
The Journal of Supercomputing, 30, 213–238, 2004
C© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Collaborative and Reconfigurable Object Tracking

SOHEIL GHIASI soheil@cs.ucla.edu
HYUN J. MOON hjmoon@cs.ucla.edu
ANI NAHAPETIAN ani@cs.ucla.edu
MAJID SARRAFZADEH majid@cs.ucla.edu
Computer Science Department, University of California, Los Angeles

Abstract. Many Applications perceive visual information through networks of embedded sensors. Intensive
image processing computations have to be performed in order to process the perceived information. Such compu-
tations usually demand hardware implementations in order to exhibit real time performance. Furthermore, many of
such applications are hard to be characterized a priori, since they take different paths according to events happening
in the scene at runtime. Hence, reconfigurable hardware devices are the only viable platform for implementing
such applications, providing both real time performance and dynamic adaptability for the system.

In this paper, we present a collaborative and dynamically adaptive object tracking system that has been built
in our lab. We exploit reconfigurable hardware devices embedded in a number of networked cameras in order to
achieve our goal. We justify the need for dynamic adaptation of the system through scenarios and applications.
Experimental results on a set of scenes advocate the fact that our system works effectively for different scenario
of events through reconfiguration. Comparing results with non-adaptive implementations verify the fact that our
approach improves system’s robustness to scene variations and outperforms the traditional implementations.

Keywords: reconfigurable computing, embedded systems, dynamic adaptation, object tracking, feature selection

1. Introduction

Today’s advances in technology have enabled the integration of processing resources, mem-
ory blocks and sophisticated I/O units into various electronic devices including data acquisi-
tion units [23, 26]. Such networked embedded systems provide the opportunity of processing
the perceived information locally at the sensor nodes as opposed to more traditional ap-
proach of transferring the data to a remote processing station, having the station perform
the computation and reading the result back. These two approaches to data processing,
namely locally embedded at the sensor nodes and traditional communication-based com-
puting schemes, introduce many trade offs into the design space [7].

An example of the aforementioned systems is a network of vision sensors deployed
to autonomously detect specific events. The application of such a system is generally re-
ferred to as “unsupervised detection of events”, which is widely used in many different
high-level applications [6]. Such applications require the system to automatically detect
the events happening in its surrounding area and take proper actions according to these
events. Moreover, real time response to external events is usually another requirement, due
to the nature of the applications; examples of which include traffic management and intelli-
gent intruder detection. Various image-processing algorithms have been developed for this
class of applications. These algorithms usually perform intensive computations and hence,



214 GHIASI ET AL.

require powerful computational resources in order to comply with the real time performance
requirement.

Image processing algorithms generally perform very intensive computations. Therefore,
many constrained embedded processors dedicated to image data collection and/or process-
ing cannot meet the real time performance constraint. However, most of image-processing
algorithms perform similar local computations for all of the pixels of an image. Therefore,
they are considered as intrinsically parallel computations that exhibit substantial speedup
when implemented on a dedicated hardware unit. Hardware implementation is the only vi-
able solution for most of the real time image-processing systems. Researchers have reported
many efficient hardware implementations of such algorithms with significant speedups over
pure software implementations [2, 3, 5, 8, 12, 16, 20].

Moreover, the image-processing algorithms implemented in a system work based on some
assumptions. Examples include the number of moving objects, their shape and their motion
type. Based on the events happening in scene, these assumptions might become invalid. For
example, KLT tracking scheme [14, 21, 24] assumes that the moving object moves across
the camera and its size doesn’t change from the camera point of view. However, if the object
moves towards the camera, this assumption is no longer valid and KLT tracking will not
be effective anymore. Therefore, the system has to be able to adapt to external events. The
external events are hard, and in some cases impossible, to be pre-characterized. Hence, it
is practically impossible to determine the required algorithms a priori [10].

The aforementioned arguments, introduce the reconfigurable fabrics as the only viable so-
lution for implementing such applications. Reconfigurable hardware units not only demon-
strate real time performance by exploiting the intrinsic parallelism of image processing
algorithms, but also provide the required flexibility and adaptability for the system. This
cannot be achieved by traditional pure software or hardware implementations.

Figure 1(a) depicts an intruder detection and object tracking system that has been built in
our lab as part of this work. The system consists of multiple IQeye3 cameras [11]. The cam-
eras are connected to the local area network and communicate with each other or the control
unit in order to collaborate and share their information. An outline of the architecture of one

Figure 1. (a) The implemented target tracking system using IQeye3 cameras with embedded processors and
FPGAs. (b) IQeye3 camera architecture. Courtesy of IQinVision Inc.



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 215

of IQeye3 cameras is demonstrated in Figure 1(b). A Xilinx Virtex1000E1 [27] FPGA and a
general-purpose processor (IBM PowerPC) are embedded in all of the cameras. The FPGA
and the processor can both be used to implement the comprising blocks of an application.

Traditional implementations of similar systems use “dumb” cameras as vision sensors.
Therefore, scene data is transferred to a powerful computation station that performs image
manipulation. This approach has a number of negative implications. Firstly, communication
overhead can be significant for large image sizes and slow networks and can harm the
real time performance requirement. Secondly, the centralized computation entity must be
capable of performing many intensive computations in a short amount of time; hence, it
imposes significant hardware costs. Moreover, such a system is vulnerable to scalability
and robustness issues. Therefore, the system can handle a limited number of cameras and
will fail with degradation in server performance.

On the other hand, our system employs “smart” cameras that have computation resources
locally embedded at the sensing location. Therefore, perceived scene data is processed
locally at the sensor node and hence, only a limited amount of data is communicated
with the controller. This reduces the overall system cost, improves its performance and
facilitates its scalability compared to the traditional implementations. Moreover, we utilize
the reconfigurable device embedded in each camera to dynamically adapt the system to the
external events. To the best of our knowledge, this idea has not been practiced in the domain
of collaborative detection of events before. The two aforementioned facts, i.e., distributed
local computations and dynamic system adaptation form the major contributions of this
paper.

This project took about two years as two people have been working on development and
implementation of the system, algorithms and mechanisms. In this paper, we focus on the
crucial role of the embedded reconfigurable devices (i.e. Xilinx FPGAs) in our system. We
exploit these devices to achieve both real-time performance and dynamic adaptability of
the system to the external events. We compare our system’s performance with a traditional
non-adaptive one and verify that our system outperforms its competitor in terms of tracking
quality.

We proceed to describe our system framework and its application in the next section. In
Section 3, we present the image-processing algorithms that are required for the implemented
tracking application. In addition, the effect of environment changes on these algorithms and
hence, the need for system adaptability is explained in this section. Experimental results
including algorithms implementation and their performance for some scenes, has been
presented in Section 4. Finally, Section 5 outlines the conclusions and future directions of
this paper.

2. Networked reconfigurable tracking system

In this section, we present the reconfigurable tracking system that has been built as part of
this work. First, we present the framework of our system along with its application. In next
section, we discuss the algorithms that are needed for implementing the system application.
We describe how these algorithms have to be tuned based on the changes in the scene and
hence, highlight the “reconfigurability” feature of our tracking system.



216 GHIASI ET AL.

2.1. System framework

The hardware framework for our system is comprised of several components including:
IQeye3 cameras provided by IQinVision [4], pan-tilt units to enable the actuation of the
cameras, a PC serving as the main controller, and a network that connects the cameras and
the controller and allows them to communicate and collaborate. Figure 2 illustrates a simple
view of the system framework.

An IQeye3 camera, as a “smart” vision sensor with embedded computation resources,
allows input image data acquisition and processing to be collocated in the camera, which
minimizes network communication overhead and facilitates scalability. The processing
resources embedded in each camera include a Xilinx Virtex 1000E FPGA and a 250 MIPS
PowerPC CPU (Figure 1(b)). In addition, there is 4 MB of Flash RAM and 16 MB of
SDRAM on each camera. Each IQeye3 camera gives full access to raw real-time image data
streams and the general-purpose processor can be used for customization since a large “C”
development library is available to application developers. Full networking functionality
is provided by each IQeye3 camera through an Ethernet connection. It can communicate
using TCP, UDP, and IP.

In addition, the IQeye3 camera can send and receive 230 Kbps over a 9-pin RS232C serial
port. By supporting such communication standards, the IQeye3 cameras can be placed in
various environments; while the raw and/or processed captured images can be accessed

Figure 2. An overview of the tracking system architecture: Each camera has a set of the required configurations
available. The controller communicates with the cameras via an implemented message passing scheme and can
initiate the proper algorithm on each camera, organizing the collaboration among cameras.



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 217

Figure 3. Each camera is mounted on a pan/tilt unit (PTU). When the object moves out of the field of view of the
camera, it sends controlling commands to the PTU thru its serial interface. Consequently, PTU moves the camera
in order to be able to track the object.

remotely. In our system, each IQeye3 camera is mounted on a pan-tilt unit, which is
directly controlled by the corresponding camera via its RS232C serial interface. A pan-
tilt actuation unit can be controlled using simple commands that specify the pan/tilt an-
gle/speed/acceleration. Figure 3 illustrates the need for actuation control when an object
moves out of the field of view on camera. The flow of commands from a camera to its
corresponding pan-tilt unit is demonstrated.

Figure 2 demonstrates our system with two cameras and the main controller. The main
supervisory controller resides on an ordinary small computer and acts as the centralized gov-
erning unit of the system by maintaining the current state, processing internal and external
triggers, and coordinating the collaboration among the cameras. When the main controller
receives data from one of the IQeye3 camera clients over the network, it deterministically
selects the appropriate actions that should be taken by each camera (e.g. reconfiguring an
embedded FPGA by swapping in a different algorithm from the database). This is performed
by sending a message to the designated camera. The two blocks close to the main controller
and the lower IQeye3 camera in Figure 2 outline the functionality of the main controller
along with the idea of “implemented algorithms database” and reconfiguration at the sensor
node.

2.2. System application

The sample application implemented on the framework is to continuously detect and track
a moving object that is within the field of view of a camera (Figure 2). We assume that the
object is always moving across the camera and hence, KLT tracking scheme [14, 21, 24] can
effectively track the motions. However, various parameterization and dynamic adaptations



218 GHIASI ET AL.

have to be performed in order to make the system robust to variations in light, objects’ shape
and location, etc.

If the object leaves the field of view of one camera, the camera should pan or tilt to maintain
the object within its field of view or it should hand off control to another camera. Depending
on the light, focus and other parameters, different algorithms are used to maximize the
tracking performance.

When the entire system initializes, cameras establish a connection with the main super-
visory controller on the PC. First camera assumes control initially and continuously runs
feature selection algorithm on its embedded FPGA. Feature selection algorithm selects
points in the scene that are appropriate for tracking. Sharp corners and local intensity vari-
ations in an image usually form good features. The selected features are passed to the KLT
tracking algorithm to track their motion in consequent images. The tracking algorithm has
to meet the real time performance constraint.

Feature tracking has to perform some computations for each selected feature and hence,
the algorithm latency increases with the number of selected features. If the number of se-
lected features is more than a certain upper bound, the algorithm will be so slow that it
cannot meet the real time performance constraint. Furthermore, accuracy will be compro-
mised if the number of selected features is not large enough. Therefore, it is desired that
the number of selected features be within a certain range.

However, as the objects in the scene, distance of the object to the camera, light conditions,
lens focus and other parameters change, the number of selected features varies. For example,
two runs of the algorithm on a scene with two different lighting conditions will lead to
selecting less number of features for the darker scene. Our implementation can detect such
conditions and can adapt itself in order to compensate the effect of variations in the scene
and environment. Therefore, it is ensured that the number of selected features, and hence
both latency and tracking accuracy, are kept within a certain range. This is accomplished
through reconfiguration and parameterization of the algorithms running on the embedded
FPGA.

Furthermore, when a moving object moves close to the edge of the image, the camera
detects this situation and sends a message to the pan-tilt unit to take the appropriate action
to keep the moving object within its field of view. At a certain point, the pan-tilt unit will no
longer be able to pan or tilt further and the moving object will move completely out of the
field of view of the camera. The camera has to surrender complete control of the scene and
another camera will be forced to monitor the scene. In this situation, the camera that can
no longer monitor the scene notifies the main controller by sending a message indicating
the position where the moving object is located. The main controller then decides which
camera should gain control and sends the proper camera a message indicating where the
object is. As a result, the camera issues commands to move the pan-tilt unit so that the
moving object is in the field of view of the camera. Figure 2 outlines the architecture and
application of the system. A sample pseudo code running on the controller and a high-level
block diagram of each camera have been demonstrated.

In such a manner, the moving object is vigilantly tracked using multiple cameras. The
use of reconfigurability in our system leads to the proper tradeoff between tracking quality
and latency. Moreover, it improves the system robustness to changes in the scene such as



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 219

lighting and moving objects variations. Note that by use of the “hands off” approach, the
cameras can collaborate in tracking an object. The object will be continuously tracked as
long as the object is within the field of view of a camera.

3. Vision algorithms overview

In this section, we present two algorithms that are required for enhancing the image quality
and tracking the motions, i.e. image restoration and feature selection. First, we outline the
algorithms’ underlying idea and functionality and then, we describe their sensitivity to the
changes in the scene. Finally, details of the FPGA implementation in our system will be
discussed.

3.1. Feature selection

In this work, we assume that the object is moving across the camera. Therefore, from camera
point of view, the object in each frame is moved by a constant displacement compared to
its immediately preceding frame. KLT tracking scheme [14, 21, 24], has been developed to
track the objects that comply with the aforementioned motion. Note that this scheme cannot
track rotations or size variations (when the object moves towards or away from the camera
and its size changes from camera point of view).

KLT tracking scheme is carried out in two stages. In the first stage, called feature selection,
a number of trackable points in the images are selected. These points, called features, show
significant intensity changes compared to their neighboring pixels. Feature points are passed
on to the second stage, feature tracking, in order to find their location in the consequent
images. In our system, we have implemented the feature selection stage on the FPGA2 and
feature tracking is currently performed on the PowerPC embedded in the IQeye3 cameras.

Feature selection algorithm consists of carefully choosing the points in the image, which
can be easily tracked throughout a series of images. Corner points of an object, where
intensity changes noticeably, are considered as good feature points. The tracking stage
looks in a small patch around the location of a feature in the preceding frame, in order
to find its new location after possible motion. This process is repeated for all selected
features. Therefore, the latency of tracking phase linearly grows with the number of selected
features. On the other hand, due to various factors including variations in the intensity of
two consecutive frames and noise, some features might be lost during tracking. Therefore,
a minimum number of features are required to guarantee an accurate tracking. Hence,
despite ever-changing parameters of the scene, controlling the number of selected features
is required.

In summary, the feature selection algorithm performs the following operations for all of
image pixels [3]:

1. Calculate gx and gy , the intensity gradients in the x and y directions for all pixels of the
image. This is done by computing the Gaussian and Gaussian derivative kernel as well
as convolving these kernels in the horizontal and vertical directions.



220 GHIASI ET AL.

Figure 4. Sample outputs of feature selection algorithm run on a selected portion of the images. Features are
denoted by black squares with white centers in the left image, and by filled dark squares in the right image.

2. Sum the gradients in the surrounding window of each pixel in order to compute the Z
matrix, where

Z =
∫∫

W

[
g2

x gx gy

gx gy g2
y

]
dx

3. Compute λ1 and λ2, the eigenvalues of the Z matrix. Let λ1 = min (λ1, λ2). λ1 represents
the trackability of the pixel.

4. Given λ as the threshold value, If λ1 > λ then declare the pixel as a feature.

Figure 4 demonstrates the output of feature selection algorithm executed on a selected
region of sample images. For example in the left image, a rectangular region around the
walking girl has been chosen for selecting features. Note that the choice of two different
threshold values has lead to selecting different number of features in two images. Features
are denoted by black squares with white centers in the left image, and by red squares in the
right image.

The number of selected features reduces with the increase of λ and vice versa. Therefore,
points that are selected with higher values of λ are considered better features. Note that
such features are also selected with small values of λ. These points are usually easier to
track in consequent images. They exhibit significant intensity variation compared to their
neighboring pixels.

Based on the main steps of the algorithm, it is easy to observe the effect of the changes in
the scene on the number of selected features. Intuitively, increasing/decreasing the intensity
value of the image pixels should increase/decrease the number of selected features with a
constant λ. In reality, brighter/darker lighting can create such a case. Therefore, different
number of features will be selected for a particular scene under different lighting conditions.
Furthermore, the number of selected features heavily depends on the objects in the scene.
A particular threshold value will select less number of features on a round object with a
few sharp corners compared to a complex object with many sharp corners and intensity



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 221

variations. In addition, other parameters such as lens focus and the number of objects in the
scene can affect the number of selected features.

The feature tracking stage of the KLT tracking method locks onto the selected features
and strives to locate them in the next upcoming frame. Note that this is performed with
the assumption that the two consecutive images differ only by a small displacement factor.
The tracked features will be tracked again in the future upcoming frames. Therefore, the
displacement, motion direction, velocity and other information about the motion can be
inferred.

3.2. Image restoration

Image restoration is a commonly used algorithm in image acquisition or processing for
recovery of degraded images. Atmospheric turbulence, defocusing or motion of objects
can be reasons of degradation. Restoration process recovers lost information of images by
such degradation [4, 13, 25]. The following degradation model holds in a large number of
applications [18]:

y(i, j) = d(i, j)∗∗x(i, j)

where x(i, j) and y(i, j) denote the original and observed degraded image respectively.
d(i, j) represents the impulse response of the degradation system, and ∗∗ stands for two-
dimensional (2D) discrete linear convolution. The goal of image restoration is to estimate
x(i, j) given y(i, j) and d(i, j), however one of the main difficulties in performing an
ideal image restoration is that the degradation model is not completely known. In other
words, d(i, j) is not exactly defined/known at the receiver. Therefore, it might not be able
to completely reconstruct the image.

Noise signal injected into the image usually exhibits quick variations and hence, is con-
sidered high frequency signal. Therefore, common realizations of noise-removal filters
implement a low-pass filter, which allows the image signal to pass and filters out the high-
frequency noise. A low-pass filter has no effect on low frequency image data (pixels with
small variations compared to neighboring pixels) and removes the high frequency elements
of the signal. As a result, the sharp edges of an image passed through a low-pass filter
become blurred while the solid textures remain intact. On the other hand, blurred and de-
focused images have to be passed through a high pass filter in order to be restored. The
high pass filter restores such images by sharpening and/or preserving their edges. Figure 5
demonstrates a simple image and the result after applying a low pass and a high pass filter
on it. Note that the high pass filter preserves the sharp edges, while the low pass filter blurs
them out [19].

A common implementation of image filters places an imaginary 3 × 3 window with filter
coefficients, over a pixel in the original image and calculates the new value of this pixel in
the filtered image using its old intensity value and those of the neighboring pixels. Figure 6
demonstrates the idea of such an implementation. The coefficients used in the window,
specify the type of filtering operation that the filter performs. Intuitively, positive coefficients
take average of close pixels to calculate the new value of a pixel, and therefore blur sharp



222 GHIASI ET AL.

Figure 5. A sample image, its low pass, and high pass filtered versions are shown, respectively.3 Note that the
low pass filter removes quick variations in intensity and blurs out sharp edges, while the high pass filter preserves
these elements.

Figure 6. A filter is applied on a pixel by replacing its value with a weighted combination of its old value and
its neighboring pixels. A low pass filter typically has positive coefficients, while a high pass filter has negative
coefficients for neighboring pixels. Coefficients can be normalized to keep the total intensity of the image intact.

edges. Therefore, they make low-pass filters while negative coefficients for neighboring
pixels highlight the difference of the center pixel with its adjacent pixels and create a high
pass filter (Figure 6). Usually, the total value of all nine coefficients is one, in order to keep
the total intensity of the image intact.

The process of applying a filter on a pixel is repeated for all of the pixels in the image.
Moreover, for some applications, the image is filtered many times until the residual value
(the normalized amount of change between two consecutive images) is less than a given



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 223

threshold. Experiments have shown that a certain number of iterations on the image, exhibit
satisfactory quality for most of the scenes [18].

In our system, applying image restoration (or any other proper filter) before feature
selection can enhance the image quality by sharpening the edges, and improve the quality
of the selected features. Iterative application of the filter on the image requires the entire
image to be accessible throughout the process. Conventional hardware implementations
constantly retrieve the image from an attached memory unit and store the result back,
however this is not possible in our constraint platform. In our system, the entire image is not
available to the restoration module due to real time incoming stream of the scene data, which
is not flow controllable. Therefore, we had to adapt the functionality of image restoration
to our constrained platform. This will be thoroughly discussed in the next section.

4. Hardware implementations

In this section, we describe our system constraints and the modifications we had to make to
the original algorithms in order to fit them to our platform. Moreover, we discuss the system
adaptability issue and discuss its implications on hardware implementation. Throughout
the paper, we assume that IQeye3 cameras, as discussed in Section 2, are the experimental
platform of our system.

4.1. Platform constraints

As described in Section 2, IQeye3 camera is the vision sensor used in our platform. Three
major components of IQeye3 are the imager, embedded FPGA chip and PowerPC. The
imager continuously captures scenes and injects a real-time stream of image pixels into
FPGA. The incoming stream of information is not flow controllable and runs at 24 MHz.
The design residing on the FPGA (called the image processing pipeline in Figure 8(a))
performs several operations on the incoming stream such as image correction, windowing
and down sampling. Finally, a DMA unit residing on the FPGA stores the processed scene
data in the main memory. Any program running on the PowerPC can access the memory
and scene data through regular software function calls. For example, a sample application
running on the processor embedded in the camera implements an embedded web server
that compresses the image data into jpeg format and exports the jpeg file through HTTP
connection. Figure 8(a) visualizes the path that each pixel goes through in order to become
available to software programs running on the processor.

Within this environment and platform, applications implemented on the FPGA need to
meet a number of constraints. The most important issue is the timing constraint of the
design, because the imager continuously generates real-time stream of image pixels and
injects the flow into the FPGA. The applications implemented on the FPGA have to process
the input stream and generate the corresponding output at the same rate to avoid congestion.
This forces many designs to perform their intended computations with the small on-chip
memory, because using the off-chip memory units will impose additional latency, which
might not be tolerable for some designs. Consequently, we have implemented a modified
version of the required algorithms that work with the limited available on-chip memory.



224 GHIASI ET AL.

Furthermore, there is a basic design running on the FPGA at all times. This design
performs basic necessary image manipulation functions such as windowing and packetizing.
Any application being mapped onto the FPGA has to integrate with this design and has to
cope with its communication standards and data formats. Therefore, the algorithms cannot
be used in their original form and have to be adapted to our constrained platform.

For example, the aforementioned basic FPGA design processes the image stream in Bayer
pattern [9]. Therefore, any other application has to comply with this constraint and perform
its computation using Bayer pattern; or convert the Bayer pattern to any other desired format,
perform the computation and convert the stream back to Bayer pattern. These two major
constraints, namely limited amount of on-chip memory and complying with system existing
format/standard conventions, impose significant overhead in implementing new designs on
the system.

4.2. Implementations

In this subsection, we discuss the issues involved in implementing the required algorithms,
i.e., feature selection and image restoration, on our constrained platform. In general, im-
plementing an application on the IQeye3 camera is composed of hardware and software
development. Each of these two portions of the design, require a particular development
style and tool chain in order to be able to run the application on the camera. Figure 7

Figure 7. The process of developing a software and/or a hardware application for executing on IQeye3 camera,
and the corresponding tool chain are illustrated.



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 225

illustrates the block diagram and the required tool chain for developing an executable appli-
cation for the camera. Software development process, which is shown on the right column of
the Figure 7, is similar to an ordinary software development flow except that the compiler
and linker are tailored to the particular camera platform. Similarly, for hardware design
development the process shown on the left column of Figure 7 has to be followed.

For all of our hardware implementations, design specifications have been done using
a combination of RTL and behavioral VHDL. ModelSim VHDL simulator [17] has been
used for simulation and debugging of designs. Architectural Synthesis has been carried out
using Synplify Pro from Synplicity [22], which is one of the popular FPGA synthesis tools.
The result of synthesis has been saved as an EDF file.

The generated EDF format has been passed to physical synthesis stage. The physical
synthesis stage, including clustering, mapping, placement, and routing has been done using
Xilinx ISE package. All tools have been targeted for our embedded FPGA devices (Xilinx
Virtex1000E). Finally, The FPGA chips embedded in the cameras have been programmed
using the generated configuration files. Therefore, all of the designs are physically imple-
mented on our platform and experiments are performed with actual scenes to verify the
designs functionality and performance in action.

4.2.1. Feature selection. Feature selection algorithm has been implemented on the same
platform in a previous work [3, 15]. This implementation only needs to store two rows of
the image data on-chip before deciding whether a pixel is a feature or not. The algorithm
performs local computations in a 3×3 window around a pixel and compares the result with a
fixed threshold for determining features. The value of threshold used in this implementation
has to be specified at design time. Then, the design undergoes conventional architectural
and physical synthesis phases and the resulting FPGA configuration stream is mapped onto
the FPGA embedded in the camera.

While this implementation works well in practice, it does not have any control on the
number of selected features. Moreover, the value of threshold cannot be altered easily. The
feature selection’s threshold has been implemented as a constant, which should be specified
at design time. Therefore, altering the threshold forces the designer to repeat the entire
design flow, which can take up to 30 minutes and is not tolerable for real time applications.

Various parameters such as objects’ shape, scene light and lens focus can affect the
number of selected features. As mentioned before, the selected features are passed to the
tracking phase. The latency of the tracking grows, while its accuracy drops, with the increase
of feature count. Therefore, the number of selected features has to be controlled in order to
maintain a proper tradeoff between tracking latency and its accuracy.

We have started from the implementation in [15] and have modified the original design
such that the threshold value can be controlled by a program running on camera PowerPC
at runtime. Specifically we have developed registers that can be read/written by a software
program running on the PowerPC. The hardware design has also been modified to read
its threshold value from the register, without losing its synchronous operation with other
parts of the basic design. Note that, the software program can alter the register contents at
any time during processing of a frame and therefore, the design has to be able to handle
asynchronous incoming events.



226 GHIASI ET AL.

Our implementation can dynamically tune the feature selection algorithm running on the
FPGA. According to the algorithm, if the threshold used in feature selection is too low for
a particular scene, we get too many features and if the threshold is too high, we get too few
features. Therefore, given a target number of features desired, we increase the threshold if
we get features more than the target and decrease if we get less.

Note that the actual feature selection performs its computations on the FPGA and exhibits
real time performance. The threshold controlling entity is a small program running on the
camera PowerPC, which counts the number of selected features and controls the threshold
value accordingly.

4.2.2. Image restoration. Image restoration has a variety of implementations and iter-
ative method is a widely used one. The purpose is to estimate the original image given
the degraded image. Common restoration methods perform operations on the entire image
iteratively. Following each iteration, the normalized difference between current and imme-
diately preceding image, called residual value, is calculated. Iterations are stopped when
the restored image converges with insignificant residual ε [18].

As discussed in Section 4.1, our constrained platform does not allow the entire image to
be stored on the FPGA. On the other hand, accessing the off-chip memory iteratively will
impose additional latency on the algorithm, which is not affordable because of the real time
performance constraint of system applications.

We have made several modifications to adapt the original method to our environment.
Firstly, instead of globally iterating over the entire image, we iterate over local windows,
where the size of window can be from 3 × 3 to the entire image. As the window gets smaller,
the restoration quality drops since the center pixel does not have any information about pixels
out of the restoration window. However, this enables processing of image stream using a
small-sized storage.

Figure 8(a) illustrates the path that each image pixel goes through to be processed in our
system cameras. Image sensor converts the scene into a non flow-controllable stream of
pixels flowing into the FPGA. The proprietary image processing pipeline implemented on

Figure 8. (a) Block diagram of the camera illustrating the path each image pixel goes through in order to
be processed. The image processing pipeline residing on the FPGA is not disclosed due to copyright issues.
(b) Restoration window implemented as one of the blocks in image processing pipeline. Pixels stream in starting
from the upper left corner of the image.



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 227

the FPGA performs various computations on the incoming flow of pixels and finally stores
the result in the system memory, where the software applications running on the camera
processor (PowerPC) can access it.

The image restoration algorithm has been implemented as one of the stages in the pipeline
(Figure 6(b)). Therefore, it does not have access to the entire image pixels at any point of
time (assuming no off-chip data communication). Note that image pixels are revealed to
the system starting from upper left corner of the image flowing to the right. When a row
is finished, the flow of pixels moves down a row and again start from left to right. As
Figure 6(b) visualizes, the amount of memory required for implementing a 3×3 restoration
window is a bit larger than two rows of the image. The FPGA devices embedded in the
system cameras have enough BlockRAMs available to store two rows of the image on-chip.
Therefore, the restoration algorithm can be performed without any off-chip communication.

In general, for a restoration window of size n × n, ((n − 1).rows + n) pixels need
to be stored on the chip. Each FPGA device contains a certain number of logic blocks
and BlockRAMs. Hence, the window size cannot grow beyond physical limitations of the
target FPGA. For example, our system’s embedded FPGA (Xilinx Virtex1000E) allows the
window size to grow up to 15 for processing the widest images. The maximum width of
images in our system is 1280 pixels.

In addition, we have unrolled local iterations of the algorithm on a 3×3 window a priori,
and therefore, the current implementation performs an equivalent but more efficient compu-
tation for restoration of each pixel. Current implementation performs a single step evaluation
of each window in order to calculate the new value of the center pixel, as opposed to iterating
over the window. Table 1 summarizes the area improvement of the unrolled implementation
compared to the original implementation, which iterates 40 times over each pixel.

Researchers in [18] have studied tradeoffs of restoration performance and quality with
changes in restoration window size. According to their work, 3 × 3 restoration windows
reflect reasonable restoration quality for many applications. The restoration algorithm used
in this work, implements a high pass filter with 2 and −0.125 as coefficients for center and
neighboring pixels, respectively.

Varying the restoration window size, leads to accuracy-memory requirement tradeoff.
Small restoration windows need smaller on-chip storage, however their quality is not as good
as larger restoration windows. On the other hand, larger windows improve the restoration
quality at the price of higher memory requirement. Note that memory requirement inversely
correlates with the system performance.

Table 1. The breakdown of hardware resources used by different portions of the designs.
Note that the unrolled version of image restoration frees up 2% of block RAMS and 11% of
CLBs for Xilinx1000E device

Implemented design BlockRAM CLBs

Basic design + Feature selection 51 out of 96 (53%) 9170 out of 24576 (37%)
Basic design + Feature selection 66 out of 96 (68%) 12278 out of 24576 (49%)

+ Original image restoration
Basic design + Feature selection 64 out of 96 (66%) 9454 out of 24576 (38%)

+ Unrolled image restoration



228 GHIASI ET AL.

5. Experiments

In this section, we present the framework and results of our experiments. First, we describe
the platform and designs used in conducting the experiments. We address the issue of
dynamic system adaptation to the environment variations in this section. Then, we present
the results of our approach for a number of scenes and compare them with a traditional
non-adaptive system results.

5.1. Experimental setup

We have implemented the feature selection and image restoration algorithms (discussed in
Sections 3 and 4) on IQeye3 cameras. The threshold value in the feature selection algorithm
can be dynamically adjusted through a software program running on the PowerPC of the
camera.

Furthermore, the implemented image restoration algorithm can be dynamically disabled
or enabled through system reconfiguration. If the quality of the image is not good enough,
then the FPGA will be reconfigured to enable the image restoration before feature selection.
The quality of images can be determined by examining the value of the threshold in feature
selection for selecting a certain number of features. Lower threshold values correspond to
lower quality features and blurred corners. On the other hand, image restoration can alter
the original image if it is not degraded to some degree. Therefore, we need to disable it for
cases that the image quality is reasonable.

5.2. Experimental results

In the following sets of experiments, we examine the effect of our proposed techniques. The
first two sets of experiments demonstrate the quality of automatically adjusted threshold
compared to the original fixed threshold feature selection. The third experiment shows
how image restoration can affect the performance of feature selection. In all experiments,
automatically adjusted threshold targets for 150 features with 10% tolerance range, i.e. the
number of selected features should be in the (135–165) range.

One example, where dynamically adaptive feature selection finds its use, is in the environ-
ments with variations in lighting. This applies to outdoor places where the natural lighting
changes throughout the time. Another example is indoor scenes under various lighting con-
ditions. For the first set of experiments, we varied the lighting condition in the laboratory
and observed the results of the feature selection application.

Figures 9(a), 10(a) and 11(a) show the result of feature selection with fixed threshold,
called FS-FIX, for an object under three different lighting conditions. Figures 9(b), 10(b)
and 11(b) show the results of feature selection with automatically adjusted threshold, called
FS-AUTO, for the same object and lighting conditions.

Figure 9(a) and (b) show the result of both FS-FIX and FS-AUTO under normal lighting.
Both implementations select about 150 features (with 10% tolerance). Figure 10(a) and
(b) illustrate the same object under similar lighting, which is brighter than the previous
settings used in Figure 9. Extra brightness causes edges and corners to have greater intensity



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 229

(a)

(b)

Figure 9. (a) 152 features are selected by fixed threshold (FS-FIX) under default lighting conditions. (b) 148
features are selected by automatic threshold adjustment (FS-AUTO) under normal lighting.

difference from their adjacent pixels, therefore a larger number of points are chosen as
features. Figure 10(a) shows many unnecessary features chosen whose count is 1150. This
is too many compared to the target feature count, 150. FS-AUTO increases the threshold
value from 512 to 1552 and chooses 150 features in Figure 10(b). It selects features at
almost same locations as in Figure 9(b) even after the significant change in brightness.

Figure 11(a) and (b) are taken under dark lighting. The object is observable by eyes, but
FS-FIX is unable to find any features, since the intensity variations are not large enough for
the fixed threshold value. However, FS-AUTO successfully decreases the threshold value



230 GHIASI ET AL.

(a)

(b)

Figure 10. (a) 1150 features are selected by fixed threshold (FS-FIX) under bright lighting. (b) 150 features are
selected by automatic threshold adjustment (FS-AUTO) under bright lighting.

from 512 to 160 and finds 156 features. Locations of features are almost same as Figures 9(b)
and 10(b).

The aforementioned set of experiment verifies the efficiency of our approach in imple-
menting a system robust to lighting variations through dynamic adaptation of the system.
However, the advantage of our implementation is not limited to handling lighting variations.
We have carried out another set of experiments to show that this technique can assist in han-
dling other realistic scenarios, such as object’s shape variations and multiple object cases.

Figures 12(a) and 13(a) show two different objects that have been processed by FS-FIX
to select some features on them. As expected, FS-FIX has no control over the number of



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 231

(a)

(b)

Figure 11. (a) No feature is selected by fixed threshold (FS-FIX) under dark lighting. (b) 156 features are selected
by automatic threshold adjustment (FS-AUTO) under dark lighting.

selected features. Therefore, the number of selected features on a round object, such as
a computer mouse shown in Figure 12(a), is not large enough, while this number on a
complex object with many sharp corners is too large. In fact, FS-FIX chooses 42 features
in Figure 12(a), which is far less than our target, 150. Similarly, it selects 572 features in
Figure 13(a), which is almost 4 times more the desired number of features.

Figures 12(b) and 13(b) illustrate the same objects shown in Figures 12(a) and 13(a),
however these objects are processed by FS-AUTO. The object in Figure 12(b) is round
and does not have enough sharp corners, however, FS-AUTO successfully decreases the
threshold value until it selects 154 features with a new threshold value of 300. Extra features



232 GHIASI ET AL.

(a)

(b)

Figure 12. (a) 42 features are selected on a simple object with FS-FIX. (b) FS-AUTO selects 152 features on the
object shown in Figure 10(a).

are observed at the left end of the object. Feature tracking algorithm can utilize this additional
information for better tracking. The object in Figure 13(b) is a toy car that has many colorful
parts and sharp edges, which are potentially good candidates for features. As presented
earlier, FS-FIX uses a fixed threshold value for selecting features and it selects 572 features.
Unnecessarily many features are observed around the wheel and wire part of the object in
Figure 13(a). FS-AUTO adjusts the threshold value to select fewer features. It selects 152
features with a new threshold value of 912 (Figure 13(b)).

As discussed above, FS-AUTO is able to select proper number of features for any type or
number of objects. It certainly is a better solution than FS-FIX, which works only for limited



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 233

(a)

(b)

Figure 13. (a) 572 features are selected on an object with sharp edges, using FS-FIX. (b) FS-AUTO selects 152
features on the object shown in Figure 11(a).

type or number of objects, but it cannot solely handle all possible cases. One example is
where multiple objects are present in a single scene. Therefore, the camera lens can be
focused on only one of them. Under this situation, most of the features will be placed on
one well-focused object and the rest of the objects will not be tracked.

Figure 14(a) demonstrates such a situation where the puppy doll that is close to the camera
is better focused than the mouse located farther from the camera. FS-AUTO cannot select any
features on the mouse. This is generally a hard problem to solve. However, by employing
image restoration, the problem is alleviated to some degree. In Figure 14(b), FS-AUTO
selects features on the same scene as Figure 14(a), however the image is first restored using
the implemented image restoration algorithm. Restoration enhances the clarity of the edges
and corners of both objects. After applying the image restoration algorithm, features are



234 GHIASI ET AL.

(a)

(b)

Figure 14. (a) FS-AUTO selects all of features on one of the objects (puppy in this example). (b) Applying
image restoration before feature selection enhances the image quality by sharpening the edges and distributes the
selected features on both objects.

selected on the mouse as well as the puppy. Moreover, the number of features is balanced on
the two objects. Note that the choice of enabling or disabling the image restoration algorithm
is made on the fly and the system dynamically adapts itself to environment changes.

Figure 15(a) and (b) clearly demonstrate the effect of image restoration on feature selec-
tion results. In Figure 15(a), the lens is not well focused on the object. Although FS-AUTO
can adjust its threshold to select the required number of features, features do not show
satisfactory quality. The low threshold value used for selecting the features highlights this
fact. Figure 15(b) shows the result of the same algorithm after dynamically enabling the
image restoration before selecting the features in the image. Image restoration enhances
the image quality by sharpening the edges. Therefore, the threshold value for selecting
the same number of features on the restored image is larger. Hence, the features’ quality
has been enhanced and features with larger intensity difference compared to their adjacent
pixels have been selected.

Note that sharp and clear images do not need to be restored before being passed to
feature selection algorithm. Failure to do so might degrade the image quality by adding



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 235

(a)

(b)

Figure 15. (a) Selected features using automatically threshold adjustment (FS-AUTO) without image restoration.
(b) Image restoration sharpens the edges and corners. Therefore, FS-AUTO selects better (selected with larger
threshold) features.



236 GHIASI ET AL.

Table 2. Feature selection threshold value and fea-
ture count for figures presented in experimental results
section

Figure number Threshold Feature count

9(a) 512 (Fixed) 152
9(b) 465 148
10(a) 512 (Fixed) 1150
10(b) 1552 150
11(a) 512 (Fixed) 0
11(b) 160 156
12(a) 512 (Fixed) 42
12(b) 300 154
13(a) 512 (Fixed) 572
13(b) 912 152
14(a) 290 164
14(b) 664 162
15(a) 1279 146
15(b) 2083 148

noise to the image and can create fake features in the image. Therefore, the system should
be reconfigured to enable or disable image restoration based on the requirements. In our
system, we can dynamically enable or disable this module before selecting the features.

Table 2 summarizes the number of selected features and the utilized threshold value for
selecting those features for images presented in this section. The enhanced performance
of FS-AUTO compared to FS-FIXED in terms of number of selected features is evident.
Furthermore, the effect of image restoration on the threshold value used in FS-AUTO can be
observed. Note that applying image restoration on the blurry image shown in Figure 15(a)
sharpens its edges and corners (see Figure 15(b)) and increases the required threshold in
FS-AUTO. This in turn corresponds to features that are easier to track in the feature tracking
stage. This has been highlighted in the last two rows of Table 2.

6. Conclusions and future directions

In this paper, we presented the idea of dynamic system reconfiguration in order to be able to
adapt to the external events. A collaborative tracking system has been built and presented as
the experimental framework for verifying the idea. Experimental results show that the idea
is effective in practice and the system can function in a wide range of working conditions.

Particularly, we have implemented automatic adjustment of threshold value in feature
selection algorithm, and dynamic enabling of image restoration for enhancing the image
quality. These techniques have been integrated into our system framework. It has been
shown that our approach is effective for dynamically adapting to various lighting and lens
focus conditions in practice.

Future works include the integration of tracking phase of the KLT feature-tracking method
into our current system, enhancing the collaboration schemes and applying the system
reconfiguration idea to other applications or application domains.



COLLABORATIVE AND RECONFIGURABLE OBJECT TRACKING 237

Notes

1. The camera was originally shipped with an embedded Xilinx Virtex200E FPGA whose CLBs are used for
proprietary logic implementation. Therefore, we had to replace the FPGA with a larger device in order to be
able to implement the required image-processing algorithms.

2. Our implementation is based on [15].
3. The images are copied from http://astronomy.swin.edu.au/∼pbourke/analysis/imagefilter/

References

1. H. C. Andrews and B. R. Hunt. Digital Image Restoration. Prentice Hall, 1977.
2. P. Athanas and L. Abbott. Addressing the computational requirements of image processing with a custom

computing machine: an overview. In Proceedings of the 2nd Workshop on Reconfigurable Architectures, April
1995, Santa Barbara, CA.

3. A. Benedetti and P. Perona. Real-time 2-D feature detection on a reconfigurable computer. IEEE Conference
on Computer Vision and Pattern Recognition, June 1998, Santa Barbara, CA.

4. J. Biemond, J. Rieske, and J. J. Gerbrands. A fast kalman filter for images degraded by both blur and noise.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983.

5. G. Bilardi and M. Sarrafzadeh. Optimal VLSI circuits for discrete fourier transform. Advances in Computing
Research, 4:87–101, 1987.

6. F. Cuzzolin, A. Bissacco, R. Frezza, and S. Soatto. Towards unsupervised detection of actions in clutter. Proc.
of the Asilomar Conference on Signals, Systems and Computers, 2002.

7. D. Estrin et al. Embedded, everywhere: a research agenda for networked systems of embedded computers.
Committee on Networked Systems of Embedded Computers, Computer Science and Telecommunications
Board, National Research Council, Washington, DC, 2001.

8. X. Feng and P. Perona. Real time motion detection system and scene segmentation. CDS TR CDS98-004,
Caltech, 1998.

9. B. Fortner, T. E. Meyer, and T. Meyer. Number by Colors: A Guide to Using Color to Understand Technical
Data. Springer Verlag, 1997.

10. S. Ghiasi, H. J. Moon, and M. Sarrafzadeh. Collaborative and reconfigurable object tracking. Engineering of
Reconfigurable Systems and Algorithms, 2003.

11. IQinVision Online Documentations, IQinVision Inc., http://www.iqinvision.com.
12. D. J. Li, L. Jiang, T. Isshiki, and H. Kunieda. New VLSI array processor design for image window operations.

IEEE Transactions on Circuits and Systems, 46(5):635–640, 1999.
13. A. K. Katsaggelos. Iterative image restoration algorithms. Optical Eng., 28:735–748, 1989.
14. B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision.

International Joint Conference on Artificial Intelligence, 674–679, 1981.
15. M. Maire, Design and implementation of a realtime visual feature tracking system on a programmable video

camera. Technical Report, California Institute of Technology, 2002.
16. K. Melhorn and F. Preparata. Area-time optimal vlsi integer multiplier with minimum computation time.

Information and Control, 58:137–156, 1983.
17. ModelSim product manual, Model Technology Inc., http://www.model.com.
18. S. Ogrenci Memik, A. K. Katsaggelos, and M. Sarrafzadeh. FPGA implementation and analysis of an iterative

image restoration algorithm. IEEE Transactions on Computers, 52(3), 2003.
19. J. C. Russ. the image processing handbook. CRC Press, 1999.
20. M. Sarrafzadeh, A. K. Katsaggelos, and S. P. Kumar. In Parallel architectures for iterative image restoration.

Kluwer Academic, M. Bayoumi editor, 1991.
21. J. Shi and C. Tomasi. Good features to track. IEEE Conference on Computer Vision and Pattern Recognition,

pp. 593–600, 1994.
22. Synplify Pro product manual, Synplicity Inc., http://www.sinplicity.com.
23. D. Tennenhouse. Proactive computing. Communications of the ACM, 43(5):59–66, 2000.



238 GHIASI ET AL.

24. C. Tomasi and T. Kanade. Detection and tracking of point features. Carnegie Mellon University Technical
Report CMU-CS-91-132, April 1991.

25. H. J. Trussel and B. R. Hunt. Improved methods of maximum a posteriori restoration. IEEE Transactions On
Computers, 28, 1979.

26. M. Weiser. The computer for the 21st century. Scientific American, 265(3):94–104, 1991.
27. Xilinx Online Documentations, Xilinx Inc., http://www.xilinx.com.


