«
RAM Inferencing in Synplify® Software —=

Using Xilinx RAMs

Synplicity

Simply Better Results

Overview

Many FPGA families provide a mechanism to implement technology-specific RAMs in
HDL source code. To take advantage of these optimal RAM implementations, you must
manually instantiate the technology-specific RAM cells.

Disadvantages of Instantiation

The following list outlines the disadvantages of instantiating the technology-specific
RAM cells.

e The HDL code is no longer technology independent.

e Ifyou use a black box methodology, your synthesis tool might not have access to any
timing or area data.

Synplify software version 7.1 addresses these issues by automatically inferring
synchronous RAMs directly from your HDL source code. The RTL View of HDL
Analyst® then displays the RAM as a simple component, which makes reading the
schematic easier. Additionally, the RAM logic is automatically mapped to applicable
technology-specific RAM cells. The Synplify software supports synchronous RAMs for
Altera, Atmel, Lattice Orca, and Xilinx technology families. This application note
specifically covers the RAM inferencing of Xilinx technology families in the Synplify
software.

Advantages of Inferencing

RAM inferencing also has the advantages listed below:
® Technology-independent coding style.
* Synplify software provides automatic timing-driven synthesis for RAMs.

¢ No additional tool dependencies.

The goal for RAM inferencing in the Synplify software is to give you a method that lets
you easily specify RAM structures in your HDL source code, while maintaining porta-
bility and ensuring that the netlist output after synthesis remains logically correct.
Portability across vendors requires that each vendor technology that is mapped has a
certain amount of gluelogic which normally surrounds the technology-specific RAM
primitive so that the logic matches the functionality of the specific RAM module in the
Synplity HDL-source RAM primitive. Xilinx-specific details regarding glue logic are
explained in the “Virtex Conflict Resolution” section. The addition of the glue logic
can result in a non-optimal RAM implementation. However, if you want a design that
most efficiently uses a specific RAM primitive technology, you must instantiate the
vendor-specific RAM primitive.

July 2002

RAM Inferencing in Synplify® Software Using Xilinx RAMs

Synplify Tool RAM Inferencing Support

To infer a RAM, the Synplify synthesis tool looks for an assignment to a signal (register
in Verilog) that is an array of an array, or a case structure controlled by a clock edge
and a write enable. If the address used to index the write-to and read-from RAM is the
same, then a single-port RAM is inferred as shown in the example below. If the
addresses are different, then a dual-port RAM is inferred.

In addition to this support for inferring RAMs, from the Synplify 7.0 software release
forward, new support lets you infer Xilinx block SelectRAMs with new coding styles
when the RAM output is registered. The new coding style supports the enable and reset
(ssrtin the case of Virtex-II) pins of the block SelectRAM primitive. Different write
mode operations are supported for single-port RAM targeted for the Virtex-II
technology. For more details on these coding styles refer to Coding Style Mapped to Single-
Port Block SelectRAMs on page 18.

VHDL Single-Port RAM Example

The following code illustrates an example of a single-port RAM.

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic signed.all;

entity ramtest is

port (g : out std logic vector (3 downto 0);
d : in std logic vector (3 downto 0);
addr : in std logic vector (2 downto 0);
we : in std logic;
clk : in std logic);

end ramtest;

architecture rtl of ramtest is

type mem type is array (7 downto 0) of std logic vector (3 downto 0);
signal mem : mem type;

begin

g <= mem(conv_integer (addr)) ;

process (clk, we, addr) begin
if rising edge(clk) then

if (we = '1') then
mem (conv_integer (addr)) <= d;
end if;
end if;
end process;
end rtl;

Page 2 Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

[2:0]
addr[2.0] =20 B,
Wef,rf @

ek >

ram1
RADDR[2:0]
DATA[3:0]

WADDR[2:0]
WE
CLK

DOUTT3:0]

mem([3:0]

3ﬂ][3mEE!:'.__

Figure |: HDL Analyst RTL view of the preceding inferred single-port RAM

Verilog Memory Array

The following code implements a Verilog memory array.
d, waddr, we, clk);

module
output
input
input
input
input

reg [3

ramtest (z,
[3:0] z;
[3:0] d;
[3:0] raddr,
we;
clk;

raddr,

waddr;

:0] mem [7:0];

assign z = mem[raddr];

always @ (posedge clk)
mem [waddr] =

if (we)
end

endmodule

d;

begin

Synplicity, Inc. Application Note

Page 3

RAM Inferencing in Synplify® Software Using Xilinx RAMs

ram1
RADDR[2:0]

dBE0] =0 PO paTar3.0) 0 B0
[2:0] 0] WADDR[EU]DOUT[S:D] ——==q[3:0] ==

addr[iﬂ<
WE

-
ok > 1 CLK

20|

mem[3:0]

Figure 2: HDL Analyst RTL view of inferred dual -port RAM.

Verilog Code Example of a Dual-Port RAM

The following code illustrates an example of a dual-port RAM.

module ramléx8(z, raddr, d, waddr, we, clk);

output [7:0] z;

input [7:0] d;

input [3:0] raddr, waddr;

input we;

input clk;

reg [7:0] z;

reg [7:0] mem0, meml, mem2, mem3, mem4, mem5, mem6, mem7;

reg [7:0] mem8, mem9, memlO, memll, meml2, meml3, meml4, meml5;
always @ (mem0 or meml or mem2 or mem3 or mem4 Oor mem5 Or memé Or mem7 Or
mem8 or mem9 or meml0 or memll or meml2 or meml3 or meml4 or meml5 or
raddr)

begin

case (raddr([3:0])

4'b0000: z = memO;

4'b0001: z = meml;
4'b0010: z = mem2;
4'b0011: z = mem3;
4'b0100: z = mem4;
4'b0101: z = mem5;
4'b0110: z = memé6;
4'b0111: z = mem7;
4'b1000: z = mem8;
4'b1001: z = mem9;
4'b1010: z = memlO;
4'b1011: z = memll;
4'b1100: z = meml2;
4'b1101: z = meml3;
4'b1110: z = meml4;
4'b1111: z = meml5;

Page 4 Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

endcase
end
always @(posedge clk) begin
if (we) begin
case (waddr[3:0])
4'b0000: memO0 = d;
4'b0001: meml = d;
4'b0010: mem2 = d;
4'b0011: mem3 = d;
4'b0100: mem4 = d;
4'b0101: mem5 = d;
4'b0110: memé6 = d;
4'b0111: mem7 = d;
4'b1000: mem8 = d;
4'b1001: mem9 = d;
4'b1010: meml0 = d;
4'p1011: memll = d;
4'01100: meml2 = d;
4'b1101: meml3 = d;
4'01110: memld4 = d;
4'p1111: meml5 = d;
endcase
end
end
endmodule
ram?
[raddr3:0] [3:0) B0, 1 RaDDR[3:0]
[d[7.0] = P8 DATAT 0] I
waddr[3 0] =Y 20, | yapprpzopPOH T 0 e F LA
e WWE
ik CLk
2 20[7:0]

Figure 3: HDL Analyst RTL view of the preceding inferred dual-port RAM.

Synplicity, Inc. Application Note

Page 5

RAM Inferencing in Synplify® Software Using Xilinx RAMs

Inferring Block SelectRAMs in Xilinx

This sections discusses synchronous Xilinx block SelectRAMs and their requirements.

Fully Synchronous RAMs and Registered Address Requirement

Xilinx block SelectRAMs are fully synchronous. To map to a block SelectRAM, one of
the following registered conditions must exist:
¢ [Kither the read address or the output must be registered

* Both the read address and the output must be registered

Using the syn_ramstyle Attribute for Block SelectRAMs

The syn_ramstyle="block_ram” attribute is only required for Xilinx Virtex block
SelectRAM and must be set in one of two places to infer block SelectRAMs. You can set
the syn_ramstyle attribute on a memory object in the HDL source code, with TCL
script, or the SCOPE®interface as follows:

* Inyour HDL source code on the register signal used to hold the values of the output of
the RAM.

* In Tcl (script) /SCOPE interface (GUI) on the output signal of the RAM.
Attribute Usage

The following examples illustrate how to specify the syn_ramstyle attribute in various
HDL languages. Tcl script, and the SCOPE interface.

Verilog Example of Specifying the syn_ramstyle Attribute
reg [7:0] ram dout [127:0] /*synthesis syn ramstyle = "block ram"*/;

VHDL Example of Specifying the syn_ramstyle Attribute

attribute syn_ramstyle of ram_dout : signal is "block_ram";

Tcl Example of Specifying the syn_ramstyle Attribute

define_attribute { ram_dout [127:0]} syn_ramstyle {block_ram}

Page 6 Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

SCOPE Interface Example of Specifying the syn_ramstyle Attribute

ii§ <unszaved> (constraint File) * M=l E3 I

-

Enabled Object Attribute Value

iam_dout

4

=yn_tamstyle block_ram

AR

M| | B w| k]| =

= v
4 [V]£ Clockto Clock £ InputsiOutputs A Registers 4 Muti-Cycle Pathe b Attributes £ Other 7 [l 1>

Figure 4: Setting the syn_ramstyle attribute in the SCOPE interface to infer block SelectRAMs

Global Limitations

The following global limitations exist when inferencing RAMs:
¢ RAM inferencing is only supported for synchronous RAMs.
¢ Initialization of RAMs is not supported

* Address wrapping is not supported. This means that the RAM implemented is assumed
to start at address 0 and uses one of the following addressing scenarios.

Scenario |

The required RAM primitive is 16 words deep and has an address range of 0 to 23 (or
24 words deep).The inferred RAM is implemented in 2 RAM cells, leaving address 24
to 31 unused.

Scenario 2

The required RAM primitive is 16 words deep and has an address range of 8 to 23 (or
16 words deep). The inferred RAM is implemented in 2 RAM cells, leaving address 0 to
7, and 24 to 31 unused.

Implementation Conventions for Specifying Xilinx Block SelectRAMs

The following conventions are used when specifying block SelectRAMs.

Size Requirement: (RAM width > 1 bit) and (RAM depth > 1 bit) and (RAM width * RAM
depth >= 8 bits)

RAM Primitive: Use RAM16X1S for single-port RAMs, RAM16X1D for dual-port RAMs.

Block RAM Primitive: Use one of the following, based on the technology and word width:

e RAMB4_S# for single-port block SelectRAMs and RAMB4_S#_S# for dual-port block
SelectRAMs in Virtex/VirtexE where # is the word width of the RAM.

e RAMBI6_S# for single-port block SelectRAMs, RAMBI16S#_S# for dual-port block
SelectRAMs where # is the word width of the RAM.

Synplicity, Inc. Application Note Page 7

RAM Inferencing in Synplify® Software Using Xilinx RAMs

Inferring Block SelectRAMs in Xilinx Technologies

RAM inferencing in the Synplify tool is limited to the coding styles discussed
throughout this application note.

Prior to the Synplify 7.0 release, a block SelectRAM could be inferred only if the read
address was registered as shown by the following code example.

Verilog Code Example Inferring Single-Port Block SelectRAM

module ram test(g, a, d, we, clk);

output [7:0] qg;
input [7:0] d;
input [6:0] a;
input clk, we;

reg [6:0] read add;

/* The array of an array register ("mem") the RAM will be inferred from.
*/
reg [7:0] mem [127:0] /* synthesis syn ramstyle = "block ram */;

assign g = mem[read add];

always @(posedge clk) begin

if (we)

/* Register RAM Data */

mem[a] <= d;

/* Register Read Address. Basic RAM support does not
require this address register.*/

read_add <= a;

end

endmodule

Dual-Port Block SelectRAM with Registered Read Address

When two addresses are used to do the read and the write operation respectively, and
the read address is registered, a dual-port block SelectRAM can be inferred as shown by
the following example and illustrated in DL Analyst Technology view of an inferred Virtex
block SelectRAM on page 9.

Dual-Port Block SelectRAM with Read Address Registered
module dualportram(g, al, a2, d, we, clk, en);
output [7:0] qg;

input [7:0] d;

input [6:0] al;

input [6:0] a2;

input clk, we, en;

reg [6:0] read addr;
reg[7:0] mem [127:0] /* synthesis syn ramstyle="block ram" */;

Page 8 Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

assign g = mem[read addr];
always @(posedge clk) begin
if (we)

mem[a2] <= d;

read_addr <= al;

end
endmodule
==
et
=

el I7] .
[
..... [RITL ..._-.II-_L|I‘| = i
il & =
— =
(X1}
[m
3
£ 3
..... JRITE ST
U
I [
..... ot Ll PR T M 1 1]

Figure 5: HDL Analyst Technology view of an inferred Virtex block SelectRAM

This figure shows a dual-port RAM inferred by the code in the preceding example,
Dual-Port Block SelectRAM with Registered Read Address on page 8.

Synplicity, Inc. Application Note Page 9

RAM Inferencing in Synplify® Software Using Xilinx RAMs

R AMEL_Z1E_E16

EMHA
CLEA
WER
RSTA
EME

CLKE s
EE DAL {4

RSTE DB 150 AL
1 .
a7 RODRALT:0]

Dl ALE:]
ADDRE[T:]
B Dl E[i50)

3 S E_LEE U330 42 Ud20_GR)s
e —|

r'l'I - | I

1
mem).LjE i

o=

el

4L T:0

friem. din_kmp[2]
—

j—
O

1] 1
M G

m.din_tmp[1]
=R

FO

Lo
I

Ir{em. din_tmp[2]
—_

o b mem.DOUT[3]
I

T
o

madin_tme[T
mE(7]

Figure 6: Detailed view A of the inferred dual-port Virtex block SelectRAM shown in its entirety in
the HDL Analyst Technology view of an inferred Virtex block SelectRAM on page 9.

Page 10 Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

LUT: Ca
I b FO I ! f =
“5;'] - g LT | . ED . i
M =}
I c DOUTI2]
em.ad_req[2] IIllll_ltllh-
13t v ddr_tmpld Hem.din_tmp[E]
" LUT4_EFFE
e ED alle [P = :2 i Fo
p 0 I | T —— o N
c M o & H=c
memad_reqg[1]
1 e wad dr_tmp (] G_td Mt #e_tmp peem.din_tmp(5]
FO 1 LUTZ EBE LUTE G
L FO — FO I
Dl wlg |, m o || " I
= LI Iy c — 12
mem, 2d_reg[s i
me: mwaddr_tmp[6] c_iE memdin_tmp[5] mem OOLTIO)
FQ
Boe | gl m ED = o [Lure_ere :_nl_rra_uuuz vee] |
g e S i H | =
H 12
mem.5a_r el mem.waddi_tmp(5] r E P WG
o, LS L4 S Umus_ und_wad dr_tm|
oz il P
FQ
FO
'”g U | BU Pl
¢ o LUT4_EFFE
mem.sd_reg[l me: mewaddr_tmp[d] T :3
| I _EICI2
Ty
G_13
FO
e [| I ED .
_“ID c
memac_realdll, L e dde_empls
(il waddr_tmel3] c;r-JDIE .
GMD
FO
E | ED
g S L
mem.ad_reql3] memawaddr_tmp(0]

Figure 7: Detailed view of the lower portion of an inferred Virtex block SelectRAM shown in its
entirety in the HDL Analyst Technology view of an inferred Virtex block SelectRAM on page 9.

Synplicity, Inc. Application Note Page ||

RAM Inferencing in Synplify® Software Using Xilinx RAMs

Virtex Conflict Resolution

Additionally, the Xilinx application note XAPP130 October 16, 1998 (Version 1.0) for
Virtex block SelectRAMs specifies conflict resolution behavior (conflicts do not cause
any physical damage) as the following two possible flows describe:

I. If both ports write to the same memory cell simultaneously, violating the clock-to-clock

setup requirement, consider the data stored as invalid.

2. Ifone port attempts a read of the same memory cell, the other simultaneously writes,

violating the clock-to-clock setup requirement, the following occurs.
The write succeeds which subsequently is described as Flow 1.

The data out on the writing port accurately reflects the data written which subse-
quently is described as Flow 2.

The data out on the reading port is invalid.

The Synplify software creates glue by-pass logic to ensure pre- and post- synthesis
simulation results match as shown in the figure below, in which Figure 8: View B shows
the block SelectRAM with glue bypass logic on page 12.

RAMBEY _E16_E16
' Ena
—] CLka
[ue == | WEA
— RSTA
= as
L CLKE 1851
'—{weB Doape-= LUT3_CA,
AT 1] ' RETE = iy A) ::L 0 e
' " , n d o7 0] ==
L AODRA[TO] i
D[150]
Q0000 f‘ ADORETD) tnesm [OLUT[G]
FD (1 N
PEE O IGCH K ED —| DiEf50]
olk C I ~ _.,i;é—
H—C mef i3 4336 _L55 U35 U590 42 0320_BRAM_256H160
I
'neml.ad_relg[ﬁ] merm wvaddr_tmp(R]
LUT4_EFFE | mL”T“—”””?
o | Fb ::i i (.
g £ A D o 1IG) :12 12 O
——C 1] — I}
meml.ad__r?g[S] mem.waddr_tme3) G 12 mern 43 _Ud3.Umu:_und _waddr_tmp

Figure 8: View B shows the block SelectRAM with glue bypass logic

Page 12

Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

! .| ranes_s16 516 5
: ;] Ena !
! : ' Clka !
[we == ; ! ! WEA :
; : T~ RsTA |
; | v " ENE :
H : i] CLKB O
: | L v noAjta0f- i R
0 1 1 "] RsTE DOB{EI-LEL L]
A e : : L 5] [TT
! : —— Y, AN 1. o 7] ==
i ! [t:i] ' —
; : : DIA[15:0] |
E — .: unoon[: o:] 7!" : AOORB[H] E ITIBITIDOUT[E]
P [%1 0 1 Ll ED 5 E u :’ —] DIE[1E:0] i
s h .| ! e ofF3 LU L35 _L138 113010390 1142 1420_BRAM_DSEX16D
1 1 i [1] [
fmiem.ad_reg[E] ' : :
i - mem weaddr_tmpl[d] i i
y = Lol ! !
5 ' [T orre + [Lume_oooz 5
:|ro 0 Ol . - 5
] 51 s Bl M i [0 i
I D gl m |, ; 2 |
: _—I C) W L :
niem.ad_reg[S] mem weaddr_tmplS memE 43 143 Dz _und_waddr_tm)
E Ll .] F'[].: G132 .J A U _Imp
| | | |

Figure 9. Flow | overview showing block SelectRAM with bypass logic

The following series of diagrams zoom in on the logic created by the Synplify tool to let
you closely examine the gluelogic created for the inferred RAM as shown in the
overview diagram depicting View B shows the block SelectRAM with glue bypass logic on
page 12.

Synplicity, Inc. Application Note Page 13

RAM Inferencing in Synplify® Software Using Xilinx RAMs

RAMB4 S16_516
1] Ehla
CLKA,
bove = A
" RsTa
'] eng
CLKB il J 1501
" ER DOA[15:0]
5 | rsTE DOB[S:D]_Jlﬁ:U]
ey —=too | o g . [s:%] ADDRAT:0]
ik c 9 DIA[15:0]
e vl .
mem.ad_reg[B]| ro ADDRE[T:0]
| I— | ooooopoooaoos | DI &)
[d[70] [7:0]

0
merm. e 43.U38_L.I|38.U39 .U3C—]O.U42.U§20_BRAM_256}{’1 S]]

- FD
g a5l
FD
Mern.ad_reg[o] LI N G
L [] I

memwaddr_tmp[E]
LT

. FD
D
- a

5

memwaddr tmp[5]
—_T

Figure |0: Block SelectRAM with bypass logic

Level 1 in the above figure shows the two parallel FD registers on the left. This stage
stores memory read and memory write addresses as shown in the figure
Figure 11: Filtered RTL view of Level 1 on page 15.

Level 2 in in the above figure shows the LUT4_6FF6. This stage compares the values of
the read and write addresses and checks for equality in Figure 12: Gate-level view of
Level 2 (after traversing component LUT4_6FF6 G12) on page 15.

Level 3 in in the above figure shows the LUT4_002. This stage produces the logical
AND output which controls the select line for the MUX in Stage 3 as shown in the fig-
ure Figure 13: Gate-level view of Level 3, read /write address compare (after pushing
down into LUT4_002 G_6). on page 16.

Level 4 in in the above figure is LUT3_CA. This stage contains the MUX that controls
the output of the RAM data shown in the figure Figure 14: Gate-level view of Level 4,
read/write address compare output ANDed with the write enable (after pushing down
into LUT3_CA). on page 16.

Page 14

Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

RAMB4_S16_S16
ENA

LKA

WEA,

RSTA,

ENE

CLKB ol J15:0]
s DOAMS0]

RSTE oog[50—
ADDRA[T:0]

DlA[15:0]

T

sulsniis

sor | s FD o
[alB:0] B 1 EL fp 8] [E0]

m” C
rﬂem.ad_reg[ntglj DUS;DU ADDRB[T:0]
 I— 00000po00oa0n | DIB[5:0]
[d[70] [Z0] .
mern. e 43.U38_L{38.U39.USQO.U42.U-|420_BRAM_256}{16D

FD
Eldo | 5
C [

31

FD

mem.ad_reg[s] T ol E]
L] et

mem waddr_tmp[6]
T

FD
i

c

481

mem waddr_tmp[5]
T

Figure | |: Filtered RTL view of Level |

Level 1 is the two parallel FD registers on the left. This stage stores memory read and
memory write addresses.

Imem.ad_realt]
) o
L1g =
G2 e3 1
G B
mem ywaddr_tmp[1]
G 5

Figure 12: Gate-level view of Level 2 (after traversing component LUT4_6FF6 G12)

Level 2 is the LUT4_6FF6. This stage compares the values of the read and write
addresses and checks for equality.

Synplicity, Inc. Application Note Page 15

RAM Inferencing in Synplify® Software Using Xilinx RAMs

e U443 U433 Urnux und _waddr tmp

Figure |3: Gate-level view of Level 3, read/write address compare (after pushing down into
LUT4_002 G_é).

Level 3 is LUT4_002. This stage produces the logical AND output that controls the
select line for the MUX in Stage 4.

mem. 43 U493 Umux_und_waddr_tmp

mem. U43_U43.U38_U3S.029.U300.U42.U0420_uni1_BRAM_256X160_1[5] u]
[alB] ===
mem.din_tmp[5] 1
G_1

Figure |4: Gate-level view of Level 4, read/write address compare output ANDed with the write
enable (after pushing down into LUT3_CA).

Level 4 is LUT3_CA. This stage contains the MUX that controls the output of the RAM
data.

The following series of diagrams illustrate Flow 2, defined by the second bullet in the
section Virtex Conflict Resolution on page 12 in which the data out on the writing port
accurately reflects the data written. The read/write address compare and control path
for the block SelectRAM in this figure and subsequent figures illustrate the four stages
that comprise the bypass logic for the block SelectRAM.

Page 16

Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

RAMB4 _S16_516
'] ENa
CLKA
[we == —— WEA
—| RSTA
' ENB
0, | &EEB DOAHS:D]ﬂ_LL T3 Ca
"] RreTH DoR[& oL [gl 0 — o
[5-001/ ADDRAT.O) T :12 ol . m
. DAL 5:0] o
0 b ADDRB[T0] mem.
‘IE&D;/ nooooodon | DIB[150] | I |
gd 71U43.U45_UU35.U39.U390 U42.U420_BRAM_256X16D
- FD
D
clk P ol —LElL
mem.din_tmp[&]
1
Figure |15: Flow 2: Xilinx block SelectRAM with by-pass logic
RAMB4_516_S16
"] ENA
CLKA
e = B v
— RS7A
' ENB
clk — CLEB L8]
o 1 \WER DOA[15.Ul | LUT3 CA
*RSB DOB[1 5022 gt_ 0 .
: | ! 9 =70 ===
a7 | ADDRAI0] -1
DIA[15:0] U
Pt ADDRBI7 0] mem.DOUT[7]
UDDD 0000000 | DIE[15:0] | I |

Mes 7] U'[Ei‘-‘]

43.U38_LIJ38.U39.U390.U42.Uf120_B RAM_256X16D

Figure 16: Flow 2: Level |. Filtered view of registered data output path when READ-WRITE

conflict occurs.

Synplicity, Inc. Application Note

Page 17

RAM Inferencing in Synplify® Software Using Xilinx RAMs

mern. 43 _U43.Umux_und_waddr_tmp

|mem_U43 441038 U48 UE3 U3E0 U472 U420 unl BRAM 26BX180 1[H] 0
TG =
o
G 1

Figure |7: Flow 2: Level |. Stage 4: Mux select is controlled by the previous AND gate stage
driving RAM data out READ-WRITE conflict resolved (zoom of LUT3_CA).

Coding Style Mapped to Single-Port Block SelectRAMs

To infer a single-port block SelectRAM, all of the following conditions must be true:
* The read and write clocks must be the same

* The read and write addresses must be the same

® The enable signals are the same

e The write enable signals are the same

In addition to the support for block SelectRAMs in Virtex/VirtexE, Virtex-II block
SelectRAM supports three modes:

e WRITE_FIRST

e READ_FIRST

¢ NO_CHANGE

These modes determine output of the RAM when write enable is active.

WRITE_FIRST refers to the behavior that when write enable (WE) is active, data output
(DO) uses the value of data input (DI).

READ_FIRST refers to the behavior that when write enable (WE) is active, data output
(DO) uses the value of the memory content.

NO_CHANGE refers to the behavior that when write enable (WE) is active, data output
(DO) remains the same.

Note: These modes are passed as the WRITE_MODE property in the EDIF file. The
RAM also can be reset by any pattern other than 0. Whatever the specified reset pattern
is, the reset pattern is passed to the EDIF as a SRVAL property to Xilinx.

For Virtex/Virtex E, only WRITE_FIRST mode is supported.

Here are some examples of the new RAM coding styles supported from the Synplify
Pro 7.0 release forward. The examples cover three modes of the Virtex block
SelectRAM along with the extended support of the reset and enable signals from the
Synplify Pro 7.0 release forward.

Page 18 Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

WRITE_FIRST Mode Example

The following example of the WRITE_FIRST mode has both enable and reset, with
enable taking precedence. (Virtex/VirtexE, Virtex-II)

module ram_test(data_out, data_in, addr, clk, rst, en, we);
output [7:0]data_out;

input [7:0]data_in;

input [6:0]addr;

input clk, en, rst, we;

reg [7:0] mem [127:0] /* synthesis syn_ramstyle = “block_ram”*/;

always@ (posedge clk)

if(en)

if(rst==1)

data_out = 0;

else

if(we ==1)
data out = data_in;
else
data out = mem[addr];

always @ (posedge clk)

if (en & we) mem[addr] = data_ in;
endmodule
data_outl1
= w._j\
ra g bro) ap
L]
H——d/ cata_out[7:0]
unt_rst 1
Hata_out_&|7.]]
clk
SN) e
rari
[ECI =t FA | RADORED
E_n"_ DATAR0] peuUTR) |Ea
- — ! WADCR 0]
I WE
CLE
unt_gen
rmerifr:(]

Figure 18: HDL Analyst RTL view of WRITE_FIRST Mode RAM with output registered, enable
and reset inferred

Synplicity, Inc. Application Note Page 19

RAM Inferencing in Synplify® Software Using Xilinx RAMs

T _ T V

data_out_obuf[2]

IELIF
RAME16 536
L En
CLK CBUF
- 5 il
— . | s5R DO[:0]
_;7—-— ADDR[Z:0] oopE0]

Di[3:0] SN N

rSt_ibUf J,—I]I[I:: DIP[3:0]
mem.|_1 data_out_obuf[3]

IBUF

[

Figure 19: HDL Analyst Technology view of the inferred RAM mapped to block SelectRAM

READ_FIRST Mode Example

The following example of READ_FIRST mode with both enable and reset, has reset
taking precedence.

This example is for Virtex-II only.

module ram_test (data out, data in, addr, clk, rst, en, we);

output [7:0]data_out;
input [7:0]data in;
input [6:0]addr;

input clk, en, rst, we;

reg [7:0] mem [127:0] /* synthesis syn ramstyle = “block ram” */;
reg [7:0] data out;

always@ (posedge clk)

if(rst == 1)
data _out = 0;

else begin
if (en) begin

data_out = meml[addr];

end

end

always @ (posedge clk)
if (en & we) mem[addr] = data_in;

endmodule

Page 20

Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

1 o~

am_ual_rst

rarm
[adaEn] =0 BN | RanDzfen
[ta_nf0] ="t O patepa| poLTp gy |E2_trm l“u]\ X
e B | wanDRp 0] DS—D ral o3 Ioeg apg
[Y WE [——dE
——] CLk) _
unt_en_1 dera_aut_7[7.0 dsta_ouf[7:0]
rmem(7 0]
E—
=

0 M za oufr 0]

Figure 20: HDL Analyst RTL view of READ_FIRST Mode RAM with output registered, reset and
enable inferred

EN
CLK
WWE

0]

000000000000400000000000

S5R
o0
[6:0]

pooo_|
|

ADDR[E:0]
DI[31:0]
DIP[3:0]

RAMB1E_536

DO[310]
DOP[30]

mem.|_1

(3255

|)

N

Jata_out_obum 1]

OBUF

]

data_out_obuf[2]

OBUF
[~

Figure 21: HDL Analyst Technology view of inferred RAM mapped to block SelectRAM

Synplicity, Inc. Application Note

Page 21

RAM Inferencing in Synplify® Software Using Xilinx RAMs

NO_CHANGE Mode Example

The following NO _CHANGE mode example has neither enable nor reset.

This is for Virtex-II only.
module ram test (data out, data in,

output [7:0]data_out;

input [7:0]data_in;

input [6:0]addr;
input clk, en,

reg [7:0] mem [127:0]
reg [7:0] data out;

rst,

we;

always@ (posedge clk)

if (we ==
data_ out
else
data_ out

)

data out;

mem [addr] ;

always @ (posedge clk)

addr,

clk, rst, en, we);

/* synthesis syn ramstyle = “block ram” */;

if (we) mem[addr] = data in;
endmodule
FTa—
(=N
rarm|
ES] RADDRIEDI
e ro ra -
data inl¥:0 DATA[F 01 CoLT 70 —Ed LI e e iy L . oy et
aldrpo_ o=t ES, | WADCR[E:D) —] E
Wi WwiF
clk CLK data_out[7:0]
mem[7: 0

Figure 22: HDL Analyst RTL view of No_Change Mode — RAM with no reset or enable inferred

Page 22

Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

RAMBI16_S36
] EN

LK
WWE

1] scR Do[31:0) —-—ﬂﬂ_
m

ADDR[E:0] oorEo 2
J1 EQ
DI[31:0]
1] DIP[z:0)]

mem.|_1

Figure 23: HDL Analyst Technology view of No_Change Mode inferred RAM mapped to block
SelectRAM

Note: block SelectRAM also is inferred if both the read address and the output address
are registered.

Dual-Port RAM Styles Mapped to Dual-Port Block SelectRAMs
(Virtex-11)
One of the following conditions must exist for the various coding styles to infer dual-
port block SelectRAM:s:
¢ read and write addresses are different
* read and write clocks can be different
* enable signals can be different.

WRITE_FIRST mode is the only mode supported for dual-port block SelectRAMs in
Virtex-II.

Synplicity, Inc. Application Note Page 23

RAM Inferencing in Synplify® Software Using Xilinx RAMs

Dual-Port Block SelectRAM Example

The following dual-port block SelectRAM example has the output registered and the
read port has both enable and reset with enable taking precedence.

module (data_out, data_in, addr out, addr_in, clk_ r,
rst, en_r);

clk w,en w, we,

output [7:0]data_out;

input [7:0] data_in;

input [6:0] addr in, addr out;
input en r, en w, we, rst, clk r, clk w;
reg [7:0] mem [127:0]
reg [7:0]data_out;

/* synthesis syn ramstyle = “block ram” */;

always@ (posedge clk_r)
if (en r)
if (rst == 0)
data_out =
else
data _out = 0;

mem [addr_out] ;

always @(posedge clk w)

if (en w & we) mem[addr in] = data in;

endmodule

ar
RADDR[D]
DATAT 0]
B) \wanDr &0

r_out[6:0] B 59
pta_in[r:0] F10 T

DOUTR L]

op0) (20 O NG s

m

unt_en_w

=

WE
CLK

mar[7:0]

data_aut 27:0]

=
OFD
E

dzta_out[7:0]

Figure 24: HDL Analyst RTL view of WRITE_FIRST Mode of dual-port SelectRAM with output
registered, reset, and enable

Page 24

Synplicity, Inc. Application Note

RAM Inferencing in Synplify® Software Using Xilinx RAMs

L

en_r_ikuf

IBLIF

IBLIF

[¥] | [a] I4

CLEA
EI. EN&
e ED
INEA
CLKR
ENE
S5RE
8 ues
@
A0D0RA)
[7
olpig
ret_ibul oo mm
-] oieey
rm Fll
AODREED
;;;] v
T niespn

RAMB1E_S36_S36

data_out_ohuil4]

pospig PO
popapg |-PT QBUF
DoREig ':‘zmﬁ‘
oorepg P
I 0
data_out_ohuf]a]
memJ_1

QBUF

[~

Figure 25: HDL Analyst Technology view of an inferred RAM mapped to dual-port block

SelectRAM

-
Synplicity

Simply Better Results

Synplicity, Inc.

935 Stewart Drive, Sunnyvale, CA 94085 USA

Phone: (U.S.) +1 408 215-6000, Fax: (U.S.) +1 408 990-0290
www.synplicity.com

Copyright © 2002 Synplicity, Inc. All rights reserved. Specifications subject to change without notice. Syn-
plicity, the Synplicity logo, “Simply Better Results", Synplify Pro, and SCOPE are registered trademarks of

Synplicity, Inc. All other names mentioned herein are trademarks or registered trademarks of their respec-
tive companies.

Page 25

Synplicity, Inc. Application Note

	RAM Inferencing in Synplify® Software Using�Xilinx RAMs
	Overview
	Disadvantages of Instantiation
	Advantages of Inferencing
	Synplify Tool RAM Inferencing Support

	Inferring Block SelectRAMs in Xilinx
	Fully Synchronous RAMs and Registered Address Requirement
	Using the syn_ramstyle Attribute for Block SelectRAMs
	Attribute Usage

	Global Limitations
	Implementation Conventions for Specifying Xilinx Block SelectRAMs
	Inferring Block SelectRAMs in Xilinx Technologies
	Dual-Port Block SelectRAM with Registered Read Address
	Virtex Conflict Resolution

	Coding Style Mapped to Single-Port Block SelectRAMs
	Dual-Port RAM Styles Mapped to Dual-Port Block SelectRAMs (Virtex-11)

