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Abstract 
Various implementations of a tracking algorithm
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Figure 1. Accuracy (or other design metrics) can be 
compromised for performance in constrained systems. 

 
Many parallel and collaborative signal processing systems 
utilize commercial off-the-shelf sensor nodes with constrained 
embedded processors. Applications running on such processors, 
e.g. object tracking, often demand real time performance and 
hence, another design metric such as accuracy has to be 
compromised to meet the performance constraint. Therefore, 
exact accuracy-latency characteristics of the application are 
required in order to implement it in a real time and sufficiently 
accurate fashion. This paper presents profiling techniques that 
are applicable to tracking applications including those 
implemented on a parallel system. The approach has been 
applied to a tracking application implemented on a 
collaborative system that has been built in our lab. Extensive 
profiling has been performed to study embedded vs. centralized 
and accuracy vs. latency tradeoffs. Experimental results verify 
the effectiveness of our profiling scheme, and support the fact 
that different computing schemes are appropriate for different 
accuracy and performance requirements. Experiments show that 
an appropriate choice of algorithms and computing schemes of 
our system, leads to 12 times speedup in feature tracking latency 
compared to its original version with a reasonable reduction in 
tracking accuracy. 

 
multimedia and tracking applications that use cameras with low 
power embedded processors. Such applications cannot tolerate 
slow processing and long latencies since they have to process 
the real time stream of incoming data. Therefore, designers have 
to compromise one of the design metrics, such as accuracy to 
obtain the desired performance for this class of applications.  

 
1. Introduction 
 

Figure 1 demonstrates the idea of compromising accuracy to 
achieve application speedup. The chart shows accuracy-latency 
behavior of different 5 different implementations of a tracking 
algorithm. Implementations with lower accuracy execute faster 
and vice versa. Various accuracy-latency points provide the 
designer with a range of options to choose from based on design 
requirements. Specifically, design specifications often set an 
upper bound for the worst acceptable latency of the application 
and the objective is to find the most accurate implementation 
that satisfies the timing constraint. Note that accuracy is 
mentioned as a sample design metric used for tracking 
applications. The very same idea is applicable to all other 
designs using other conventional metrics such as power 
consumption, chip area, and cost. 

Today's advances in technology, has enabled the integration of 
processing resources, memory blocks and sophisticated I/O units 
into various electronic devices including commercial off-the-
shelf (COTS) data acquisition units [1, 2]. Such embedded 
systems provide the opportunity of processing the perceived 
information locally at the sensor nodes as opposed to more 
traditional approach of transferring the data to a remote 
processing station, having the station perform the computation 
and reading the result back. These two approaches to data 
processing, namely locally embedded at the sensor nodes and 
traditional communication-based computing schemes, introduce 
many trade offs into the design space [3].  
Many COTS sensor devices have been developed with serious 
cost, power, and size constraints. Therefore, the computation 
resources embedded in them are not as strong as systems that are 
designed without such limitations. In addition, these products 
have to be treated as black boxes in that designers cannot 
modify or upgrade the embedded functional units. Therefore, 
systems that are developed using such products often suffer 
from constrained and low performance processors.  

Various design and optimization methodologies have been 
proposed to address the problem of selecting a proper 
implementation under timing constraints. Particularly, different 
budgeting techniques have been developed that essentially 
exploit the timing slack of application building blocks to 
improve its accuracy (or any other design metric) [14, 15, 16, 
17]. These techniques assume that complete accuracy-latency 
information of application building blocks is available. 

On the other hand, many applications that utilize constrained 
sensor nodes demand real time performance. Examples include  



While the aforementioned assumption seems reasonable for 
many practical applications, elaborate profiling experiments 
have to be carried out in order to obtain the accuracy-delay 
information. Profiling techniques implement a given application 
in a number of different ways and measure its accuracy-latency 
relation (or another metric’s relation with latency) for running 
on different system resources. Each implementation running on 
each particular system resource corresponds to a point in the 
accuracy-latency plane. Budgeting techniques are then applied 
to a number of points in the plane to select the proper set of 
implementations that optimizes some particular objective. 
This paper focuses on the software profiling methodologies 
appropriate for parallel and collaborative signal processing 
applications. We present generic methodologies that are 
applicable to all KLT-based [5, 6, 7] tracking applications. The 
results have been experimented on a tracking system that has 
been implemented as part of this work.  
We proceed to discuss the framework of the implemented 
system in the next section. Section 3 presents the implemented 
target tracking application. The trade offs involved in embedded 
vs. traditional computing schemes are explained in section 4, 
followed by the trade offs between accuracy and latency of the 
implemented algorithms.  Section 5 explains the image 
processing algorithms used in the system and the steps taken to 
adapt them to our framework and section 6 presents the 
experimental results. 
 
2. Computing Trade offs Involved in a Generic 
Collaborative Tracking System 
 
In this section, we present various trade offs involved in running 
a tracking application in a parallel and collaborative 
environment. Particularly we will discuss two possible 
computing schemes, namely, locally embedded at the sensing 
point and remote processor-based computing. Embedded 
execution of the computations is an essential task for performing 
the application in parallel and on distributed sensor nodes 
(cameras). Moreover, we discuss the trade offs involved in 
adapting the tracking algorithms ported to such a constrained 
platform. The algorithms have to be simplified in order to make 
them appropriate for execution on the constrained resources 
embedded in the sensors nodes, which in turn leads to parallel 
execution of the application. 
 
2.1 Embedded vs. Processor-based Computing 
 
Real time motion analysis is one of the most critical 
requirements of the tracking application. High performance is 
often difficult to achieve because many image-processing 
algorithms are computationally intensive and necessitate long 
latency calculations. Hardware realization of the algorithms is 
not often possible, since the embedded processors only allow 
software processing. However, it is still essential to attempt to 
maximize system performance.  
One way of improving system performance is to collocate the 
input data acquisition and its processing on the vision sensors 
(cameras). This will lead to parallel execution of the 
computation on all of the vision sensors and might improve 
system performance. In the past, vision sensors were used 
primarily for grabbing frames and sending the raw or 
compressed image data to a graphics processing board located 
on a central processor. Such a computing scheme, limits the 
scalability of the system, adds additional data transfer latency 

and utilizes a significant amount of bandwidth by transferring 
entire images. Therefore, a networked camera with an embedded 
image sensor and proper computational resources can minimize 
network overhead by processing the data locally. Therefore, it 
needs to send a limited amount of data to other nodes to 
collaborate, which in turn enhances system scalability.  
Unfortunately, one of the major drawbacks of using such camera 
with an embedded processor is that the processor tends to be 
slower than a general-purpose processor of a PC. Therefore, it is 
unclear whether computations should occur on or off the camera 
since there are drawbacks to each. The proper computing 
scheme depends on the particular system parameters and 
specification. Profiling techniques assist in determining such 
parameters and can help in determining the appropriate 
computing scheme for different objectives. 
 
2.2 Accuracy-Performance Trade off 
 
The processing power and memory modules embedded in many 
COTS products, such as cameras with embedded processors, are 
quite constrained compared to desktop PCs. Hence, it is 
important to consider this obstacle when attempting to perform 
complex computations in the cameras. In order to achieve real-
time computations, complex algorithms must be simplified. 
While most of the required image-processing algorithms are 
computationally intensive and many prior research have tried to 
implement them on hardware for realtime performance [8, 9]; 
simplification of such algorithms can also lead to enhanced 
performance results (see Figure 1 for an example). As a result of 
simplifying algorithms, it is inevitable to sacrifice fine-grained 
accuracy for computational speed. A widely accepted 
methodology to improve accuracy is to employ effective 
budgeting schemes to select the proper simplification that 
maximizes accuracy while meeting the timing constraint [14, 15, 
16, 17]. 
Common intruder detection and object tracking applications 
usually rely on a tracking scheme developed by Tomase and 
Kanade [6]. Their technique, usually referred to as KLT tracking 
scheme [5, 6, 7], locks onto particular points in the image, called 
features, and tries to track them in subsequent images of the 
same scene. KLT tracking uses two computationally intensive 
image processing algorithms for selection and tracking of 
feature points [5, 6, 7]. Since both of these algorithms are quite 
complex, the processing time is large and can cause performance 
bottlenecks. Before discussing the generics simplifications that 
can be made to these algorithms to increase their computational 
speed, we will briefly discuss the KLT feature selection and 
tracking algorithms and will explain how each algorithm works. 
Then, we will discuss the specific simplifications that can be 
made to feature selection and tracking to adapt them to a 
constrained parallel system. The simplifications are general and 
can be applied to any KLT-based tracking system. 
 
3. KLT Tracking Algorithms 
 
In order to construct a real-time system, it is essential to aim for 
high-performance by minimizing computational latency. 
Unfortunately, tracking objects is quite complex and requires a 
vast amount of computation. However, various techniques have 
been proposed in an effort to reduce computation. One such 
technique verifies and updates information about the positions of 
selected small windows, or features, of an object. By only 
“tracking” small windows in an image, an object can be tracked 



and the amount of computation can be decreased substantially. 
Selection of these windows is generally determined using an a 
priori basis for what is deemed an “interesting” feature. 
According to the aperture problem, not all points in an image are 
useful for tracking and so it is necessary to carefully select the 
points where motion information can be extracted. The basis for 
the selection of a window could be tracking of corners, windows 
with high spatial frequency content, or regions with particular 
brightness patterns. Tomasi and Kanade [6] derived a criterion 
for feature selection based on large contrasts of intensity. The 
KLT feature selection and tracking algorithms, commonly 
accepted within the vision community, was chosen for this 
application in order to maximize performance by minimizing 
computation while also attaining high-quality tracking results [5, 
6, 7].           

 In the following section, two image-processing algorithms that 
enable a system to track a moving object will be explained.  
These algorithms include feature selection and feature tracking.  

 

 
3.1 Feature Selection 
 
The feature selection algorithm consists of carefully choosing 
the points in the image, which can be easily tracked throughout a 
series of images. In order to select good features to track, the 
following steps are taken: 
  
1. Smooth the entire image. Figure 2. Sample outputs of feature selection algorithm 

executed on the camera. Features are denoted by black 
squares with white centers. 

2. Calculate gx and gy, the intensity gradients in the x and y 
directions by computing the Gaussian and Gaussian derivative 
kernel as well as convolving these kernels in the horizontal and 
vertical directions. 

 
another successive frame with constant displacement d = [dx 
dy]. Consequently, to find displacement d that minimizes 
dissimilarity Є: 

3. For each pixel: 
a) Sum the gradients in the surrounding window in order to 
compute the Z matrix, where 

 

 
Using the iterative gradient descent method, we can minimize 
dissimilarity d by solving the following linear system: 

b) Compute λ1 and λ2, the eigenvalues of the Z matrix. Let λ1 = 
min (λ1, λ2).  λ1 represents the trackability of the pixel. 

 

c) Store the trackability value associated with the x and y 
coordinates in a list, called FeatureList. 
4. Sort this list in ascending order. 
5. While ascending the list, enforce a minimum distance 
between features and add all acceptable features to another list. 
In this manner, features with the largest trackability values that 
have a minimum distance will be inserted in the second list 
until no more features can be added. Figure 2 demonstrates the 
output of the feature selection on a selected region of sample 
images. 

and where gx and gy are intensity gradients in the x and y 
directions. The following steps are used in the KLT feature 
tracker: 
1. Process first image by smoothing, computing resolution 

pyramid, and computing x and y gradient for each pyramid  
3.2 Feature Tracking 2. Process second image by smoothing, computing resolution 

pyramid, and computing x and y gradients for each pyramid  
After feature selection, features must be tracked to the next 
successive image to determine the displacement of the feature 
that minimizes dissimilarity. Dissimilarity caused by motion 
between two successive images can be represented by the 
following equation:  

3. For each feature in the FeatureList that has a positive 
trackability value (i.e., only track features that are not lost): 

a. Transform feature location to coarsest resolution. 
b.  Beginning with coarsest resolution 

i. Compute gradient sum and intensity 
difference windows. 

 ii. Use these windows to construct a 2x2 
gradient matrix Z and 2x1 error vector 
e. 

 
where I(x) denotes the intensity of point x = [x y] in the image 
for feature window W and J(x+d) denotes the intensity of  



iii. Use matrices to solve equation for new 
displacement. 

   

iv. Iteratively, update the window position. 
 

c. Ensure new window is not out of bounds; residue 
is not too large; etc. 

d. Record new feature window coordinates. 
 
 Figure 3 demonstrates feature tracking on a series of images. 
Throughout the series of images, the features are updated and 
tracked as the person walks across the scene. 
In short, the KLT feature tracker uses an iterative gradient 
descent method to minimize the displacement of a feature 
caused by motion. The feature tracker can only work 
successfully if there are small amount of motion between two 
successive frames. 

 

 

 
4. Profiling by Applying Various Optimizations 
to KLT Tracking Algorithms  
 
We have performed a thorough analysis of the computational 
bottlenecks in the standard KLT feature selection and feature 
tracking algorithms. The analysis has been done using standard 
academic software implementations. Several possible 
algorithmic modifications and simplifications are proposed.  
These simplifications successfully compromise computation 
latency with tracking quality by maintaining algorithm 
correctness. Note that careless modification of the algorithm 
might not preserve its functional correctness. These 
simplifications include:  

 

   

 
1. Elimination of pyramidal structure. This structure is used 

for performing computations on different down-sampled 
versions of the image. 

2. Elimination of smoothing. Smoothing is required for high 
quality tracking and can be neglected is performance is an 
issue. 

3. Elimination of the original complex gradient calculation 
algorithm and introduction of a simplified gradient 
algorithm. This has to be done with complete 
understanding of the algorithm, since it might not preserve 
its correctness. 

4. Elimination of whole image gradient calculation and 
introduction of small window gradient calculation. 

  

 

In the rest of this section, we explain various simplifications that 
we made to the standard KLT tracking algorithms. The 
simplifications produced 5 different (including the unsimplified 
version, which we call it version ‘a’) implementations of the 
same algorithm, which correspond to different points in the 
delay-accuracy plane and can assist in profiling a given parallel 
and collaborative tracking system. 
Many of the image processing algorithms perform computations 
on a number of down sampled versions of the original image to 
improve their quality. A pyramidal structure is used for 
implementing the down sampled versions of an image, where 
the original image is assumed to be at the lower level of the 
pyramid. Each upper level of the pyramid down samples its 
immediately preceding level by a constant factor. While the 
pyramidal structure allows tracking to occur on several 
resolutions of an image, it also adds to the complexity of the 
computation by requiring additional memory allocation and 
computational overhead (particularly of gradients). Hence, the  

 
Figure 3. Output of feature tracking algorithm on a 
consecutive series of images. Features are denoted by black 
squares with white dots in center. 



5. Experiments pyramidal structure can be eliminated for the feature selection 
and feature tracking algorithms to improve their runtime. Hence, 
version ‘b’ of the feature selection and tracking only occur on 
the original image, not on coarse-grained images. 

 
In this section, we present a collaborative object tracking system 
that is built as the experimental platform of this work. The 
aforementioned profiling techniques have been applied to a KLT 
tracking application implemented on this platform. Different 
versions of the algorithms have been tested on our platform to 
profile their delay-accuracy characteristics. 

Another additional computation is created by smoothing an 
image. Smoothing enhances the quality of the image before 
running the actual computation. Therefore, it can be safely 
removed if the original image has a reasonable quality. 
Smoothing code was removed to produce version ‘c’, which 
further simplifies the feature selection and feature tracking 
algorithms. 

 
5.1 Experimental Platform Framework 
 Moreover, another accuracy-delay trade off can be achieved by 

taking into account the gradient calculation mechanism. The 
computation used for the calculation of the gradient in the KLT 
is quite complex. In order to simplify the computation for 
calculating the gradient, we replaced it with convolution of a 
simple kernel. Using this method, the gradient is calculated by 
convolving I(x) with the following kernels: 

The framework for our system is comprised of several 
components including: two IQeye3 cameras provided by 
IQinVision [4], pan-tilt units to enable the actuation of the 
cameras, a main controller residing on a PC, and a network for 
communication (Figure 4). 
There is a 250 MIPS PowerPC CPU, 4 MB of Flash RAM and 
16 MB of SDRAM embedded in each camera. Each IQeye3 
camera gives full access to raw real-time image data streams and 
the processor can be used for customization since a large “C” 
development library is available to application developers. Full 
networking functionality is provided by each IQeye3 camera 
through an Ethernet connection. It can communicate using TCP, 
UDP, and IP. 

 
 

While this modification degrades the quality of the feature 
selection and tracking algorithms, it greatly improves their 
latency. Furthermore, the quality of the simplified tracking is 
reasonable for usual working conditions. This version of the 
algorithm is called version ‘d’. 

In addition, the IQeye3 camera can send and receive 230 Kbps 
over a 9-pin D serial port. In our system, each IQeye3 camera is 
mounted on a pan-tilt unit and is able to directly communicate 
with the pan-tilt unit via a 9-pin D serial port. Each pan-tilt 
actuation unit can be sent simple messaging commands to 
specify the pan angle, pan speed, pan acceleration, tilt angle, tilt 
speed, and tilt acceleration.  

There exists another computational bottleneck in the 
computation of the gradient of the entire image within the 
feature tracking algorithm. An excessive amount of computation 
is required for calculating the x and y gradients of the entire 
pixels of an image. However, only the gradient computations 
around small feature windows within the image are necessary. 
Hence, in version ‘e’ of our implementation, the feature tracking 
algorithm was further modified to calculate the gradients around 
small feature windows as needed instead of the gradient of the 
entire image. 

The main supervisory controller resides on a PC and acts as the 
centralized governing unit of the system by maintaining the 
current state, processing internal and external triggers, and 
coordinating the collaboration among the cameras. When the 
main controller receives data from one of the IQeye3 camera 
clients over the network, it deterministically selects the 
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Figure 4. An overview of the tracking system architecture: Each camera has a set of the required algorithms available. 
The controller communicates with the cameras via an implemented message passing scheme. It can initiate the proper 
algorithm on each camera, and organize the collaboration among cameras.  



appropriate actions that should be taken by each camera (e.g., 
swapping of a different algorithm). This is performed by sending 
a message to the designated camera.  
 
5.2 Experimental Platform Application 
 
The sample application implemented on the framework is to 
continuously detect and track a moving object that is within the 
field of view of a camera (Figure 4). If the object leaves the field 
of view of one camera, the camera should pan or tilt to maintain 
the object within its field of view or it should hand off control to 
another camera. Depending on the speed of the object, different 
timing constraints exist for performing computations. 
When the entire system initializes, cameras establish a 
connection with the main supervisory controller on the PC. 
Camera 1 assumes control initially and continuously waits for a 
moving object to enter its field of view. This is accomplished 
using the motion detection algorithm, a fast and simple high-
level computation that can be used for future low-level image-
processing algorithms. The motion detection algorithm returns 
the amount of motion detected (in pixels) given a particular 
threshold as well as the rectangular coordinates of the region 
where the motion is located. These rectangular coordinates can 
be utilized as input to other algorithms to avoid unnecessary 
computations on still sections of the field of view and hence, 
allow for additional computational speedup.  
In our system, the rectangular coordinates are utilized by the 
feature selection algorithm on the current streamed image in 
order to determine features in the rectangular region where a 
moving object is detected. The feature selection algorithm 
returns a feature list, which contains x-y coordinate pairs 
representing small windows called features that are deemed 
“interesting” to track. Each feature also has an associated integer 
value, which represents the trackability of the feature.  
On the next consecutive streamed images, the feature tracking 
algorithm is run in order to track the same features generated by 
the feature selection algorithm. Those features that are 
successfully tracked modify the feature list with their new x-y 
coordinate pairs. Since our application is targeted at tracking 
moving objects, we eliminate all features that have not moved 
substantially beyond a given threshold. Feature tracking can 
extract directional and speed information about a moving object, 
therefore, it is possible to run different versions of feature 
tracking depending on the speed of the moving object. The 
ability to execute different versions of feature tracking enables 
the algorithm that maximizes the tracking quality to be used. 
When a moving object moves close to the edge of the image, the 
camera detects this situation and sends a message to the pan-tilt 
unit to take the appropriate action to keep the moving object 
within its field of view. At a certain point, the pan-tilt unit will 
no longer be able to pan or tilt further and the moving object 
will move completely out of the field of view of the camera. The 
camera has to surrender complete control of the scene and 
another camera will be forced to monitor the scene. In this 
situation, the camera that can no longer monitor the scene 
notifies the main controller by sending a message indicating the 
position where the moving object is located and the current 
version of the feature selection/tracking algorithm. The main 
controller then decides which camera should gain control and 
sends the camera a message indicating where the object is and 
which version of the feature selection/tracking algorithm to use. 
As a result, the camera issues commands to move the pan-tilt 
unit so that the moving object is in the field of view of the 

camera. Figure 4 outlines the architecture and application of the 
system. A sample pseudo code running on the controller and a 
high level block diagram of each camera has been demonstrated. 
In such a manner, the moving object is continuously and 
vigilantly tracked using multiple cameras with the most efficient 
feature selection and tracking algorithms. The use of the right 
implementation of the feature selection/tracking algorithms 
leads to the highest quality tracking results. Note that by use of 
the “hands off” approach, the object will be continuously 
tracked as long as the object is within the field of view of a 
camera. 
 
5.3 Experimental Results 
 
In this section, we present the result of experiments that have 
been carried out using the system depicted in figure 4. In order 
to determine the extent of performance improvements after a 
series of simplifications to the feature selection and feature 
tracking code, we determined the runtimes of the simplified 
versions of each algorithm on a static series of images.  
Figure 5 presents the results of the aforementioned experiment, 
i.e. the effect of the simplifications on latency of each algorithm. 
Runtimes are reported for running the algorithm on the 
controller (a PC). While we expect the runtimes to scale almost 
linearly when the algorithms are ported to the camera, we have 
performed the experiments on the camera as well. The results of 
running the algorithms on the camera are presented later in this 
section. Various versions of cumulative simplifications include:  
a) original implementation, b) elimination of the pyramidal 
structure, c) elimination of smoothing of the image, d) 
substitution of a simple gradient calculation, e) elimination of 
whole gradient calculation and introduction of small window 
gradient calculation. 
The cumulative simplifications made to the feature tracking 
code reduced the runtime 3.6 times, namely from 365 ms to 101 
ms. As expected, the simplifications did not reduce the runtimes 
significantly for the feature selection algorithm. However, this 
does not seem to be a major problem, because feature selection 
is executed only once for selecting features, while feature 
tracking is iteratively executed on each frame to track the 
moving objects. 
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Figure 5. Effect of algorithm simplifications on runtimes on 
a PC. 
 



It is important to note that there was not a significant decrease in 
algorithm latency between simplified version d and e. A more 
noticeable decline in runtime would be noticeable with fewer 
features to track (e.g., less than 100 features), because as the 
number of “features to track” increases, the small window 
gradient calculation covers more pixels of the entire image (refer 
to the 4th simplification for feature tracking algorithm described 
in section 4). Therefore, less improvement in runtime of version 
e over d would be expected with increasing the number of 
features. 
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A significant improvement in runtime of feature tracking 
resulted from the simplifications. While it is difficult to quantify 
how much effect these optimizations had on the quality of 
feature tracking, we can quantify how these optimizations 
affected the number of features that are tracked. Number of 
tracked features correlates with the quality of the tracking 
algorithms, because a less accurate tracking algorithm is more 
likely to ‘lose’ a feature during the tracking process.  
Figure 6 demonstrates the effect of algorithm simplifications on 
their quality. This graph is made by selection of 100 features on 
a static image and running different versions of feature tracking 
algorithm to track those features in the next frame. Each 
algorithm loses some of the original features during the tracking 
process. The number of successfully tracked features is reported 
as a measure of accuracy. 

Figure 7. Runtimes of different versions of feature selection 
in two embedded and centralized modes of operation. 

After several simplifications to the KLT code, the feature 
selection algorithm code runs locally on the camera in less time 
than the original implementation. It is evident that the 
simplifications have made the feature selection to run more than 
2 times faster on the camera. However, it remains more efficient 
to FTP the image over the network and run the feature selection 
algorithm on the main controller. These results are not surprising 
since most of the simplifications affected the feature tracking 
algorithm, not the feature selection algorithm.  

As it can be inferred from Figure 6, simplifications minimally 
compromised the number of features that were tracked after the 
feature selection algorithm selected 100 features to track. In 
particular, the original version was able to track 83 features 
while the most simplified version (e) tracked 64 features. 
Although the number of features tracked decreased slightly with 
the simplified versions, the object can continue to be tracked 
precise enough, with the remaining number of features. 

An interesting point to notice is that the latency of running 
computations in centralized scheme (FTP + execution on the 
controller) is dominated by the FTP latency. Therefore, different 
versions of the algorithm exhibit similar latencies compared to 
the large latency of executing the algorithms on the cameras. 
The controller has powerful computational resources (we used a 
PC with Intel Pentium III running at 750 MHz and 512 MB of 
main memory in our experiments), therefore, the latency of 
running the computations on controller is almost equal to the 
latency of sending images back and forth.  

 

Effect of Simplifications on 
the Number of Features Tracked

0
20
40
60
80

100
120

a b c d e

Simplified versions

# 
of

 F
ea

tu
re

s 
Tr

ac
ke

d

Feature Selection Feature Tracking
 

Since more simplifications had an impact on the feature tracking 
algorithm, it is interesting to note how the optimizations affect 
feature tracking on images that were processed locally on the 
camera. Figure 8 shows the latency of different versions of 
feature tracking algorithm in two embedded and centralized 
modes. The optimizations made on the feature tracking 
algorithm allow it to perform better on the local embedded 
processor of the IQeye3 camera. Though the camera processes 
computations much slower compared to the PC, the camera does 
not have to incur the extra overhead of sending the image 
through the network.   
Particularly, it is interesting to note that the original 
implementation of the KLT feature tracking algorithm takes 
about 22000 milliseconds on the camera to run. It takes about 
2100 milliseconds to transmit an image to the controller and 
execute the very same implementation of the KLT feature 
tracking algorithm on it. The aforementioned simplifications 
reduce the algorithm latency on the camera about 12 times, i.e. 
from original 22000 ms to 735 ms, while the runtime on the 
controller improves only 5%. 

Figure 6. The effect of algorithm simplifications on the 
quality of tracking. 

While several optimizations appeared quite promising on the 
PC, we were interested in how effective the optimizations would 
be when these algorithms were ported to the IQeye3 camera 
platform. Figure 7 shows the results for the feature selection 
algorithm. The original KLT code performs significantly better 
when the image is sent over the network and processed on the 
PC compared to simply processing the image on the embedded 
processor on the camera. 

The most simplified version runs 2.7 times faster in the 
embedded mode compared to the centralized scheme. Therefore, 
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Proc. of the Intl. Conf. on Computer Vision, July 2001. 6. Conclusions and Future Directions 

 [13] S. Smith and J. Brady, "Asset-2: Real-time Motion 
Segmentation and Shape Tracking", IEEE Trans. on Pattern 
Analysis and Machine Intelligence, vol. 8, no. 17, pp. 814-820, 
1995. 

We presented an accuracy-delay profiling methodology that is 
applicable to tracking applications. General guidelines for 
compromising the tracking accuracy with computation latency 
have been proposed. Applying these techniques produces 
different versions of the tracking algorithm with different 
accuracy-latency behavior. 
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"Optimal Integer Delay Budgeting on Directed Acyclic Graphs", 
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experiment our approach. The system consists of multiple 
cameras with embedded processors and a control unit connected 
through the local area network. A target tracking application 
utilizing KLT feature selection and tracking algorithms has been 
implemented on this framework. Since these algorithms are 
computationally intensive, they do not show satisfactory 
performance when run on the constrained embedded processors 
of the camera. Therefore, various simplifications have been 
made to these algorithms to adapt them to our framework and 
allow adaptation of the application to parallel execution scheme. 
Optimizations improved algorithm runtimes up to 12 times with 
reasonable degradation in tracking accuracy.  
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Future works include porting the algorithm on reconfigurable 
hardware resources of the camera and applying the runtime 
hardware reconfiguration to various applications handled by our 
framework. Moreover, we would like to investigate the issue of 
profiling for generic classes of applications. 
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