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Microfabrication of
self-assembling elements for 3D
negative-index materials

M. Saif Islam and Logeeswaran V]

A planar microfabrication process creates arrays of self-assembling
nonplanar elements suitable for three-dimensional negative-index ma-
terials (3D-NIMs).

Negative-index materials (NIM) are a new class of ma-
terials (metamaterials) with simultaneous negative permit-
tivity, e, and negative magnetic permeability, u, as an-
alyzed by Victor Veselago.! This unconventional electro-
magnetic property allows unique and exotic applications,
such as new designs in airborne radar, “perfect” thin-slab
lenses with sharper images than conventional diffraction
limits allow,*® higher-resolution magnetic-resonance imaging,
miniature antennas, and high-power communication-signal
modulation.

One key strategy for engineering NIMs is constructing a pe-
riodic array of composite elements. These elements comprise
both resonant negative-u "particles’, which couple to the mag-
netic fields, and conducting negative-e particles, which couple
to the electric fields.**

The dimensions of the elements should be much smaller than
the wavelength of interest, by a factor of 20-100, so that the
incident electromagnetic radiation ‘sees” a homogeneous mate-
rial. Microwave realizations of NIM have been successful, but at
higher terahertz, IR, and visible frequencies, the required parti-
cle size decreases. Therefore, innovative structures and precision
fabrication processes are a pressing need.”

The large elements that comprise microwave NIMs have
been limited in another way as well, because the par-
ticles used generate a field in only a single direction.
In principle, the electromagnetic response can be extended
from one dimension to 2D or 3D by incorporating addi-
tional particles with different orientations. Published work
to date centers on 1D- and 2D-NIMs, however, because
they are relatively easy to make using well-known printed-

Figure 1. In the self-assembled element, strain within a patterned bi-
layer film raises coils off of the substrate in two directions, providing
the three axes of electromagnet response needed for a three-dimensional
negative-index material (3D-NIM).

circuit-board lithography-macroassembly technology**'* and
microlithography-macroassembly techniques.”'* '

The above-mentioned applications, however, would ideally
employ 3D, homogeneous, isotropic NIMs (3D-NIMs).> As the
size of individual NIM particles shrinks, however, fabrication
and assembly grow more complex. Established technologies
are not amenable to realizing 3D-NIM and do not support
sub-millimeter (<200um) feature sizes reliably. Coarse macro-
assembly of individual NIM particles or 2D substrate-gluing
methods will not be advantageous for the high-quality, low-cost
3D-NIM media that are envisioned as building blocks for many
future applications.®!*1
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Figure 2. The angle of curvature for the self-assembled NIM unit cell
is about 25°.

Recently, true isotropic 3D-NIM implementations have been
proposed theoretically by Costas Soukoulis’® and He Sailing"
via integrated split-ring-array-wire arrays and by George
Eleftheriades® and Christophe Caloz? via transmission-line
inductor-capacitor (LC) elements. To date, however, 3D micro-
fabrication has only been demonstrated for a single unit cell of
3D-u by Niels Quack et. al.”

To enable 3D-NIM topology, we developed a fabrication
method using a low-cost and massively parallel microfabri-
cation and self-assembly technique.” First, an array of ele-
ments was created through planar microfabrication techniques.
The construction exploits the as-deposited residual stress im-
balance in a bi-layer consisting an electron-beam-evaporated
chromium metal layer and a structural layer of low-stress sili-
con nitride deposited on a silicon substrate. The thin chromium-
and-silicon-nitride bi-layer is formed as hinges, and functions as
the negative-e material. The strain mismatch between the two
layers curls the structural layer (a flap) containing the split-ring
resonators (SRR) upwards. The self-assembled out-of-plane an-
gular position depends on the thickness and materials compris-
ing the bi-layer.

A periodic continuation of a single, rectangular unit cell con-
sisting of SRRs and wires were then fabricated. The individual
unit cells can be designed to be isotropic and arrays of the unit
cells can be stacked to achieve larger 3D structures.

This built-in stress-actuated assembly method is suitable for
applications requiring a thin dielectric layer for the SRR. The
SRR and other structures are created on the membrane, which
then self-assembles into the nonplanar configuration required
for 3D electromagnetic response. The theoretical relationship for
the metal-dielectric bi-layer has been derived** and success-
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Figure 3. Standard lithography yields an array of virtually identical
self-assembled nonplanar elements suitable for 3D-NIM.

fully implemented for a single-cell portable 3D power source,
nanophotonics, and 3D photonic crystals.?

Since the bi-layer hinge acts as the negative-e element and
the SRR acts as the negative-u element, the SRR metal must be
judiciously chosen to have a small interaction with the dielec-
tric layer to avoid introducing secondary beam curvature. We
used gold for the SRR particle and chromium for the hinge par-
ticle. The hinge length is chosen through the beam-curvature
equation® so that the angle of the flap containing the SRR results
in a negative p. The hinge size depends also on the requirement
for the negative e values." Hence the mechanical design, micro-
fabrication design rules and electromagnetic properties must be
optimized together.

Figure 1 shows a scanning-electron micrograph of a unit cell of
the fabricated SRR and hinge. The self-assembled angle is ~ 25°,
as shown in Figure 2. Overall, the feasibility of the configuration
is supported by the array that faithfully reproduces the unit cell,
shown in Figure 3.

Our preliminary results have shown that mass manufacture
of 3D-NIMs is feasible using a metal-dielectric-bilayer stress-
actuated self-assembly. This fabrication method is scalable from
microwave (10GHz) to optical frequencies (300THz) by appro-
priate choice of material, thickness, and release-etching chem-
istry. Efforts are currently underway to develop a parallel mi-
crofabrication and self-assembly process using a thicker released
holding plate (~5 to 10 microns) with deformable hinges for the
SRR and wires. Unlike the research-based approach of fabricat-

Continued on next page




N\ . .
@ The International Society
for Optical Engineering

10.1117/2.1200612.0515 Page 3/3
SPIE Newsroom

ing a single structure for characterizing the unique properties of
NIMs, our mass-manufacturable process may offer opportuni-
ties for reproducible fabrication of 3D-NIM materials with fre-
quencies from the microwave to optical domain.
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