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Abstract—Smartphones offer sophisticated features (e.g., Wi-
Fi, GPS, etc.) that require significant energy and limit battery life.
Offline smartphone power modeling with benchtop equipment is
cumbersome for software developers and takes substantial time
to perform on multiple devices. By running on the device itself,
online modeling can be performed dynamically and is scalable to
many different smartphones. Previous online modeling work used
existing battery management unit (BMU) current sensors with a
high internal sample rate (18.6 kHz), but very low (software-
readable) output register update rates (0.28 Hz). We propose
allowing the register update rate to be dynamically adjusted to
decrease online modeling time and energy cost. In this work we
consider the benefits and evaluate the trade-offs of this approach.

I. INTRODUCTION

Smartphone technology has seen rapid advances in recent
years however, battery technology has not kept pace. This
mismatch between slowly increasing battery energy density
and rapidly increasing functionality has required more focus
on software power optimization to maximize battery life.
Although offline external power measurements can be made
directly using benchtop electrical test equipment and a current
sensor, most software developers have little to no experience
with this equipment nor outfitting a smartphone battery with a
current sensor. Instead of general-purpose benchtop equipment,
many developers instead choose a power measurement device
designed specifically for smartphones such as the Monsoon
power monitor which connects directly to smartphone battery
terminals[1]. This external measurement approach is cumber-
some because it requires fairly expensive equipment (800+
USD) and is not portable.

In contrast, online internal power measurements do not
require extra equipment and have no portability restrictions.
These measurements are performed using the battery monitor
unit (BMU) IC inside the smartphone battery (See Figure
1). The BMU estimates the remaining battery state of charge
(SoC) and communicates with the system over a two wire bus
such as I2C or 2-wire. To estimate battery life BMUs have
built-in temperature, voltage, and current ADCs. These devices
must be highly energy efficient to avoid diverting significant
power from the smartphone itself. Previously, integrating ADC
architectures that measure the total current over a fixed time
period were used to meet efficiency requirements, but, as
semiconductor technology has improved, sigma-delta ADCs
that measure discrete samples are now used instead. Despite
this distinction, BMUs based on both technologies still expose
only the average current measurements to software over a

Fig. 1: DS2784 Battery Monitor Unit [2] ADCs, each output
register and update rates.

slow fixed period. For example, the Maxim DS2784 BMU,
used by the Google Nexus One, has a 16-bit sigma-delta ADC
with a sample rate of 18.6 kHz for measuring current, but
only updates the average current output register every 3.52
seconds (0.28 Hz) [2]. We presume newer BMUs maintain the
same interface for backwards compatibility, but increasing the
update rate can improve online modeling while leveraging the
existing ADC sample rate.

Despite the slow BMU update rate, previous work has
shown that accurate power measurements can be made by
running software benchmark tests in a loop starting and ending
on update rate boundaries to avoid measuring power outside
the test [3]. Although this technique overcomes the slow BMU
current update rate, more frequent and less time-consuming
measurements could be made if the update rate was higher.
Since the ADC already samples at a higher rate, only a minor
adjustment would be necessary to present faster measurements
to software. Furthermore, the I2C interface in fast mode has
sufficient bandwidth, 400 kbit/s, to continuously transmit the
16 bit current measurements at 18.6 kHz (297.6 kbit/s).

Faster measurements have multiple advantages for online
power modeling, where a model is constructed based on bench-
marks which are run for each component and averaged in a
loop to characterize each state. The first advantage is to identify
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“hidden” states that can not be measured by a slow update rate.
If the update rate is increased to expose hidden states, the
accuracy of the model will then be improved. Second, after an
initial request, many components remain in high power states
to exploit temporal locality for a predefined fixed period of
time, known as a “tail”. Faster update rates can measure tail
durations to further increase model accuracy. Lastly, shorter
update periods reduce the time to run benchmarks and could
even allow measurements to be performed at run-time from
actual usage instead of benchmarks.

The BMU has only recently been considered for con-
structing online power models in smartphones [3]. In this
paper we expose the limitations of low BMU update rates for
online modeling and discuss the benefits of faster update rates.
Furthermore, this enables seamless online modeling while an
application is running using sophisticated DPM strategies as
in [4]. The key questions to consider for increasing update rate
speed are: How high should the update rate be? Is there a point
of diminishing returns? Is it dependent on the platform as a
whole or individual components like GPS, Wi-Fi, etc.? The
objective of this paper is to analyze these questions provide
the following contributions:

• Quantifying the trade-off between update rate and
online model accuracy.

• Identifying the necessary update rates to capture hid-
den GPS and Cellular states.

• Quantifying the measurement time and energy to build
online models based on update rate.

The rest of this paper is organized as follows: First, in
Section II we summarize the related work in this area. Second,
in Section III we discuss the challenges to low update rate
online power modeling. Next, in Section IV we describe the
methodology used to measure power and simulate different
update rates in this work. In Section V we present the results
of our measurements and discuss their significance. Lastly, in
Section VI we summarize the conclusions of this work and
discuss future work.

II. RELATED WORK

In [3] component-specific software benchmarks are aligned
to BMU updates to ensure accurate measurements. This work
is most closely related to ours because we use their bench-
marks and update rate alignment to compare the DS2784 low
BMU output register update rate to faster rates. [5] also runs
component-targeted benchmarks, but instead of directly gen-
erating a model uses a genetic algorithm instead. [6] does not
develop component benchmarks, but instead uses preexisting
third-party benchmark suites with linear regression to construct
the model. [7] uses voltage measurements and the battery
discharge curve instead of a current sensing BMU. The voltage
before and after each component test is recorded to calculate
the energy dissipated and infer the current measurement. This
approach requires more time than current sensing, but can be
used by any BMU. Each of these techniques can leverage our
work to determine the appropriate update rate for modeling
accuracy and speed.

Similarly related are offline modeling works which use
external measurements to construct a model a priori. [7] manu-

Fig. 2: Three scenarios for relationship between the test time,
T , and the BMU update rate, R. The ideal case, T = R and
measurement error scenarios T < R and T > R.

ally constructs a linear model from component states and their
utilization with the coefficients determines by measuring each
component state benchmark. [8] takes a markedly different
approach at the system call layer. Each system call is measured
and a high accuracy, fine granularity model is constructed. Our
work clarifies the update rate requirements for these techniques
to be accurate which may enable them to be implemented
online with faster BMU sampling.

Another area of closely related work is dynamic power
management (DPM). Many hardware components, such as
the CPU, Wi-Fi, and GPS, have multiple power states with
varying performance. DPM leverages this positive correlation
to throttle performance, and therefore power, to match the
component workload. Several policies that have been proposed
for DPM based on predictive and stochastic methods are
comprehensively surveyed in [4]. Our work complements the
DPM literature because we consider the sampling frequencies
and update rates required to exposure additional, previously
unmeasured “hidden states”. By incorporating these states
into the power state model, power can be estimated more
accurately.

III. ONLINE POWER MODELING CHALLENGES
WITH LOW UPDATE RATE

A. Update Rate Aware Measurement Accuracy

The accuracy of slow update rate power measurements
is highly dependent on aligning the power characterization
benchmarks to the update interval edges as identified in pre-
vious work[3]. In Figure 2, three different scenarios of update
rate-aware measurements are shown with each test running
for a different time T , at power PTEST , being measured on a
system with an idle power level of PSY S , and a BMU update
interval of R. Each measurement’s accuracy depends on the
test running during the entire update interval. If it does not,
the difference between the test and system power impacts the
measurement error. This relationship can be described by the
following equation:

PAVG =
PTESTT + PSY S(M ·R− T )

R

Test #1 represents the ideal case where the test time
equals an integer multiple of the update rate, T = M · R
for M = 1, and consequently PAVG = PTEST . Test #2
results in a measurement error since a fraction of the power
averaged is at PSY S and therefore PAVG < PTEST . Last,
Test #3 demonstrates a common scenario in practice where



a test runs for more than one update interval, but does not
end on an update (T = M · R + ∆). The accuracy of this
test in determining a particular hardware component’s power
consumption will increase with each successive measurement
interval as the proportion of all the measurements set by the
system power decreases.

These scenarios demonstrate potential measurement pitfalls
when the timing of a test is not aligned to its power mea-
surement. However, if the update rate could be increased, the
measurement granularity would be improved and errors in each
case would be reduced. We propose to reconfigure the BMU
to enable dynamic update rates where instead of aligning each
test to a fixed update rate, each power measurement begins
and ends with the test itself. This would reduce the errors for
this technique and decouple test design from the update rate.

B. Hidden States

The limited update rate of the BMU prevents some com-
ponent power states (known as “hidden” states) from being
detected in power measurements. These states are effectively
too brief in duration to be detected by a slow BMU update rate.
Our measurements exposed two such states: GPS ACTIVE and
the initial Cellular FACH. The GPS ACTIVE state consists of
a brief communication with GPS satellites to determine a new
location and lasted only 215 ms in our measurements (Figure
3). The cellular radio states are unique to each carrier’s radio
resource control (RRC) protocol state machine settings (Figure
4) and are transmitted to the device from the cellphone tower.
These timings can be less than 500 ms as demonstrated by
the initial FACH state before transmission shown in Figure
5. Last, measurements can be impacted by other component
power states, which we call “confounding states”, interfering
with the power state of the component under test.

Confounding states can also be hidden if their duration
is short compared to the update interval and but their power
is sufficiently high to cause measurement errors. In Figure 6
a confounding state caused by the user scrolling through UI
menus was captured during a CPU benchmark run, for which
the power consumption would normally remain constant. This
state would be difficult to detect pragmatically because it lies
within the range of the benchmark measurement.

IV. METHODOLOGY

To measure power consumption we used a Tektronix MSO
4034 Mixed Signal Oscilloscope to probe the voltage across a
0.1 Ω current sense resistor. Since we measured active mode
system power and not sleep or idle current the signal range
was well above the minimum oscilloscope resolution and the
noise floor. The resistor was connected between the positive
power rail of the battery and the positive terminal on the
smartphone to measure the current drawn from the battery.
As recommended in prior work [9] the connection was made
using copper braid wire to avoid damage to the battery or
smartphone.

In order to compare different sampling frequencies we
measured each component’s power states at 50 kHz. After each
measurement, the results were stored to a comma separated
values (CSV) file for analysis. To simulate lower frequencies
we designed lowpass FIR filters with cutoff frequencies at
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Fig. 3: GPS benchmark with two ACTIVE states exposed at a
50kHz update rate, but hidden to the slow BMU update rate
(0.28 Hz).

Fig. 4: Radio Resource Control (RRC) power state machine
for the cellular radio with measured threshold of 45 packets/s
and FACH tail timeout of 9.19 s.

the Nyquist rates corresponding to the sampling frequencies
and with steep (≥ 40 dB/decade) roll-offs. The BMU I2C
measurements were calculated by averaging the BMU internal
sampling rate results at the update rate specified in the DS2784
data sheet, 3.52s [2].

V. RESULTS AND DISCUSSION

In this section we will first present our power measurement
results and also discuss the required update rates to capture
hidden GPS and Cellular states based on our highest frequency
measurements. The implications of update rate on online power
model resource consumption are also analyed.
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Fig. 5: Cellular benchmark with FACH state exposed at a
50kHz update rate, but hidden to the slow BMU update rate
(0.28 Hz).
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Fig. 6: CPU 245 kHz benchmark with measurement con-
founded by UI menu scrolling exposed at a 50kHz update
rate, but difficult to detect with the slow BMU update rate
(0.28 Hz).

A. Power Model Error and Hidden States

A subset of our measurements at different frequencies for
each component power state are shown in Table I. As discussed
in Section III-B, the GPS ACTIVE state could not be captured
by the slow BMU update rate and is marked N/A in the table.
In all our measurements, the error, compared to the 50 kHz
measurements, continuously increased as the sampling rate was
decreased.

BMU I2C results were nearly identical to the BMU internal
18.6 kHz sample rate average since the former is simply a
periodic average of the latter. The discrepancy between the
measurements is due to the total measurement time, 20 s, being
not wholly divisible by the BMU I2C update interval, 3.52
s; consequently, not all measurements could be included in

Fig. 7: Tektronix MSO 4034 Oscilloscope used for power
measurements connected to Google Nexus One.

Power (mW)
Comp. State 50kHz 18.6kHz 5kHz 100Hz 10Hz 3.52s Avg.

(Osc.) (BMU) (Monsoon) (BMU I2C)

CPU

245kHz 190 190 190 187 173 190
384kHz 261 261 261 257 241 261
461kHz 299 299 299 294 277 299
499kHz 337 338 337 333 314 338
576kHz 384 384 384 379 359 384
614kHz 417 417 417 412 392 417
653kHz 438 438 438 432 411 438
691kHz 498 498 498 492 470 498
768kHz 564 564 564 558 533 564
806kHz 607 607 607 600 534 607
845kHz 676 676 676 669 641 676
998kHz 818 818 818 810 779 819

GPS ACT. 957 955 956 937 896 N/A
ON 849 849 849 851 850 752

Display

5 110 110 110 107 93 110
30 202 202 202 199 184 201
55 324 323 324 319 300 323
80 472 472 472 467 446 471

105 571 571 571 565 51 570
130 715 714 715 708 679 714
155 813 813 813 804 773 813
180 916 915 915 907 873 915
205 1025 1024 1025 1016 980 1023
230 1192 1191 1191 1182 1142 1191
255 1312 1311 1311 1300 1256 1311

Wi-Fi

8 342 342 342 337 317 342
10 351 351 351 347 328 350
12 364 364 364 358 339 363
14 361 360 360 354 336 360
18 376 375 376 371 352 376
20 378 378 378 373 353 378
25 388 387 388 382 362 387
30 394 393 393 389 367 393
35 410 409 409 404 382 409
40 408 408 408 403 381 408
45 426 426 426 421 401 426
50 389 388 389 384 363 389

100 428 427 428 422 400 428
125 452 452 452 447 426 452
200 492 491 492 486 464 490
250 519 519 519 513 490 520
500 644 644 644 637 611 643

Cellular
IDLE 421 420 421 432 476 419
FACH 1099 1091 1097 881 895 1073
DCH 1341 1342 1341 1329 1275 1343

TABLE I: Power measurements for each component with
different update rates.



10
1

10
2

10
3

10
4

−120

−100

−80

−60

−40

−20

0

20

Freq (Hz)

E
rr

o
r 

(%
)

Fig. 8: Average, minimum, and maximum power model error
versus update rate. Significant errors appear at 100 Hz and
below.

the final averaged result. If the measurements were properly
aligned to update intervals the results corresponding to the
internal BMU sample rate and the BMU I2C update rate would
be indistinguishable.

Figure 8 plots the mean, maximum and minimum error
versus update rate. Overall we found negligible impact on
model error for update rates > 1 kHz. At lower frequencies,
the error increases until reaching -96.28% at 5 Hz. From these
results we conclude that an update rate of 1 kHz is sufficient
to accurately measure the benchmarks tested. Significant errors
start appearing at rates below 100 Hz.

The two hidden states observed in our tests, GPS ACTIVE
and the initial cellular FACH state, lasted for 221 ms and
454 ms respectively. The corresponding update rate required
to capture these states would be 9.05 Hz and 4.41 Hz,
respectively. Capturing hidden states would therefore require
only a modest increase from the existing output register update
rate of 0.28 Hz.

B. Online Modeling Resource Consumption

Next we compared the resource consumption required to
build the power model using each update rate in Table II.
Both time and energy were estimated to evaluate the delay in
rebuilding the model and the cost of running each benchmark.
The energy consumed was also calculated as a fraction of the
1400 mAh battery capacity (with a nominal voltage of 3.7 V)
since the ultimate goal of power optimization is to maximize
battery life.

To determine how long each component required for testing
we sorted them into two different groups. One group of com-
ponents have states with roughly constant power consumption:
CPU, Display and Wi-Fi. Figures 9 and 10 show histograms
for CPU and display power states respectively. Each histogram
peak corresponds to a power state and its position on the x-axis
corresponds to the power consumption of that state. For Wi-
Fi each packet rate has a constant power proportional to the
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Fig. 9: CPU power measurements histogram. The peaks cor-
respond to twelve distinct power states while each peak’s
position on the x-axis corresponds to its power consumption.

rate used, however these values are difficult to distinguish in
a histogram because of the small difference between the rates
(See Table I). Instead, in Figure 11 the power for each rate is
shown with two line-point plots based on the threshold value
of 45 packets/s, where rates less than the threshold are “low
power” rates and rates greater than the threshold are “high
power”rates[7]. Since the power consumption of all three of
these components can be measured quickly, our resource esti-
mate assumes 100 samples are sufficient at each measurement
frequency to measure each state accurately. The time to test
each component is then calculated as the summation of the
times required to test each state.

The second group of components, GPS and Cellular, have
multiple states which require a fixed period of measurement
time to be exposed. For these components we used the same
test time for each measurement frequency based on the BMU
update interval, R. For GPS, we chose 1R as a sufficiently
long period since our tests (Figure 3) in an indoor office
environment captured two location updates in this time period.
The cellular power state machine depends on the carrier RRC
settings (Figure 4) and require a sufficiently long time to
discover these settings. We chose a longer period of 5R,
recommended by previous work [3], to ensure all the states
would be captured. Based on the shortest update periods for
each of these multi-state components the minimum sample
frequencies of 9.05 Hz and 4.41 Hz for GPS and Cellular
respectively are required to capture all their states.

A notable improvement in resource consumption was found
for all update rates compared to the BMU I2C rate because
measuring constant power state components (CPU, Display,
Wi-Fi) can be completed much more quickly. These represent
an average improvement of 139 s, 69 J and 5.02% battery life.
Lower resource consumption means the online power model
can be updated more frequently, which can in turn provide
more accurate battery life predictions or even capture real
usage instead of relying on previously constructed benchmarks.
In fact, from a resource consumption perspective, the bottle-
neck in speeding up online modeling is the long fixed power
measurement update interval and not the internal BMU ADC
sampling frequency.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion we demonstrated that the existing BMU in-
ternal current sampling rate is entirely sufficient to generate ac-
curate online smartphone power models, whereas the software-



50 kHz 18.6 kHz (BMU Internal) 5 kHz (Monsoon) 3.52s Avg. (BMU I2C)
Component Time Energy Battery (%) Time Energy Battery (%) Time Energy Battery (%) Time Energy Battery (%)
CPU 0.06 0.01 0.00 0.06 0.03 0.00 0.06 0.12 0.01 42.24 16.96 1.24
Display 0.06 0.02 0.00 0.06 0.04 0.00 0.06 0.19 0.01 38.72 26.94 1.98
Wi-Fi 0.09 0.01 0.00 0.09 0.04 0.00 0.09 0.18 0.01 59.84 25.06 1.84
GPS 3.52 3.04 0.22 3.52 3.04 0.22 3.52 3.04 0.22 3.52 3.04 0.22
Cellular 12.71 16.03 1.18 12.71 16.03 1.18 12.71 16.03 1.18 12.71 16.03 1.18
Total 16.45 19.11 1.40 16.45 19.17 1.41 16.45 19.56 1.44 157.03 88.02 6.46

TABLE II: Resource consumption to rebuild model by measurement technique.
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Fig. 10: Display power measurements histogram. The peaks
correspond to eleven distinct power states while each peak’s
position on the x-axis corresponds to its power consumption.
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Fig. 11: Wi-Fi benchmark power versus packet rate.

readable register update rate is not. A faster update rate was
required to avoid measurement errors, uncover hidden states,
and decouple tests from update rate intervals. Rebuilding an
online software model was 9.5x faster with faster update rates
compared to the existing BMU rate. We establish the clear
advantages to increasing the BMU current update rate exposing
the faster internal ADC sampling rates for improved online
modeling. In future work we will develop a theoretical basis
for configuring the BMU update rate to optimize its overhead
and accuracy for online modeling.
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