Microwatt Design for Energy Harvesting Wireless Sensors

Rajeevan Amirtharajah
University of California, Davis
Emerging Microsensor Applications

Industrial Plants and Power Line Monitoring (courtesy ABB)

Operating Room of the Future (courtesy John Guttag)

Target Tracking & Detection (Courtesy of ARL)

Location Awareness (Courtesy of Mark Smith, HP)

Websign

NASA/JPL sensorwebs
Commercial Wireless Sensor Mote

Moteiv Sky mote, 2006

Jiang, IPSN/SPOTS 2005

• Current sensor node: 70 mW all active, 17 μW idle
• Power sources contribute significant volume and cost
• Smaller system (1 cm³) desirable (less obtrusive military sensor, implantable biomedical device)
• Reduce power consumption, get energy from environment
Energy Scavenging Wireless Sensor

- Extend sensor node lifetime beyond battery limitation
 Scavenging energy from light, heat, and vibrations
- Cope with the variability of the harvested power
 Energy scalable approximate signal processing
System Requirements

<table>
<thead>
<tr>
<th>Functional Block</th>
<th>Power Consumption</th>
<th>Voltage</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>185 μW</td>
<td>1.2 V</td>
<td>7.78 kΩ</td>
</tr>
<tr>
<td>[R. Amirtharajah et al, SPIE, 2005]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td>3.1 μW</td>
<td>1 V</td>
<td>322 kΩ</td>
</tr>
<tr>
<td>[M. Scott et al, JSSC, 2003]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td>6 μW</td>
<td>1 V</td>
<td>166 kΩ</td>
</tr>
<tr>
<td>[B. Warneke et al, ISSCC, 2004]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>1 mW</td>
<td>1.2 V</td>
<td>1.44 kΩ</td>
</tr>
<tr>
<td>[B. Otis et al, ISSCC, 2005]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- System works with low duty-cycle, total average power = 5 μW
- ADC - requires low power and clean V_{DD}
- DSP - requires low power, noisy V_{DD} ok
- RF - requires high peak power
Common Vibration Sources

<table>
<thead>
<tr>
<th>Vibration Source</th>
<th>Frequency of Peak (Hz)</th>
<th>Peak Acceleration (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchen Blender Casing</td>
<td>121</td>
<td>6.4</td>
</tr>
<tr>
<td>Clothes Dryer</td>
<td>121</td>
<td>3.5</td>
</tr>
<tr>
<td>Door Frame (just after door closes)</td>
<td>125</td>
<td>3</td>
</tr>
<tr>
<td>Small Microwave Oven</td>
<td>121</td>
<td>2.25</td>
</tr>
<tr>
<td>HVAC Vents in Office Building</td>
<td>60</td>
<td>0.2-1.5</td>
</tr>
<tr>
<td>Wooden Deck with People Walking</td>
<td>385</td>
<td>1.3</td>
</tr>
<tr>
<td>Bread Maker</td>
<td>121</td>
<td>1.03</td>
</tr>
<tr>
<td>External Windows (size 2ftx3ft) next to a Busy Street</td>
<td>100</td>
<td>0.7</td>
</tr>
<tr>
<td>Notebook Computer while CD is Being Read</td>
<td>75</td>
<td>0.6</td>
</tr>
<tr>
<td>Washing Machine</td>
<td>109</td>
<td>0.5</td>
</tr>
<tr>
<td>Second Story of Wood Frame Office Building</td>
<td>100</td>
<td>0.2</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>240</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Courtesy P. Wright, UC Berkeley
Vibration Generator Mechanical Model

- Second order mechanical system: spring + mass + dashpot
- Driven by amplitude forcing function at resonance

Output Electrical Power

\[P = \frac{m \zeta_e A^2}{4 \omega \zeta_T^2} \]
Vibration to Electric Energy Converters

Mesoscale Moving Coil
- Estimated output power: 400 μW

MESM Variable Capacitor
- Estimated output power: 8.7 μW

Mesoscale Piezo Bender
- Output power: 375 μW

Courtesy P. Wright, UC Berkeley
Multi-Electrode Piezoelectric Generator

- Top plate divided into quarter-circle sections
- Bottom plate not divided, total of 5 electrodes
- PZT (lead zirconate titanate) disk diameter = 1.5"
Multiple Resonances with Cuts

• Without cuts only mode near 1 kHz is usable
• Simulated results from lumped model derived using rigid body analysis
• Traveling wave excites neighboring top plate signals with 90° relative phase shift
Rectifier Alternatives

- Conventional (inductively loaded) rectifier
 [M. Ghovanloo, et al., *JSSC* Nov. 2004]
• Dashed outline: one CMOS controlled rectifier (CCR)
• Snubbing diode used on each input for negative swings
• Input frequency = 10 kHz
Die Photograph

- Constructed in 0.35 μm CMOS
- PMOS power FET width = 500 μm
Multiple-Input Power Supply

- AC/DC combines a rectified V_{vibe} with V_{solar}
- DC/DC further smoothes harvested energy to form V_{out}
Multiple-Input Power Supply Measured Output

- DC/DC output controller switches between functional blocks
- DSP tolerates high ripple, so the controller trades efficiency for ripple
Multiple-Input Power Supply Chip Photo

- 0.25\(\mu\)m CMOS, total active area
- To appear ISSCC 2009
Sensor Data Processing Subsystem

Microcontroller
- Sensor calibration
- DSP configuration
- High active power
- Low duty cycle

DSP Coprocessor
- Continuous sensor data processing (e.g., event detection)
- High duty cycle
- Ultra low active power

Bridge Sensor
- SWNT or SiNW
- SWNT or SiNW
- SWNT or SiNW
- SWNT or SiNW

Microcontroller

A/D Converter

DSP Coprocessor
Extend sensor node lifetime beyond battery limitation
Scavenging energy from light, heat, and vibrations

Improve total efficiency by co-design
Self-timed digital circuits enable simple power electronics
Self-Powered System Overview

- Vibration harvester output (V_{IN}) can vary rapidly
- Regulator exploits DSP delay/frequency feedback
 - Compensates for temperature, process, and computational workload variations
 - Allows simple all digital control (Amirtharajah JSSC 98, Dancy TVLSI 00)
- Regulator efficiency still limited to between 30% - 70%
Simplifying Voltage Regulation

- Eliminate AC/DC conversion from power electronics
- Use passive full-wave rectifier with minimum filter cap to reduce complexity and volume
- Self-timed DSP using critical path replica ring oscillator satisfies timing constraints while using rectifier output
- Self-timed datapath must be initialized at power-on
- Must maintain state across power supply cycles
AC Supply Test Chip Block Details
3T DRAM Cell Layout

- 46 µm² gate size chosen for 1.2ms retention
 - Vdd = 400 mV
 - 0°C < T < 50°C
- Hold time for 60 Hz supply
Rectified Waveform and POR Output

- POR Output

- On Chip Rectifier Output
 - From 60 Hz Sine Input
Measured Frequency Variation with AC Supply

- Ring Oscillator Frequency Varies
- Arbitrary Wave Form Generator Output Used For AC Input
AC Supply Test Chip Photo and Summary

<table>
<thead>
<tr>
<th>Technology</th>
<th>180 nm CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>2.6 mm x 2.6 mm</td>
</tr>
<tr>
<td>Transistors</td>
<td>135K</td>
</tr>
<tr>
<td>I/O V_{DD}</td>
<td>1.8 V</td>
</tr>
<tr>
<td>AC Supply (V_{pp} = 1.8 V)</td>
<td>60 Hz – 1 kHz</td>
</tr>
<tr>
<td>Core Freq. (max)</td>
<td>75.6 MHz</td>
</tr>
<tr>
<td>Power (Core)</td>
<td>127 – 113 µW</td>
</tr>
</tbody>
</table>

- Published Symposium on VLSI Circuits, 2007
Energy Scalable Array

Test Chip Features

- Sixteen tiles connected by island-style x and y routing
- Implemented in 0.25 μm CMOS from TSMC
- Includes test structures for low switching activity interconnect
- Includes multiple-input energy harvesting power supply (to appear ISSCC09)

- Several operations confirmed, working out configuration issues
- Currently testing array
• Simulated power and projected recognition performance for biomedical event detection application
Energy and Voltage Scalable Sensor Interfaces

- Passive modulator Sigma Delta ADC
- Chip verified over range of OSRs: about 10 bits, 450 nW power consumption for 1 kHz input BW
- Useful ENOB from $V_{DD} = 1$V down to 200 mV
- Submitted to VLSI 2009
Incorporate in (mostly) standard CMOS flow, between metals

- Poor device properties may be okay for sensor applications
Conclusions

• Energy harvesting for wireless sensors is made practical by leveraging low performance demands

• Mesoscale vibration transducers possible, but challenging to scale below 1 cm3

• Exploiting the AC nature of mechanical vibration energy harvesting using self-timed circuits can improve total system efficiency

• Energy and voltage scalable digital and mixed-signal circuits and architectures crucial for energy harvesting systems

• Nanowire devices offer new opportunities for microwatt sensors, interfaces, and processing circuits
Acknowledgments

- Albert Chen
- Jamie Collier
- Erin Fong
- Liping Guo
- Nate Guilar
- Travis Kleeburg
- Jeff Loo
- Mackenzie Scott
- Jeff Siebert
- Justin Wenck
- Prof. Paul Wright, UCB
- Prof. Stephen Lewis, UCD
- Prof. Paul Hurst, UCD
- National Science Foundation CAREER Award
- FCRP Interconnect Focus Center
- Xilinx University Program and Xilinx Research Labs
- U.S. Dept. of Education GAANN Fellowship
- TSMC