
Innovate or Perish: FPGA Physical Design

Taraneh Taghavi, Soheil Ghiasi Abhishek Ranjan, Salil Raje Majid Sarrafzadeh
University of California,

Los Angeles
Hier Design Inc.

{ranjan, salil}@hierdesign.com
University of California,

Los Angeles
{taghavi, soheil}@cs.ucla.edu majid@cs.ucla.edu

ABSTRACT
The recent past has seen a tremendous increase in the size of
design circuits that can be implemented in a single FPGA. The
size and complexity of modern FPGAs has far outpaced the
innovations in FPGA physical design. The problems faced by
FPGA designers are similar in nature to those that preoccupy
ASIC designers, namely, interconnect delays and design
management. However, this paper will show that a simple re-
targeting of ASIC physical design methodologies and algorithms
to the FPGA domain will not suffice. We will show that several
well researched problems in the ASIC world need new problem
formulations and algorithms research to be useful for today’s
FPGAs. Partitioning, floorplanning, placement, delay estimation
schemes are only some of the topics that need complete overhaul.
We will give problem formulations, motivated by experimental
results, for some of these topics as applicable in the FPGA
domain.

Categories and Subject Descriptors
B.7.1 [Types and Design Styles]: Gate Arrays; B.7.2 [Design
Aids]: Layout, Placement and Routing.

General Terms
Algorithms, Design, Experimentation.

Keywords:
Physical Design, FPGA, Routing Architecture, Partitioning,
Floorplanning, Placement, Delay Estimation.

1. INTRODUCTION
Advances in process technology today are enabling a profound
increase in the number of applications that can be realized using
FPGAs. Multi-million gate capacity (Figure 1.1) and clock speeds
approaching 400 MHz (Figure 1.2) for FPGA-based design are
now main-stream. Densities approaching 10 million gates, shorter
design cycles and reduced development costs make programmable
devices increasingly attractive for a broader range of applications;
from networking, telecommunications and medical devices to
other consumer products.

0
10
20
30
40
50
60

1998 1999 2000 2001 2002 2003 2004

Difficult design problems associated with interconnect delay on
large designs are now being seen. As witnessed when high gate-
count deep sub-micron ASIC designs first emerged, interconnect
could account for as much as 70-90% of overall circuit delay as
critical dimensions shrink below 0.18um. These large design sizes
also significantly impact cycle time due to software runtimes and
an increased number of performance based iterations.
The most prudent approach to solving the FPGA design problems
would be to look for guidance in the ASIC domain. The 3
developments in the ASIC design flows that have helped the
ASIC designers solve the design complexity and the interconnect
delay problems can broadly be categorized into:

1. Hierarchical Design Flows
2. Early Estimation and Analysis tools
3. Physical Synthesis

Hierarchical design flows entail partitioning the design into
smaller and more manageable pieces, apportioning temporal
(timing budgeting) and physical constraints (floorplanning),
implementing each piece separately and then assembling all
pieces together. Till date there has not been much attention paid
to the impact of such flows on the quality of results. In [27]
authors have quantified the loss in quality in using various
partitioning and placement schemes during hierarchical design.
Modern placement techniques depend on partitioning algorithms
to minimize wire length, for e.g., DRAGON [24], CAPO [2]. All
partitioning techniques have a single area balancing constrain.
FPGA architectures, however, incorporate heterogeneous
resources. This places additional constraints on the balancing
criteria and new algorithms need to be developed to address these
new constraints.
Floorplanning, a heavily researched topic in the ASIC world, will
need immense re-engineering to account for the latest FPGA
architectures. For one thing, the FPGA floorplanning problem is a
fixed outline problem. There are discrete and distributed resources
spread across the FPGA fabric. These make all current floorplan
representations and algorithms ineffective at best.

Millions
of gates

Figure 1.1: FPGA Gates Capacity
Year

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’04, April 18-21, 2004, Phoenix, Arizona, USA.
Copyright 2004 ACM 1-58113-817-2/04/0004…$5.00.

0
50

100
150
200
250
300
350
400
450
500

1999 2000 2001 2002

Most known interconnect estimation algorithms would fail to
capture the peculiarities of the placement and routing architectures
in these new FPGA fabrics. Interconnect estimation is key to
physical synthesis approaches that try to predict and fix
interconnect delay problem. Interconnect delay has larger impact
in FPGAs than in ASICs given the large delays on the
programmable switches along the route structures.
This paper will take a fresh look at the newer FPGA architectures.
We will look at the ASIC EDA algorithms and make observations
as to the validity of these in the FPGA domain. The paper should
also spur researchers into designing new algorithms specifically
for FPGA.

2. FPGA ARCHITECTURE
Until recently FPGAs were laid out as rows and columns of
Configurable Logic Blocks (CLBs). With increasingly complex
requirements put on the FPGA industry the latest architectures
have become increasingly heterogenous.

Figure 2.1 shows one of the latest generation FPGA devices. It’s a
Xilinx VirtexII-Pro device. VirtexII-Pro devices are platform
FPGAs designed as custom integrated circuits in a 0.13 micron
process technology. They use a combination of nine layers of all
copper interconnection and low k dielectric and are being

produced on the latest 300 mm wafers. Flip-chip packaging is
used to achieve package pin counts of up to twelve hundred pins.
They have up to 4 Power PC 405 cores in them running at
300MhZ. They have up to 24 Gigabit IOs. Dedicated 10Kbit
Block Rams that total up to 10MBits on chip memory. These
include powerful CLBs that contain up to 8 4-input Look-up
tables. They have many dedicated 18-Bits X 18-Bits pipelined
multipliers running at 200MhZ for DSP applications. This device
also includes Digital Clock Managers for skew reduction and
stable clock generation. The trend seems to be towards adding
more and more dedicated cores within a programmable fabric.
Also, noteworthy are the type of routing topologies that have been
introduced by recent FPGA architectures.

Figure 2.2 (white squares denote CLBs and black squares denote
route switch boxes) shows types of routes that occur in Virtex-II
family of Xilinx devices. Long lines span full height and width of
the chip, Hex lines route signals to every third or sixth CLB in all
four directions, Double lines route signals to every first or second
CLB in all four directions, Direct lines connect signals to
neighboring blocks and the Fast lines are internal CLB local
connections. The Hex, Double, and Direct have very similar
delays, implying that the net delays are not directly proportional
to the distance. For example, a net that spans 6 CLBs may have
the same delay as the one that spans only 2 CLBs.
Most EDA algorithms that target FPGA physical design tools
assume an island style FPGA with delay on routes proportional to
the distance.
The following sections will detail the implications of such
complex FPGA placement and routing architectures to the
physical design space.

Figure 1.2: FPGA Maximum Clock Speeds

Power PC

Digital
Clock
Manager

RAMs and
Multipliers

CLBs Gigabit
IOs

Figure 2.1: Xilinx VirtexII-Pro Device

Long

Hex

Double

Direct

Fast

Figure 2.2: Xilinx VirtexII Device Route

Year

MHz

3. SIMPLIFIED ROUTING MODEL
As discussed earlier, FPGA layout and routing architecture is
completely different from that of ASIC designs. One of the key
differences between the two of FPGA and ASIC layouts is the
existence of so called long nets in FPGAs that connect distant
CLBs with almost no delay penalty. On the contrary, correlation
of the physical distance and delay between two nodes is an
underlying fact in ASIC designs.
Hence, FPGA physical design tools need to be aware of the target
layout. In this section, we propose a simplified segmented routing
model that can serve as the underlying layout for many FPGA
physical design tools. We strive to keep the model as simple as
possible, yet general and powerful enough to capture the
fundamental routing characteristics of many current and future
FPGA families.
A simple segmented routing model can be generally specified by a
set of pairs (ti, ci), where ti represents the wire type and ci denotes
the wire count (the number of wires of type ti in the layout). Of
course such a model does not completely capture all the details of
FPGA architectures. For example, a hex line of Xilinx VirtexII
devices can be used to connect CLBs of distance three or six.
This fact is not modeled by our simple representation. We believe,
however, that the type and count representation is simple yet
powerful enough to facilitate and accommodate the development
of efficient FPGA physical design tools.
Accuracy and simplicity are two contradictory dimensions of any
model solution space. A reasonable tradeoff between these two
dimensions provides a model that is simple enough to be
analyzed, yet accurate enough to allow reasonable optimizations.
The general type and count model can be finely tuned to correlate
as much as possible with any particular FPGA architecture. On
the other hand, the model can also be parameterized to simplify it
even further, without harming its accuracy significantly.
Specifically, the size of nets existing in many FPGA routing
architectures, seem to follow a semi-linear pattern of variation.
This would allow us to specify the types of the nets in our model
using two parameters. Similarly, the number of wires of each type
tends to vary by a multiplicative factor compared to the wire of
the immediately smaller size. Therefore, wire counts can also be
approximated by two parameters, where one parameter would
represent the count of wires of type 1, and the other parameter is
the multiplicative factor.
More specifically, let MRj(a, d, q) denote the following set of type
and count pairs:

}&|).),1.({(
}1&|).,{(),,(

1

1

jiaZiqdaia
jiZiqdiqdaMR

i

ij

≤≤∀∈−+

∪≤≤∀∈=
−

−

Figure 3.1 shows the idea of our parameterized model. Parameters
j and a are utilized to approximate the type of nets existing in a
particular layout with two lines. Particularly, parameter j
corresponds to different generations of FPGA devices. Advances
in technology allow integration of a larger variety of net types on
the chip, which can be modeled with incrementing j. Note that an
architecture modeled by a particular value of j contains all the nets
that can be represented by smaller values of j. parameters d and q
contribute to the number of wires of each type.

Note that the presented model is completely based on observing
current FPGA architectures, and the trend that seem to be
continued for future generations of programmable devices. We
believe that the presented simplifications lead to a reasonable
extent of compromise between accuracy and simplicity of the
model. For example MRj(3, 3, 3) can approximate the routing
architecture of Xilinx Virtex II devices reasonably.

Figure 3.1. Parameter j corresponds to different generations
of the FPGA device. Two lines with slopes of 1 and a are used
to approximate the growth in the length of nets. There are
d.q(j-1) nets of type j.

Note that j=1 always creates the routing architecture of an
ordinary mesh, where each node is connected only to its
immediate neighbors. Efficient FPGA physical design tools,
however, need to be able to handle larger values of j, since they
more closely capture the characteristics of the FPGA layouts.

4. PARTITIONING
As can be seen from our previous section modern FPGA
architectures incorporate heterogeneous resources. These
heterogeneous resources are distributed through the fabric of an
FPGA. Many modern placement techniques are based on
partitioning as their backbone, e.g. DRAGON [24], etc. At each
step of these placement algorithms the placement region is
divided into smaller sub-regions. The circuit is then partitioned
into smaller sub-circuits and assigned to the sub-regions. The
partitioning step balances the areas of the sub-circuits to conform
to the areas of the regions they are assigned to. The sub-region
with a smaller sub-circuit assigned to it is now a smaller instance
of the original placement problem to be acted upon in the next
placement step. The process continues until the regions are small
enough and a detailed placement phase follows. For these
placement techniques to be applicable in the FPGA space,
partitioning techniques need to account for a balancing of
resources with distinct types. Partitioning of circuits into sub-
circuits need to balance resources used in each sub-circuit to the
available resources in each of the sub-regions. For example, a
partitioning solution that divides the circuit up into 2 sub-circuits
such that all Look-Up-Tables are assigned to one sub-circuit and
all RAMs are assigned to the other sub-circuit may have over-

m=1

m=a

j a

ti

subscribed these resources even if the 2 sub-circuits are balanced
in terms of the total number of cells. This problem was studied by
[26]. Researchers in [26] detailed an extension of hMetis to
account for such resource balancing. We describe below the
problem addressed by [26] and encourage researchers to attempt
other algorithms that would better the quality of results.
Problem 4.1: Let the resource type of a particular cell be
specified by t(v). Let cli

j denote the minimum number of resources
of type i allowed in partition j. Then the multi-resource bisection
P of hypergraph G seeks to minimize the cut subject to:

 cli
1 ≤ ∑∀v∈V: P[v]=1 and t(v)=I 1≤ cui

1and

 cli
2 ≤ ∑∀v∈V: P[v]=2 and t(v)=I 1≤ cui

2

5. FLOORPLANNING
Traditionally the floorplanning problem has been defined to be an
area packing problem on a set of modules; some that are hard
macros and have fixed height and width, others that are soft
modules that have a range of aspect ratios and areas to choose
from. Techniques involve having a compact representation of a
floorplan [9,10,15,16,17,18,19,20,21] and using simulated
annealing moves to modify the floorplan. There has been some
work done for fixed outline floorplanning [22] but most of these
are extensions of the area packing formulations.
Obviously, the traditional floorplan representations and
techniques will not be sufficient to meet the needs of FPGA. For
one, the traditional floorplan representations assume a continuous
space and all locations are available for placement of modules.
Secondly, the techniques assume a single area resource
requirement that is a continuous function of height and width
making the module areas additive.
The FPGA floorplan could be represented using the location of
the lower left corner of the module and the shape of the module.
If S = {(I, J)|1 ≤ I≤ Number of columns in device, 1≤ J≤ Number of rows
in device}, and M is a set of modules to be floorplanned, then the set
of all possible module placements can be represented as P = {(m,
l, s)| m∈M, l∈S, s∈S}, where m is the module, l is the location of
the lower left corner of the module and s is the bounding box
height and width of the module. Also, the bounding box for any of
the modules defined by l and s needs to be contained within the
device boundary. Given the above constraints |P| is O(|M|.n4),
where n is max(Number of columns in device , Number of rows in
device).
Given a floorplan representation and a suitable cost function the
FPGA floorplanning problem could be solved through stochastic
methods. However, we encourage other researchers to study this
problem more carefully and research better algorithms.
Problem 5.1: Let the resource type of a particular module, v, be
specified by t(v). The floorplan, F, will seek to optimize the cost
function C:

C = ∑α|ratio-1| + β(external-wire-length) + γ(overlap)
Where ratio is the aspect ratio of the module, external-wire-length
is the total wirelength measured as center-to-center manhattan
distance between modules times the number of nets between
module pairs, and overlap is the total overlap between pairs of
module rectangle boundaries. α, β, and γ are weights used to trade
off different cost criteria.

6. PLACEMENT
Placement forms the back bone of any good physical synthesis
system. Placement is a well researched problem in the standard
cell domain. However, traditional ASIC scalable placement
techniques such as min-cut or force-directed based algorithms are
effective when the layout space is geometric (e.g., a mesh).
As presented earlier, present FPGAs are departing from geometric
layouts, due to the existence of “express” (e.g. double/hex/long)
nets in the routing architecture. Express wires in the FPGA fabric
create extra edges in the mesh (that is usually used to model
standard cell designs) and route structures that hop across the
fabric remove edges from the mesh. In other words, in recent
FPGAs the re-configurable logic blocks that are physically
distant, can be connected to each other with almost insignificant
delay penalty.
It follows that direct adaptation of the traditional ASIC placement
techniques simply fail to produce high quality results for FPGAs.
FPGA placement techniques have to be layout-aware in order to
capture the change in the topology of the placement surface. We
will take a closer look at placement in the context of today’s
FPGAs, and introduce a few fundamental problems that require
extensive research to be reasonably addressed.
Problem 6.1: What is a good cost function for an FPGA
placement tool?
In ASIC domain, the length of a wire is proportional to its delay.
As we will elaborately discuss in section 7, that is not the case for
designs implemented on an FPGA. Therefore, traditional standard
cell placement cost functions are not directly applicable to FPGA
domain, due to fundamentally different routing model of the
FPGAs. Apart from the classic wirelength cost function, new
timing driven cost functions are also needed, because traditional
ASIC critical path definitions (physically longest path) would be
different in FPGA domain.
Problem 6.2: How can an FPGA placement tool estimate
congestion and routability?
In standard cell designs, quick and fairly accurate congestion
estimation of a given design can be performed by calculating the
density of the nets. The density (the chromatic number of the
interval graph corresponding to nets in a channel) represents the
maximum number of nets that have to be put next to each other in
that particular routing channel. While density serves as a fairly
reasonable metric in standard cell domain, it is no longer effective
for FPGA designs, the reason being the underlying segmented
routing architecture of the FPGAs. For example, a short local net
can be realized using a long net that passes through the entire
channel, which might translate into a congested area in another
location of the channel.

6.1 Experimental Setup
We have built a placement tool based on Dragon [24]. Dragon is a
state-of-the-art min-cut based standard cell placement tool, which
uses simulated annealing to optimize the placement in each
partition. Our new placement tool performs global placement of
circuit netlists on a simplified FPGA layout model.
In our simplified model, called Mi, each node of the grid is
directly connected to all of its neighbors of distance less than or
equal to i in all four directions (Figure 6.1). We assume that the
delay of all nets is equal in Mi. Hence, the delay associated with a
set of nets connecting two nodes is proportional to the number of

net segments (hops) that are used to connect the two nodes. It
follows that the traditional total wirelength metric would translate
into the total number of the net segments (hops) that are used to
connect pins. In [27] authors have shown that this metric
correlates very well with the post routing delay.
Our global placement tool uses the total number of net segments
as its cost function. Furthermore, we ignore the constraint of
limited number of wire segments at the global placement stage.
Therefore, we always assume that a net can be implemented using
the fastest (least number of segments) possible way at this stage.

Figure 6.1. In Model Mi each node is connected to all
neighbors that are at most i units distant (in all four
directions). Connections to node v only on one of the four
directions have been shown.

Interestingly Mi can model both mesh, and FPGA layouts. If i=1,
then each node of the grid is only connected to its immediate
neighbors. That is M1 is the well-known mesh layout, which is
normally used by traditional ASIC physical design tools. Larger
values of i can be used to capture the advances of the technology
that allow more long nets in the FPGA routing architectures.
We have implemented two global placers based on Dragon. The
first version places the CLBs by only min-cut partitioning of the
given netlist, while the second version tries to improve the results
in each partition using simulated annealing. The cost function for
both of the placers is number of net segments in Mi.

Circuit # of cells # of nets
ibm01 12,028 11,753
ibm02 19,062 18,688
ibm07 44,811 44,681
ibm08 50,672 48,230
ibm09 51,382 50,678
ibm10 66,762 64,971
ibm11 68,046 67,422
ibm12 68,735 68,376

Table 6.1. Details of placement benchmarks

We have created a set of synthetic benchmarks that have the same
number of nodes and connectivity as some IBM benchmarks.
However, the nodes in our benchmarks are assumed to have

similar sizes. This is required because nodes correspond to FPGA
CLBs that are similar, unlike different standard cell sizes in ASIC
domain. Table 6.1 demonstrates the original circuits that were
used to create our testbenches and their characteristics. The
circuits are part of IBM benchmark suit that are designed for
standard cell placement.

6.2 Experimental Results
We have placed the benchmarks shown in Table 6.1 using both of
our placement tools. The total number of wire segments for each
placed benchmark in Mi is reported in Tables 6.2 and 6.3. The unit
for each number is the grid size in Mi, which is constant for all
experiments.

Circuit i = 1 i = 2 i = 3 i = 4 i = 8

ibm01 122.1 67.2 48.9 38.8 25.9

ibm02 334.4 176.1 126.3 94.9 58.5

ibm07 777.8 411.8 292.2 234.6 143.0

ibm08 891.9 479.0 328.3 264.9 153.2

ibm09 738.6 399.0 284.4 221.2 136.0

ibm10 1177.7 608.5 439.8 337.7 201.3

ibm11 1111.4 582.4 417.7 325.3 198.7

ibm12 1562.3 850.7 565.8 443.2 260.9

Average 839.5 446.8 312.9 245.1 147.2

Table 6.2. Number of net segments (in thousands) on Mi, using

a partitioning-only placement tool.

Table 6.2 illustrates the results for the first version (placement
using only partitioning) of our placement tool, while Table 6.3
exhibit the results for the second version of the placer (placement
using partitioning + simulated annealing). The numbers shown in
both tables are in million wire segments. The last row of both
tables indicates the average wire segments over all benchmarks.

Circuit i = 1 i = 2 i = 3 i = 4 i = 8

ibm01 97.7 50.9 38.5 33.0 24.6

ibm02 265.8 141.6 102.4 82.8 52.7

ibm07 602.0 316.2 240.9 188.3 124.0

ibm08 650.1 361.0 254.8 208.0 136.5

ibm09 575.0 307.8 232.9 183.4 123.8

ibm10 935.6 499.0 377.2 289.2 190.2

ibm11 843.0 448.6 338.9 264.9 179.9

ibm12 1225.0 623.8 443.2 364.4 227.9

Average 649.3 343.6 253.6 201.7 132.4

Table 6.3. Number of net segments (in thousands) on Mi, using

a partitioning+annealing placement tool.

0 1 2 1 3 i i+1

v

The chart in Figure 6.2 demonstrates the variations of the average
number of wire segments (last row of Tables 6.2 and 6.3) over
different layout models. Larger values of i correspond to newer
generations of the FPGAs, where longer wire segments, and more
number of wire segments exist in the routing architectures.
Naturally, the number of wire segments required to connect pins,
decreases by addition of extra nets into layout.
As can be observing from Figure 6.2, Incrementing i from 1 to 2
almost halves the number of net segments required to route the
connections. It can be inferred that there are many net segments
whose length is greater than 1 in at least one of the two X or Y
directions. All such nets would be routed with less number of net
segments in M2 compared to M1. Note that nets of length 1 (in
either of the two X and Y directions) incur the same cost in all Mi.

Number of net segments for different routing models (Mi)

0

100

200

300

400

500

600

700

800

900

1 2 3 4 8

Th
ou

sa
nd

s

i

To
ta

l n
um

be
r o

f n
et

 s
eg

m
en

ts

Partitioning Only
Partitioning + Annealing

Figure 6.2. Average number of wire segments for different
layouts.

On the other hand, most of the nets in a placed design are local
nets whose lengths are not very large. Therefore, excessive
increasing of i does not exhibit the same trend in reduction of the
cost function. For example, the number of required net segments
in M8 is only about %20 of M1, where about %50 of savings
happen when we move from M1 to M2. Hence, our study provides
a rudimentary measure for evaluating area-delay tradeoffs
involved in designing routing architectures for FPGAs.

7. DELAY ESTIMATION
Recent works have tried to estimate wire delays at various levels
of design stages [4], [5], [11], [12]. Almost all of these previous
works have exploited features (routing resources, gridded
architecture etc.) of targeted FPGA architecture to estimate
delays. Though relevant to the targeted FPGA, most of these
previous methodologies cannot be applied to recent multi-million
gate FPGAs because of the complexity of the estimation process
[11][12].

Terminologies and Experimental Setup:
From now on whenever we say distance we mean Manhattan
distance between the CLBs in which driver and driven pins are
respectively located. Similarly, delay would mean delay between
driver and driven pins.

We will show experiments on one representative industry design,
ind_com (similar results were observed on other large designs).
This design has 8.7M gates and is targeted for 2v8000 VirtexII
FGPA device with 112x104 CLBs. All the data for these
experiments was generated using Xilinx’s Place and Route tool,
PAR [25]. PAR was run in high-effort mode for timing and
routing optimization.

Variables affecting wire delays:
Some of the variables which traditionally have been explored for
wire delay estimation are: fanout of the net (connecting driver-
driven pin pair), distance between driver-driven pin pair and
routing congestion [12]. Of these, routing congestion is the
hardest to measure and depends heavily on routing algorithm
being used. Congestion estimation is beyond the scope of this
work. We will limit ourselves to studying the impact of net fanout
and distance between driver-driven pin pair on wire delays.

Fanout of the net connecting pin pair
Fanout of the net has been shown to correlate really well with the
delay in Standard-Cell design methodologies and has been used
extensively to derive wire-load models for net delays [3].
However, our experiments show that in the FPGA domain a very
weak correlation exists between the two. In Figure 7.1, we show
post-routing delay for pin pair (with a distance of 2) versus net
fanout plot for ind_com design. For different values of the fanout
the range of delays is almost same, giving rise to the notion that
fanout has very little impact on delay. The reason why fanout of
the net does not impact delay lies more in the routing architecture
of the Xilinx FPGA devices. These devices use buffered inter-
connects to route the nets [25]. Routing switches break the net at
regular intervals and hence the traditional fanout based wire-load
models, using Elmore delay [7], cease to work.

Figure 7.1. Net fanout Vs delay for a fixed distance.

Distance between pin pairs
Authors in [12] have shown that delay between a pin pair has no
direct linear relation-ship with the distance between them. To
corroborate their observation, for every driver-driven pin pair (for
nets with fanout of 2) in ind_com design we plot distance versus
post-routing delay. It is evident from the plot, Figure 7.2 that even
though the delay seems to be increasing with the distance, for a
given distance the range of delays is too large. Trying to fit a

linear line to extrapolate the delay for a given distance will have
huge error margin.
However, if we plot delays for a given distance, interesting
patterns emerge. Figure 7.3 shows the plots of delays of all the
driver-driven pin pairs in ind_com design with a distance of 2. We
see that most of the delays are centered on very few vertical lines
thereby indicating that delays are combination of discrete values.
To motivate our argument for a discrete delay model, it would
help to take a look at the routing architecture in Figure 2.2. It is
this discrete routing structure which gives rise to vertical lines in
Figure 7.3. For a distance of 2 CLBs between a driver-driven pair,
the number of possible routes is limited. Such a distance can be
routed using either of the following: one double line, two double
lines, or a direct line and a double line etc. The delays for these
different types of lines are almost constant (minor variations
might occur due to switch-box delays) and have no relation to
each other. For example, delay of a hex line is not three times the
delay of a double line or six times the delay of a direct line but is
only slightly larger than the delay of a double or direct line.

Figure 7.2. Distance Vs delay for a fixed fanout.

Based on the plots in 7.1 and 7.2 we see that traditional delay
estimation techniques that depend on the fanout of the net in
question and the distance between specific pin pairs fall apart in
the FPGA domain. Wang et al [27] illustrate an algorithm to
estimate the delays between pin pairs for VirtexII architectures.
The algorithm is based on estimating the type of routes used
between the two CLBs on the FPGA fabric. In [27] the design is
already placed and routing has not been performed. Accurate
delay estimations, however, also need to be performed earlier in
the design flow to enable performance based logic and placement
optimizations.
Problem 7.1: Let d(pi, pj) be the delay associated with the net
segment between source pin pi and the sink pin pj. Predict the
delay, e(pi, pj) prior to placement to minimize E, where:

E = ∑ |d(pi, pj)-e(pi, pj)|
A more relevant problem formulation would be the one that
reduces the error in delay estimates on all timing paths found in
the design.

Figure 7.3. Discrete delay bands for a distance of 2.

Problem 7.2: Let Pm

n be the mth path in the design with n timing
pins along the path. Let d(pi, pi+1) be the delay associated with the
net segment between source pin pi and the sink pin pi+1 along the
path. Predict the delay, e(pi, pi+1) prior to placement to minimize
E, where:

 E =∑∀m |∑∀i s.t (i ≤ n) and(i mod 2 = 1) d(pi, pi+1)-e(pi, pi+1)|

8. CONCLUSION
Advances in technology have lead to creation of high capacity and
heterogeneous FPGA devices. Many underlying ASIC domain
assumptions, such as continuous area or customized routing
segments, do not hold for such architectures. Therefore, a direct
retargeting of traditional physical design techniques does not
provide quality results for reconfigurable devices. It follows that
many well-researched physical design problems need to be
reformulated and investigated in order to fully utilize modern
FPGA devices.
In this paper, we presented a number of basic physical design
problems, and showed why traditional techniques would fail to
produce reasonable results. Particularly, we overviewed
traditional partitioning, floorplanning, placement, and delay
estimation techniques, and highlighted their shortcomings for
producing good results for modern FPGAs.
In each section, we formulated a few underlying problems that
can potentially initiate fundamental research efforts in that area.
Moreover, we proposed a simplified yet powerful model for
representing segmented routing architectures. The model can be
utilized in many different physical deign stages such as
placement, routing and delay estimation. We encourage
researchers to investigate the proposed ideas and problems
further, in order to develop novel and efficient FPGA physical
design tools.

9. ACKNOWLEDGEMENTS
The authors would like to thank Mr. Bo-Kyung Choi for his
generous help in implementing the placement experiments, and
fruitful discussions.

p1
p2 p3 p4 pn

10. REFERENCES
[1] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A.
Zelikovsky, “On Wirelength Estimations for Row-based Placement,”
ISPD, pp. 4-11, 1998.

[2] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive
Bisection Alone Produce Routable Placements?” in Design Automation
Conference, pp. 477-482, 2000

[3] C. Chen and C. Tsui, “Timing Optimization of Logic Network using
Gate Duplication”, ASP-DAC, pp. 233-236, 1999.

[4] C. S. Chen, Y.-W. Tsay, T. HwangA. C. H. Wu and Y.-L. Lin,
“Combining Technology Mapping and Placement for Delay-Optimization
in FPGA Designs,” ICCAD, pp. 240-247, 1993.

[5] J. Cong and Y. Ding, “An Optimal Technology Mapping Algorithm
for Delay Optimization in Lookup-Table Based FPGA Designs,” ICCAD,
pp. 48-53, 1992.

[6] W. E. Donath, “Placement and average interconnection lengths of
computer logic”, IEEE Transactions on Circuits and Systems, CAS-
26(4):272-277, April 1979.

[7] W. C. Elmore, “The Transient Response of Damped Linear Networks
with Particular Regard to Wide Band Amplifiers,” J. Applied Physics,
19(1), 1948.

[8] J. M. Emmert, and D. Bhatia, “A Methodology for Fast FPGA
Floorplanning”, Proc. FPGA, 1999.

[9] P. N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-Tree
Representation of Non-Slicing Floorplan and Its Applications”, Proc.
DAC, pp. 268-273, 1999.

[10] M. Z. Kang and W. Dai., “Arbitrary Rectilinear Block Packing Based
on Sequence Pair”, Proc. ICCAD, pp. 259-266, 1998

[11] T. Karnik, “Hierarchical Timing-Driven Partitioning and Placement
for Symmetrical FPGAs,” PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

[12] T. Karnik and S. M. Kang, “An Empirical Model For Accurate
Estimation of Routing Delay in FPGAs,” ICCAD, pp. 328-331, 1995.

[13] G. Karypis and V. Kumar, “Multilevel k-way Hyper-graph
Partitioning”, in Design Automation Conference, pp. 343-348, 1999

[14] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich,
“GORDIAN: VLSI Placement by Quadratic Programming and Slicing
Optimization”, IEEE Transactions on Computer Aided Design, 10(3):
365-370, 1991

[15] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, “VLSI Module
Placement Based on Rectangle-Packing by the Sequence Pair”, IEEE
Trans. On CAD, vol 15(12), pp. 1518-1524, 1996

[16] R. Nair, C. L. Berman, P. Hauge, E. Yoffa, “Generation of
Performance Constraints for Layout”, IEEE Trans. On CAD, vol. 8(8), pp.
860-874, 1989.

[17] R. H. J. M. Otten, “Efficient Floorplan Optimization”, ICCD, pp.
499-503, IEEE/ACM, 1983

[18] R. H. J. M. Otten, “Automatic Floorplan Design”, Proc. DAC,
pp.261-267, 1992

[19] L. Stockmeyer, “Optimal Orientation of Cells in Slicing Floorplan
Designs”, Information and Control,57(2), pp. 91-101, 1983

[20] X. Tang, R. Tian and D. F. Wong, “Fast Evaluation of Sequence Pair
in Block Placement by Longest Common Subsequence Computation”,
DATE 2000, pp. 106-111.

[21] X. Tang and D. F. Wong, “FAST-SP: A Fast Algorithm for Block
Placement Based on Sequence Pair”, ASPDAC 2001.

[22] A. Ranjan, K. Bazargan, M. Sarrafzadeh, "Fast Hierarchical
Floorplanning with Congestion and Timing Control", IEEE International
Conference on Computer Design (ICCD), pp. 357-362, September 2000.

[23] J. Vygen, “Algorithms For Large-scale Flat Placement”, Proc. Design
Automation Conference, pp. 746-51, 1997.

[24] M. Wang, X. Yang and M. Sarrafzadeh, “Dragon2000: Standard-Cell
Placement Tool For Large Industry Circuits”, ICCAD, pp. 160-163, 2000.

[25] Xilinx Inc., http://www.xilinx.com/

[26] N. Selvakkumaran, A. Ranjan, S. Raje, G. Karypis, “Partitioning
Algorithms for FPGAs with Heterogenous Resources”, Symposium on
Field Programmable Gate Arrays, 2004.

[27] M. Wang, A. Ranjan, S. Raje, “Multi-Million Gate FPGA Physical
Design Challenges”, ICCAD, pp. 891-898, 2004.

