
Profiling Accuracy-Latency Characteristics of

Collaborative Object Tracking Applications

Soheil Ghiasi, Karlene Nguyen, Majid Sarrafzadeh
Computer Science Department

University of California, Los Angeles
{soheil, karlene, majid}@cs.ucla.edu

Abstract
Various implementations of a tracking algorithm

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4 6 8 10 12 14 16 18 20

Tracking accuracy (number of tracked features)

L
a
te

n
cy

 (
m

s)

A

B

C

D

E

Figure 1. Accuracy (or other design metrics) can be
compromised for performance in constrained systems.

Many parallel and collaborative signal processing systems
utilize commercial off-the-shelf sensor nodes with constrained
embedded processors. Applications running on such processors,
e.g. object tracking, often demand real time performance and
hence, another design metric such as accuracy has to be
compromised to meet the performance constraint. Therefore,
exact accuracy-latency characteristics of the application are
required in order to implement it in a real time and sufficiently
accurate fashion. This paper presents profiling techniques that
are applicable to tracking applications including those
implemented on a parallel system. The approach has been
applied to a tracking application implemented on a
collaborative system that has been built in our lab. Extensive
profiling has been performed to study embedded vs. centralized
and accuracy vs. latency tradeoffs. Experimental results verify
the effectiveness of our profiling scheme, and support the fact
that different computing schemes are appropriate for different
accuracy and performance requirements. Experiments show that
an appropriate choice of algorithms and computing schemes of
our system, leads to 12 times speedup in feature tracking latency
compared to its original version with a reasonable reduction in
tracking accuracy.

multimedia and tracking applications that use cameras with low
power embedded processors. Such applications cannot tolerate
slow processing and long latencies since they have to process
the real time stream of incoming data. Therefore, designers have
to compromise one of the design metrics, such as accuracy to
obtain the desired performance for this class of applications.

1. Introduction

Figure 1 demonstrates the idea of compromising accuracy to
achieve application speedup. The chart shows accuracy-latency
behavior of different 5 different implementations of a tracking
algorithm. Implementations with lower accuracy execute faster
and vice versa. Various accuracy-latency points provide the
designer with a range of options to choose from based on design
requirements. Specifically, design specifications often set an
upper bound for the worst acceptable latency of the application
and the objective is to find the most accurate implementation
that satisfies the timing constraint. Note that accuracy is
mentioned as a sample design metric used for tracking
applications. The very same idea is applicable to all other
designs using other conventional metrics such as power
consumption, chip area, and cost.

Today's advances in technology, has enabled the integration of
processing resources, memory blocks and sophisticated I/O units
into various electronic devices including commercial off-the-
shelf (COTS) data acquisition units [1, 2]. Such embedded
systems provide the opportunity of processing the perceived
information locally at the sensor nodes as opposed to more
traditional approach of transferring the data to a remote
processing station, having the station perform the computation
and reading the result back. These two approaches to data
processing, namely locally embedded at the sensor nodes and
traditional communication-based computing schemes, introduce
many trade offs into the design space [3].
Many COTS sensor devices have been developed with serious
cost, power, and size constraints. Therefore, the computation
resources embedded in them are not as strong as systems that are
designed without such limitations. In addition, these products
have to be treated as black boxes in that designers cannot
modify or upgrade the embedded functional units. Therefore,
systems that are developed using such products often suffer
from constrained and low performance processors.

Various design and optimization methodologies have been
proposed to address the problem of selecting a proper
implementation under timing constraints. Particularly, different
budgeting techniques have been developed that essentially
exploit the timing slack of application building blocks to
improve its accuracy (or any other design metric) [14, 15, 16,
17]. These techniques assume that complete accuracy-latency
information of application building blocks is available.

On the other hand, many applications that utilize constrained
sensor nodes demand real time performance. Examples include

While the aforementioned assumption seems reasonable for
many practical applications, elaborate profiling experiments
have to be carried out in order to obtain the accuracy-delay
information. Profiling techniques implement a given application
in a number of different ways and measure its accuracy-latency
relation (or another metric’s relation with latency) for running
on different system resources. Each implementation running on
each particular system resource corresponds to a point in the
accuracy-latency plane. Budgeting techniques are then applied
to a number of points in the plane to select the proper set of
implementations that optimizes some particular objective.
This paper focuses on the software profiling methodologies
appropriate for parallel and collaborative signal processing
applications. We present generic methodologies that are
applicable to all KLT-based [5, 6, 7] tracking applications. The
results have been experimented on a tracking system that has
been implemented as part of this work.
We proceed to discuss the framework of the implemented
system in the next section. Section 3 presents the implemented
target tracking application. The trade offs involved in embedded
vs. traditional computing schemes are explained in section 4,
followed by the trade offs between accuracy and latency of the
implemented algorithms. Section 5 explains the image
processing algorithms used in the system and the steps taken to
adapt them to our framework and section 6 presents the
experimental results.

2. Computing Trade offs Involved in a Generic
Collaborative Tracking System

In this section, we present various trade offs involved in running
a tracking application in a parallel and collaborative
environment. Particularly we will discuss two possible
computing schemes, namely, locally embedded at the sensing
point and remote processor-based computing. Embedded
execution of the computations is an essential task for performing
the application in parallel and on distributed sensor nodes
(cameras). Moreover, we discuss the trade offs involved in
adapting the tracking algorithms ported to such a constrained
platform. The algorithms have to be simplified in order to make
them appropriate for execution on the constrained resources
embedded in the sensors nodes, which in turn leads to parallel
execution of the application.

2.1 Embedded vs. Processor-based Computing

Real time motion analysis is one of the most critical
requirements of the tracking application. High performance is
often difficult to achieve because many image-processing
algorithms are computationally intensive and necessitate long
latency calculations. Hardware realization of the algorithms is
not often possible, since the embedded processors only allow
software processing. However, it is still essential to attempt to
maximize system performance.
One way of improving system performance is to collocate the
input data acquisition and its processing on the vision sensors
(cameras). This will lead to parallel execution of the
computation on all of the vision sensors and might improve
system performance. In the past, vision sensors were used
primarily for grabbing frames and sending the raw or
compressed image data to a graphics processing board located
on a central processor. Such a computing scheme, limits the
scalability of the system, adds additional data transfer latency

and utilizes a significant amount of bandwidth by transferring
entire images. Therefore, a networked camera with an embedded
image sensor and proper computational resources can minimize
network overhead by processing the data locally. Therefore, it
needs to send a limited amount of data to other nodes to
collaborate, which in turn enhances system scalability.
Unfortunately, one of the major drawbacks of using such camera
with an embedded processor is that the processor tends to be
slower than a general-purpose processor of a PC. Therefore, it is
unclear whether computations should occur on or off the camera
since there are drawbacks to each. The proper computing
scheme depends on the particular system parameters and
specification. Profiling techniques assist in determining such
parameters and can help in determining the appropriate
computing scheme for different objectives.

2.2 Accuracy-Performance Trade off

The processing power and memory modules embedded in many
COTS products, such as cameras with embedded processors, are
quite constrained compared to desktop PCs. Hence, it is
important to consider this obstacle when attempting to perform
complex computations in the cameras. In order to achieve real-
time computations, complex algorithms must be simplified.
While most of the required image-processing algorithms are
computationally intensive and many prior research have tried to
implement them on hardware for realtime performance [8, 9];
simplification of such algorithms can also lead to enhanced
performance results (see Figure 1 for an example). As a result of
simplifying algorithms, it is inevitable to sacrifice fine-grained
accuracy for computational speed. A widely accepted
methodology to improve accuracy is to employ effective
budgeting schemes to select the proper simplification that
maximizes accuracy while meeting the timing constraint [14, 15,
16, 17].
Common intruder detection and object tracking applications
usually rely on a tracking scheme developed by Tomase and
Kanade [6]. Their technique, usually referred to as KLT tracking
scheme [5, 6, 7], locks onto particular points in the image, called
features, and tries to track them in subsequent images of the
same scene. KLT tracking uses two computationally intensive
image processing algorithms for selection and tracking of
feature points [5, 6, 7]. Since both of these algorithms are quite
complex, the processing time is large and can cause performance
bottlenecks. Before discussing the generics simplifications that
can be made to these algorithms to increase their computational
speed, we will briefly discuss the KLT feature selection and
tracking algorithms and will explain how each algorithm works.
Then, we will discuss the specific simplifications that can be
made to feature selection and tracking to adapt them to a
constrained parallel system. The simplifications are general and
can be applied to any KLT-based tracking system.

3. KLT Tracking Algorithms

In order to construct a real-time system, it is essential to aim for
high-performance by minimizing computational latency.
Unfortunately, tracking objects is quite complex and requires a
vast amount of computation. However, various techniques have
been proposed in an effort to reduce computation. One such
technique verifies and updates information about the positions of
selected small windows, or features, of an object. By only
“tracking” small windows in an image, an object can be tracked

and the amount of computation can be decreased substantially.
Selection of these windows is generally determined using an a
priori basis for what is deemed an “interesting” feature.
According to the aperture problem, not all points in an image are
useful for tracking and so it is necessary to carefully select the
points where motion information can be extracted. The basis for
the selection of a window could be tracking of corners, windows
with high spatial frequency content, or regions with particular
brightness patterns. Tomasi and Kanade [6] derived a criterion
for feature selection based on large contrasts of intensity. The
KLT feature selection and tracking algorithms, commonly
accepted within the vision community, was chosen for this
application in order to maximize performance by minimizing
computation while also attaining high-quality tracking results [5,
6, 7].

 In the following section, two image-processing algorithms that
enable a system to track a moving object will be explained.
These algorithms include feature selection and feature tracking.

3.1 Feature Selection

The feature selection algorithm consists of carefully choosing
the points in the image, which can be easily tracked throughout a
series of images. In order to select good features to track, the
following steps are taken:

1. Smooth the entire image. Figure 2. Sample outputs of feature selection algorithm

executed on the camera. Features are denoted by black
squares with white centers.

2. Calculate gx and gy, the intensity gradients in the x and y
directions by computing the Gaussian and Gaussian derivative
kernel as well as convolving these kernels in the horizontal and
vertical directions.

another successive frame with constant displacement d = [dx
dy]. Consequently, to find displacement d that minimizes
dissimilarity Є:

3. For each pixel:
a) Sum the gradients in the surrounding window in order to
compute the Z matrix, where

Using the iterative gradient descent method, we can minimize
dissimilarity d by solving the following linear system:

b) Compute λ1 and λ2, the eigenvalues of the Z matrix. Let λ1 =
min (λ1, λ2). λ1 represents the trackability of the pixel.

c) Store the trackability value associated with the x and y
coordinates in a list, called FeatureList.
4. Sort this list in ascending order.
5. While ascending the list, enforce a minimum distance
between features and add all acceptable features to another list.
In this manner, features with the largest trackability values that
have a minimum distance will be inserted in the second list
until no more features can be added. Figure 2 demonstrates the
output of the feature selection on a selected region of sample
images.

and where gx and gy are intensity gradients in the x and y
directions. The following steps are used in the KLT feature
tracker:
1. Process first image by smoothing, computing resolution

pyramid, and computing x and y gradient for each pyramid
3.2 Feature Tracking 2. Process second image by smoothing, computing resolution

pyramid, and computing x and y gradients for each pyramid
After feature selection, features must be tracked to the next
successive image to determine the displacement of the feature
that minimizes dissimilarity. Dissimilarity caused by motion
between two successive images can be represented by the
following equation:

3. For each feature in the FeatureList that has a positive
trackability value (i.e., only track features that are not lost):

a. Transform feature location to coarsest resolution.
b. Beginning with coarsest resolution

i. Compute gradient sum and intensity
difference windows.

 ii. Use these windows to construct a 2x2
gradient matrix Z and 2x1 error vector
e.

where I(x) denotes the intensity of point x = [x y] in the image
for feature window W and J(x+d) denotes the intensity of

iii. Use matrices to solve equation for new
displacement.

iv. Iteratively, update the window position.

c. Ensure new window is not out of bounds; residue
is not too large; etc.

d. Record new feature window coordinates.

 Figure 3 demonstrates feature tracking on a series of images.
Throughout the series of images, the features are updated and
tracked as the person walks across the scene.
In short, the KLT feature tracker uses an iterative gradient
descent method to minimize the displacement of a feature
caused by motion. The feature tracker can only work
successfully if there are small amount of motion between two
successive frames.

4. Profiling by Applying Various Optimizations
to KLT Tracking Algorithms

We have performed a thorough analysis of the computational
bottlenecks in the standard KLT feature selection and feature
tracking algorithms. The analysis has been done using standard
academic software implementations. Several possible
algorithmic modifications and simplifications are proposed.
These simplifications successfully compromise computation
latency with tracking quality by maintaining algorithm
correctness. Note that careless modification of the algorithm
might not preserve its functional correctness. These
simplifications include:

1. Elimination of pyramidal structure. This structure is used

for performing computations on different down-sampled
versions of the image.

2. Elimination of smoothing. Smoothing is required for high
quality tracking and can be neglected is performance is an
issue.

3. Elimination of the original complex gradient calculation
algorithm and introduction of a simplified gradient
algorithm. This has to be done with complete
understanding of the algorithm, since it might not preserve
its correctness.

4. Elimination of whole image gradient calculation and
introduction of small window gradient calculation.

In the rest of this section, we explain various simplifications that
we made to the standard KLT tracking algorithms. The
simplifications produced 5 different (including the unsimplified
version, which we call it version ‘a’) implementations of the
same algorithm, which correspond to different points in the
delay-accuracy plane and can assist in profiling a given parallel
and collaborative tracking system.
Many of the image processing algorithms perform computations
on a number of down sampled versions of the original image to
improve their quality. A pyramidal structure is used for
implementing the down sampled versions of an image, where
the original image is assumed to be at the lower level of the
pyramid. Each upper level of the pyramid down samples its
immediately preceding level by a constant factor. While the
pyramidal structure allows tracking to occur on several
resolutions of an image, it also adds to the complexity of the
computation by requiring additional memory allocation and
computational overhead (particularly of gradients). Hence, the

Figure 3. Output of feature tracking algorithm on a
consecutive series of images. Features are denoted by black
squares with white dots in center.

5. Experiments pyramidal structure can be eliminated for the feature selection
and feature tracking algorithms to improve their runtime. Hence,
version ‘b’ of the feature selection and tracking only occur on
the original image, not on coarse-grained images.

In this section, we present a collaborative object tracking system
that is built as the experimental platform of this work. The
aforementioned profiling techniques have been applied to a KLT
tracking application implemented on this platform. Different
versions of the algorithms have been tested on our platform to
profile their delay-accuracy characteristics.

Another additional computation is created by smoothing an
image. Smoothing enhances the quality of the image before
running the actual computation. Therefore, it can be safely
removed if the original image has a reasonable quality.
Smoothing code was removed to produce version ‘c’, which
further simplifies the feature selection and feature tracking
algorithms.

5.1 Experimental Platform Framework
 Moreover, another accuracy-delay trade off can be achieved by

taking into account the gradient calculation mechanism. The
computation used for the calculation of the gradient in the KLT
is quite complex. In order to simplify the computation for
calculating the gradient, we replaced it with convolution of a
simple kernel. Using this method, the gradient is calculated by
convolving I(x) with the following kernels:

The framework for our system is comprised of several
components including: two IQeye3 cameras provided by
IQinVision [4], pan-tilt units to enable the actuation of the
cameras, a main controller residing on a PC, and a network for
communication (Figure 4).
There is a 250 MIPS PowerPC CPU, 4 MB of Flash RAM and
16 MB of SDRAM embedded in each camera. Each IQeye3
camera gives full access to raw real-time image data streams and
the processor can be used for customization since a large “C”
development library is available to application developers. Full
networking functionality is provided by each IQeye3 camera
through an Ethernet connection. It can communicate using TCP,
UDP, and IP.

While this modification degrades the quality of the feature
selection and tracking algorithms, it greatly improves their
latency. Furthermore, the quality of the simplified tracking is
reasonable for usual working conditions. This version of the
algorithm is called version ‘d’.

In addition, the IQeye3 camera can send and receive 230 Kbps
over a 9-pin D serial port. In our system, each IQeye3 camera is
mounted on a pan-tilt unit and is able to directly communicate
with the pan-tilt unit via a 9-pin D serial port. Each pan-tilt
actuation unit can be sent simple messaging commands to
specify the pan angle, pan speed, pan acceleration, tilt angle, tilt
speed, and tilt acceleration.

There exists another computational bottleneck in the
computation of the gradient of the entire image within the
feature tracking algorithm. An excessive amount of computation
is required for calculating the x and y gradients of the entire
pixels of an image. However, only the gradient computations
around small feature windows within the image are necessary.
Hence, in version ‘e’ of our implementation, the feature tracking
algorithm was further modified to calculate the gradients around
small feature windows as needed instead of the gradient of the
entire image.

The main supervisory controller resides on a PC and acts as the
centralized governing unit of the system by maintaining the
current state, processing internal and external triggers, and
coordinating the collaboration among the cameras. When the
main controller receives data from one of the IQeye3 camera
clients over the network, it deterministically selects the

Camera 2

Initiate algorithm X

Initiate Algorithm Y

Algorithm Y output

Controller

Algorithm X output

Camera 1

…
Initiate Motion Detection on camera 1;
if (result == moving_object_detected)
 Initiate Feature tracking on camera 1;
if (result == object out of field of view)
 Pan/Tilt or do other
 actuation controls;
if (camera 1 needs help)
 Have other idle cameras help it
 by initiating proper algorithms
 on them;
…

Moving Object

Algorithm
Database

Motion Detection

Feature Selection

Feature Tracking

Scene Data

I/O controller

Processor

Figure 4. An overview of the tracking system architecture: Each camera has a set of the required algorithms available.
The controller communicates with the cameras via an implemented message passing scheme. It can initiate the proper
algorithm on each camera, and organize the collaboration among cameras.

appropriate actions that should be taken by each camera (e.g.,
swapping of a different algorithm). This is performed by sending
a message to the designated camera.

5.2 Experimental Platform Application

The sample application implemented on the framework is to
continuously detect and track a moving object that is within the
field of view of a camera (Figure 4). If the object leaves the field
of view of one camera, the camera should pan or tilt to maintain
the object within its field of view or it should hand off control to
another camera. Depending on the speed of the object, different
timing constraints exist for performing computations.
When the entire system initializes, cameras establish a
connection with the main supervisory controller on the PC.
Camera 1 assumes control initially and continuously waits for a
moving object to enter its field of view. This is accomplished
using the motion detection algorithm, a fast and simple high-
level computation that can be used for future low-level image-
processing algorithms. The motion detection algorithm returns
the amount of motion detected (in pixels) given a particular
threshold as well as the rectangular coordinates of the region
where the motion is located. These rectangular coordinates can
be utilized as input to other algorithms to avoid unnecessary
computations on still sections of the field of view and hence,
allow for additional computational speedup.
In our system, the rectangular coordinates are utilized by the
feature selection algorithm on the current streamed image in
order to determine features in the rectangular region where a
moving object is detected. The feature selection algorithm
returns a feature list, which contains x-y coordinate pairs
representing small windows called features that are deemed
“interesting” to track. Each feature also has an associated integer
value, which represents the trackability of the feature.
On the next consecutive streamed images, the feature tracking
algorithm is run in order to track the same features generated by
the feature selection algorithm. Those features that are
successfully tracked modify the feature list with their new x-y
coordinate pairs. Since our application is targeted at tracking
moving objects, we eliminate all features that have not moved
substantially beyond a given threshold. Feature tracking can
extract directional and speed information about a moving object,
therefore, it is possible to run different versions of feature
tracking depending on the speed of the moving object. The
ability to execute different versions of feature tracking enables
the algorithm that maximizes the tracking quality to be used.
When a moving object moves close to the edge of the image, the
camera detects this situation and sends a message to the pan-tilt
unit to take the appropriate action to keep the moving object
within its field of view. At a certain point, the pan-tilt unit will
no longer be able to pan or tilt further and the moving object
will move completely out of the field of view of the camera. The
camera has to surrender complete control of the scene and
another camera will be forced to monitor the scene. In this
situation, the camera that can no longer monitor the scene
notifies the main controller by sending a message indicating the
position where the moving object is located and the current
version of the feature selection/tracking algorithm. The main
controller then decides which camera should gain control and
sends the camera a message indicating where the object is and
which version of the feature selection/tracking algorithm to use.
As a result, the camera issues commands to move the pan-tilt
unit so that the moving object is in the field of view of the

camera. Figure 4 outlines the architecture and application of the
system. A sample pseudo code running on the controller and a
high level block diagram of each camera has been demonstrated.
In such a manner, the moving object is continuously and
vigilantly tracked using multiple cameras with the most efficient
feature selection and tracking algorithms. The use of the right
implementation of the feature selection/tracking algorithms
leads to the highest quality tracking results. Note that by use of
the “hands off” approach, the object will be continuously
tracked as long as the object is within the field of view of a
camera.

5.3 Experimental Results

In this section, we present the result of experiments that have
been carried out using the system depicted in figure 4. In order
to determine the extent of performance improvements after a
series of simplifications to the feature selection and feature
tracking code, we determined the runtimes of the simplified
versions of each algorithm on a static series of images.
Figure 5 presents the results of the aforementioned experiment,
i.e. the effect of the simplifications on latency of each algorithm.
Runtimes are reported for running the algorithm on the
controller (a PC). While we expect the runtimes to scale almost
linearly when the algorithms are ported to the camera, we have
performed the experiments on the camera as well. The results of
running the algorithms on the camera are presented later in this
section. Various versions of cumulative simplifications include:
a) original implementation, b) elimination of the pyramidal
structure, c) elimination of smoothing of the image, d)
substitution of a simple gradient calculation, e) elimination of
whole gradient calculation and introduction of small window
gradient calculation.
The cumulative simplifications made to the feature tracking
code reduced the runtime 3.6 times, namely from 365 ms to 101
ms. As expected, the simplifications did not reduce the runtimes
significantly for the feature selection algorithm. However, this
does not seem to be a major problem, because feature selection
is executed only once for selecting features, while feature
tracking is iteratively executed on each frame to track the
moving objects.

Effect of Simplifications on Time

0

100

200

300

400

a b c d e

Simplified versions

Ti
m

e
(m

s)

Feature Selection Feature Tracking

Figure 5. Effect of algorithm simplifications on runtimes on
a PC.

It is important to note that there was not a significant decrease in
algorithm latency between simplified version d and e. A more
noticeable decline in runtime would be noticeable with fewer
features to track (e.g., less than 100 features), because as the
number of “features to track” increases, the small window
gradient calculation covers more pixels of the entire image (refer
to the 4th simplification for feature tracking algorithm described
in section 4). Therefore, less improvement in runtime of version
e over d would be expected with increasing the number of
features.

Feature Selection on/off camera

0

5000

10000

15000

20000

a b c d e

Simplified versions

Ti
m

e
(m

s)

F.S. on PC + FTP F.S. on Camera

A significant improvement in runtime of feature tracking
resulted from the simplifications. While it is difficult to quantify
how much effect these optimizations had on the quality of
feature tracking, we can quantify how these optimizations
affected the number of features that are tracked. Number of
tracked features correlates with the quality of the tracking
algorithms, because a less accurate tracking algorithm is more
likely to ‘lose’ a feature during the tracking process.
Figure 6 demonstrates the effect of algorithm simplifications on
their quality. This graph is made by selection of 100 features on
a static image and running different versions of feature tracking
algorithm to track those features in the next frame. Each
algorithm loses some of the original features during the tracking
process. The number of successfully tracked features is reported
as a measure of accuracy.

Figure 7. Runtimes of different versions of feature selection
in two embedded and centralized modes of operation.

After several simplifications to the KLT code, the feature
selection algorithm code runs locally on the camera in less time
than the original implementation. It is evident that the
simplifications have made the feature selection to run more than
2 times faster on the camera. However, it remains more efficient
to FTP the image over the network and run the feature selection
algorithm on the main controller. These results are not surprising
since most of the simplifications affected the feature tracking
algorithm, not the feature selection algorithm.

As it can be inferred from Figure 6, simplifications minimally
compromised the number of features that were tracked after the
feature selection algorithm selected 100 features to track. In
particular, the original version was able to track 83 features
while the most simplified version (e) tracked 64 features.
Although the number of features tracked decreased slightly with
the simplified versions, the object can continue to be tracked
precise enough, with the remaining number of features.

An interesting point to notice is that the latency of running
computations in centralized scheme (FTP + execution on the
controller) is dominated by the FTP latency. Therefore, different
versions of the algorithm exhibit similar latencies compared to
the large latency of executing the algorithms on the cameras.
The controller has powerful computational resources (we used a
PC with Intel Pentium III running at 750 MHz and 512 MB of
main memory in our experiments), therefore, the latency of
running the computations on controller is almost equal to the
latency of sending images back and forth.

Effect of Simplifications on
the Number of Features Tracked

0
20
40
60
80

100
120

a b c d e

Simplified versions

of

 F
ea

tu
re

s
Tr

ac
ke

d

Feature Selection Feature Tracking

Since more simplifications had an impact on the feature tracking
algorithm, it is interesting to note how the optimizations affect
feature tracking on images that were processed locally on the
camera. Figure 8 shows the latency of different versions of
feature tracking algorithm in two embedded and centralized
modes. The optimizations made on the feature tracking
algorithm allow it to perform better on the local embedded
processor of the IQeye3 camera. Though the camera processes
computations much slower compared to the PC, the camera does
not have to incur the extra overhead of sending the image
through the network.
Particularly, it is interesting to note that the original
implementation of the KLT feature tracking algorithm takes
about 22000 milliseconds on the camera to run. It takes about
2100 milliseconds to transmit an image to the controller and
execute the very same implementation of the KLT feature
tracking algorithm on it. The aforementioned simplifications
reduce the algorithm latency on the camera about 12 times, i.e.
from original 22000 ms to 735 ms, while the runtime on the
controller improves only 5%.

Figure 6. The effect of algorithm simplifications on the
quality of tracking.

While several optimizations appeared quite promising on the
PC, we were interested in how effective the optimizations would
be when these algorithms were ported to the IQeye3 camera
platform. Figure 7 shows the results for the feature selection
algorithm. The original KLT code performs significantly better
when the image is sent over the network and processed on the
PC compared to simply processing the image on the embedded
processor on the camera.

The most simplified version runs 2.7 times faster in the
embedded mode compared to the centralized scheme. Therefore,

 [4] IQinVision Online Documentations, IQinVision Inc.,
http://www.iqinvision.com.

it is a good candidate for implementing the application in
distributed fashion.

[5] B. Lucas, T. Kanade, “An Iterative Image Registration
Technique with an Application to Stereo Vision”, International
Joint Conference on Artificial Intelligence, pp. 674-679, 1981

Feature Tracking on/off camera

0

5000

10000

15000

20000

25000

a b c d e

Simplified versions

Ti
m

e
(m

s)

F.T. on PC + FTP F.T. on Camera

[6] C. Tomasi, T. Kanade, “Detection and Tracking of Point
Features”, Carnegie Mellon University Technical Report CMU-
CS-91-132, April 1991.
[7] J. Shi, C. Tomasi, “Good Features to Track”, IEEE
Conference on Computer Vision and Pattern Recognition, pages
593-600, 1994
[8] A. Benedetti, P. Perona, “Real-time 2-D Feature Detection
on a Reconfigurable Computer”, IEEE Conference on Computer
Vision and Pattern Recognition, June 1998, Santa Barbara, CA.
[9] P. Athanas and L. Abbott, "Addressing the Computational
Requirements of Image Processing with a Custom Computing
Machine: An Overview", in Proceedings of the 2nd Workshop
on Reconfigurable Architectures, April 1995, Santa Barbara,
CA.
[10] A. Bissacco, A. Chiuso, Y. Ma and S. Soatto, “Recognition
of human gaits”, In Proc. of the IEEE Intl. Conf. on Computer
Vision and Pattern Recognition, vol II, pages 52-58, 2001.
[11] X. Feng, P. Perona, “Real Time Motion Detection System
and Scene Segmentation”, CDS TR CDS98-004, Caltech, 1998 Figure 8. The Latency of embedded versus centralized

computing schemes for feature tracking algorithm. [12] H. Jin, P. Favaro and S. Soatto, “Real-time Feature
Tracking and Outlier Rejection with Changes in Illumination”,
Proc. of the Intl. Conf. on Computer Vision, July 2001. 6. Conclusions and Future Directions

 [13] S. Smith and J. Brady, "Asset-2: Real-time Motion
Segmentation and Shape Tracking", IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 8, no. 17, pp. 814-820,
1995.

We presented an accuracy-delay profiling methodology that is
applicable to tracking applications. General guidelines for
compromising the tracking accuracy with computation latency
have been proposed. Applying these techniques produces
different versions of the tracking algorithm with different
accuracy-latency behavior.

[14] E. Bozorgzadeh, S. Ghiasi, A. Takahashi, M. Sarrafzadeh,
"Optimal Integer Delay Budgeting on Directed Acyclic Graphs",
Design Automation Conference (DAC), June 2003. A collaborative signal processing system has been developed to

experiment our approach. The system consists of multiple
cameras with embedded processors and a control unit connected
through the local area network. A target tracking application
utilizing KLT feature selection and tracking algorithms has been
implemented on this framework. Since these algorithms are
computationally intensive, they do not show satisfactory
performance when run on the constrained embedded processors
of the camera. Therefore, various simplifications have been
made to these algorithms to adapt them to our framework and
allow adaptation of the application to parallel execution scheme.
Optimizations improved algorithm runtimes up to 12 times with
reasonable degradation in tracking accuracy.

[15] S. Ghiasi, K. Nguyen, E. Bozorgzadeh, M. Sarrafzadeh,
"On Computation and Resource Management in an FPGA-based
Computing Environment", A Poster in International Symposium
on Field-Programmable Gate Arrays (FPGA), February 2003
[16] C. Chen, E. Bozorgzadeh, A. Srivastava, M. Sarrafzadeh.
"Budget Management with Applications". Algorithmica, pages
261-275, July 2002.
[17] M.Sarrafzadeh, D.A. Knol and G.E. Tellez. "A Delay
Budgeting Algorithm Ensuring Maximum Flexibility in
Placement". In IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pages 1332-1341, 1997.

Future works include porting the algorithm on reconfigurable
hardware resources of the camera and applying the runtime
hardware reconfiguration to various applications handled by our
framework. Moreover, we would like to investigate the issue of
profiling for generic classes of applications.

7. References

[1] D. Tennenhouse, "Proactive Computing," Communications
of the ACM, May 2000, vol. 43, no. 5, pp. 59–66.
[2] M. Weiser, “The Computer for the 21st Century”, Scientific
American, Sept. 1991, vol. 265, no. 3, pp. 94–104.
 [3] D. Estrin et. al., "Embedded, Everywhere: A Research
Agenda for Networked Systems of Embedded Computers,"
Committee on Networked Systems of Embedded Computers,
Computer Science and Telecommunications Board, National
Research Council, Washington, DC, 2001.

http://www.iqinvision.com/

	Profiling Accuracy-Latency Characteristics of �Collaborative Object Tracking Applications
	Abstract

