C1 + C2))

1 2
1 2

1 2 1 2

1 1 1
s

C CZ Z Z
j C j C j C Cω ω ω

+
= + = + =

( )( )1 21 2 1 2

1 2 1 2 1 2
p

j L j LZ Z L LZ j
Z Z j L j L L L

ω ω
ω

ω ω
= = =

+ + +

Low-Pass Filter
• Because the impedance of the capacitor drops with 

increasing frequency, the voltage divider from vi(t) 
to vo(t) decreases too

• In other words, this circuit passes low frequencies 
well, i.e., vo(t) nearly equal to vi(t)

• But, at high frequencies, vo(t) is much less than vi(t)
(we say the signal is attenuated by the circuit)

• A filter like this would make music sound heavy on 
the bass (in fact, the tone controls 
on your stereo are 
just variable filters)
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Low-Pass Filter Intuition

• If you think about the capacitor as a large 
reservoir of water, saying that it’s impedance 
drops at high frequencies is like saying you can’t 
change the level of the reservoir very fast

• In other words, since changing
the voltage on a capacitor
requires changing 
the charge on it,
there is a limit to how
fast you can do it

Example: parallel resonant circuit
• The transfer function

is

• Which is the parallel combination

( )( )
( )p

V jZ j
I j

ωω
ω

=

1( ) 1 1 11
p

RZ j
j C jR C

R j L L

ω
ω ω

ω ω

= =
⎛ ⎞+ + + −⎜ ⎟
⎝ ⎠
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Transfer Function

• The resulting transfer function (i.e., vout/iin) is a 
bandpass filter (BPF).

• Where 

0
1
LC

ω =

Note: This response is what 
you get if you sweep the 
frequency of a sinusoidal 
input current, measure the 
resulting voltage, and take 
the ratio.


