
AN ENERGY SCALABLE FUNCTIONAL UNIT FOR SENSOR SIGNAL PROCESSING

Liping Guo, Mackenzie Scott, Rajeevan Amirtharajah

Dept. of Electrical and Computer Engineering, University of California, Davis CA 95616

ABSTRACT

Low power signal processing functionality is required for wire-
less sensor network nodes due to their limited battery life.
Previously, we have proposed a recon gurable array of DSP
acceleration functional units for such a sensor node. The ar-
ray maximizes operating life by matching system power con-
sumption to available energy through power scalable approx-
imate signal processing [1]. This paper presents the detailed
architecture and implementation of the functional unit in the
array. The use of low power building blocks and bit serial
processing enables energy scalable implementation of several
DSP functions. Post-layout simulation of a semicustom im-
plementation in 0.25 μm CMOS technology demonstrates a
factor of three power scalability with input bitwidth for an
FIR matched lter.

Index Terms— recon gurable architecture, arithmetic, mi-
crosensors, smart sensor, adaptive signal processing

1. INTRODUCTION

Wireless sensor network technology promises to provide a
new information gathering and distribution infrastructure, en-
abling numerous applications in medical monitoring, envi-
ronmental science, and security. When wireless communi-
cation dominates the sensor node power consumption, sig-
nal processing the gathered information before transmission
to other nodes is necessary to maximize operating lifetime.
We have proposed an energy scalable computational array
for such sensor signal processing [1] which consists of func-
tional units embedded in an island-style interconnect struc-
ture. The energy scalability of the computational array stems
from the energy scalable implementation of the functional
units. The functional unit block diagram is shown in Fig. 1.
It contains a 4x16 SRAM-based input shift memory, a 16x32
SRAM-based lookup table (LUT), a 32-bit adder, a 32-bit ac-
cumulator, and a controller. It supports nine linear/nonlinear
functions which include addition/subtraction, complex addi-
tion/subtraction, vector dot product (VDP), serial multiply, di-
vision, complex multiply, square root, base-2 logarithm, and
power function. These functions are the building blocks for

This work is supported by the MARCO Interconnect Focus Center under
Subcontract No. B-12-M06-S12, the Xilinx University Program, and Xilinx
Research Labs.

32b ADD

Acc Load Logic

word 3

word 2

word 1

word 0

Left Operand Sel Right Operand Sel

ACC A ACC B

Din0

LUT

(32b)

Controller

[ACC A: ACC B]

Din1

sftmem Load Logic

Fig. 1. Functional unit microarchitecture

a wide range of sensor DSP applications. For instance, VDP
computes the multiply-accumulate operation for FIR lters in
parallel. FFT requires complex addition and multiplication.
Low power techniques at both the architecture and circuit lev-
els have been applied to the functional unit design. At the
architecture level, clock gating, block partitioning, guarded
inputs, and memory banking reduce power consumption. At
the circuit level, an SRAM-based multiported register le re-
places a ip- op-based input shift register and signi cantly
reduces active power. The functional unit provides energy
scalable computation by varying (1)input bitwidth, (2)LUT
word width, and (3)the number of operation iterations. A con-
guration word is dedicated to energy scalability control. In
Section 2, we describe two custom circuit blocks that enable
mechanisms (1) and (2). The implementation of mechanism
(3) is described in Section 3. Results and conclusion are pre-
sented in Section 4 and Section 5.

2. POWER SCALABLE LOGIC BLOCKS

2.1. Lookup Table

 ~XDI XDI

XDO

WRX

~RDX

RDX

Fig. 2. SRAM-based LUT memory cell

II ­ 731­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

Bank_low

lutdout[31:0]

addr[3]

addr[2]

addr[1]

addr[0]

Bank_high

4x16

Decoder

write_data

lutdin[15:0]

read_data

bank_sel[1] bank_sel[0]

effaddr3

effaddr2

effaddr1

effaddr0

write[15:0]

rden[i]

rden[15:0]

rden[i]

lutdout[15:0]

read_data

write_data

lutdin[31:16]

Fig. 3. SRAM-based LUT architecture

The 16x32 SRAM-based LUT is responsible for storing
lter coef cients and other constant vectors used in several
functions. The memory cell (Fig. 2) has one differential write
port and one single-ended read port. The LUT block diagram
is shown in Fig. 3. Since LUT write operation happens only
at con guration time, the switching activity of the read enable
lines accounts for most of the active power. When the LUT
is unused, bank sel[1] is asserted to eliminate switching on
the address lines and inside the address decoder. In energy
scalable computation, if the lower LUT bank is deactivated to
conserve power, the read enable lines for the lower-half bank
are gated by con guration bit bank sel[0]. The post-layout
simulation shows over 40% power savings when the lower
LUT bank is deactivated.

2.2. SRAM-based Input Shift memory

ydi

xdi xdo

ydo

ydi

xdi xdo

ydo

ydi

xdi xdo

ydo

ydi

xdi xdo

ydo

ydi

xdi xdo

ydo

ydi

xdi xdo

ydo

din

wrx0

rdx0

wrx1

rdx1

ydo0

ydo1

xdo0 xdo1 xdo2

xdi1 xdi2 xdi3
wry0 rdy0 wry1 rdy1 wry2 rdy2

Fig. 4. SRAM-based input shift memory architecture
One way to support power scalability via varying input

bitwidth is to implement a shift register using ip- ops and
bypass multiplexers [2]. Through appropriate clock gating
and multiplexing input selection, the shift register offers a
power and input bitwidth tradeoff. However, providing ner-
grained power scalability requires multiple clock gating cir-
cuits and bypass multiplexers. The incurred overhead may
not be justi ed by the resulting power scalability. Moreover,
the ip- op based shift register does not allow parallel load.
For hardware constrained design, the input shift memory must

Imemsreg Energy Scalability

10

15

20

25

30

35

40

45

50

55

60

2 4 6 8 10 12 14 16

Input bit w idth

A
v

e
ra

g
e

 P
o

w
e

r
(u

w
)

Fig. 5. SRAM-based shift memory power vs. bitwidth

be used as a temporary storage for operands and intermediate
results, for which parallel load and readout capabilities are
indispensable. The 4x16 SRAM-based input shift memory is
designed to allow parallel load and variable bitwidth input.
The memory cell is an augmented version of the LUT cell
shown in Fig.2 with addition of one differential write port ydi
and two read ports ydo and xdoe. The bitlines for the X and
Y ports route orthogonally to allow parallel loading along the
X direction, shifting multiple parallel bit streams in the Y di-
rection. The y-axis read port, YDO, addresses the LUT. A
2x3 memory block (Fig.4) illustrates the architecture of the
input shift memory. By controlling the activation sequence of
the read and write signals on the wordlines, arbitrary bitwidth
inputs are allowed, which leads to bit-level power scalabil-
ity with minimum overhead. When read and write signals
are asserted for a half clock cycle, the shift memory achieves
the same throughput as its ip- op-based counterpart. Fig.5
shows the post-layout power simulation results for variable
input bitwidth. SRAM-based shift memories offer an approx-
imately 10X power reduction over ip- ops [3].

3. ENERGY SCALABLE SERIAL ARITHMETIC

In older VLSI technologies, bit serial algorithms were used
to reduce the area of arithmetic blocks. As CMOS scales,
leakage current becomes a major contributor to power con-
sumption and at the low frequencies (kHz-MHz) at which
most sensor DSP applications operate, serial implementations
are lower power than parallel ones due to reduced transistor
count [4]. Moreover, in serial arithmetic, the computation re-
sult is successively re ned as more bits are processed, which
naturally provides a power-precision tradeoff. In this section,
we describe three functions to illustrate energy scalable im-
plementation using serial arithmetic.

3.1. Vector Dot Product

The vector dot product is implemented using the bit-serial
word-parallel Distributed Arithmetic algorithm [5]. Consider
the calculation of the inner product y =

∑
M−1
k=0 akxk where a

is anM-dimensional constant vector and x is anM-dimensional
input vector. Using N-bit two’s complement representation,

II ­ 74

the equation can be rearranged as:

y = −

M−1∑
k=0

akbk(N−1)2
N−1 +

N−2∑
n=0

[
M−1∑
k=0

akbkn

]
2n (1)

Since each bkn equals 0 or 1 only, the bracketed term in equa-
tion 1 has 2M possible values, which are precomputed and
stored in a LUT. The variable vector traverses through the in-
put shift memory MSB rst to address the LUT, whose con-
tents are accumulated to obtain the outer sum of Eq. 1. For an
N-bit xk vector, the nal result y is produced after N cycles.
Supposed the bitwidth of the variable vector x can be ad-

justed at single bit granularity. Truncating each trailing bit of
x eliminates one shift, one table lookup, and one accumulator
load. The truncated version can run at slower speed to ob-
tain the same throughput, which also saves dynamic power.
The precision degrades due to the increased input quantiza-
tion noise. Our functional unit implements a 4-tap FIR lter
using the VDP function. Fig.6 shows the power consumption
vs. event recognition scalability of an FIR matched lter for a
biomedical monitoring application using a ip- op-based in-
put shift memory. Power consumption can be reduced further
by using the SRAM-based input shift memory described in
Section 2.2.

0.00

0.50

1.00

1.50

2.00

2.50

0 2 4 6 8 10 12 14 16 18
Input Bit Width

Po
w

er
 (m

W
)

84

86

88

90

92

94

96

98

R
ec

og
ni

tio
n

(%
)

Power

Recognition %

Fig. 6. VDP FIR lter realization with scalable input width.

3.2. Piecewise Linear Operation

 logxh

 logxl

 xl xh x

f(x)=logx

x

log log
log log ()

log ()

()

high low

low low

high low

low low

low

x x
x x x x

x x

y
x x x

x

a x x b

Fig. 7. LOG function linear approximation

A table lookup method can be used to implement any
piecewise linear operation. We use the base-2 logarithm (LOG)
as an example. The LUT is pre-loaded with a small set of log
values for x ∈ [1, 2) and at regular intervals Δx = 2−4. To
evaluate log2(x), the lower end point of the interval, log2(xlow),

0

200

400

600

800

1000

1200

one tw o
Num of activated LUT banks

A
c

ti
v

e
 P

o
w

e
r@

1
0

M
h

z
(u

W
)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
v

g
 M

S
E

 R
e

fe
re

n
c

e
 t

o
 M

a
tl

a
b

R
e

s
u

lt
s

pow er@10Mhz

Avg MSE

Fig. 8. LOG function power-quality tradoff

is rst read from the LUT andΔx is approximated by interpo-
lating between the two end points as shown in Fig. 7. Terms
a and b are pre-computed and stored in the higher and lower
LUT banks, respectively. The LOG function supports a 16-bit
unsigned integer input x. The input is scaled down to Q.15
format to t in the lookup range ∈ [1, 2). The computation is
derived below:

log2(x) = log2(2
15
× 2−15

× x)

= 15 + log2(x
′)

= N + log2(x
′)

= int(logx) + frac(logx).

The computable range is further increased by shifting out the
leading zeros (equivalent to scaling up x). The integer part of
logx becomes int(logx) = N − lznum, where lznum is the
number of leading zeros in x.
Two levels of energy scalability can be obtained. At the

coarse-grained level, disabling the LUT lower bank elimi-
nates the linear approximation, which involves serial multi-
plication and addition. When linear approximation is acti-
vated, controlling the number of serial multiply iterations of-
fers a ne-grained power-precision tradeoff. Fig.8 illustrates
the coarse-grained energy scalability.

3.3. Serial Multiply
The signed serial multiplication (SMUL) is computed by it-
eratively executing a sequence of adds and shifts based on
the value of the LSB of the multiplier (mbit). If mbit = 1,
the multiplicand is added to the MSBs of the partial prod-
uct and the resulting value is right-shifted by one bit with the
sign bit preserved; if mbit = 0, the partial product is only
right-shifted; at the very last iteration, ifmbit = 1 (multiplier
is negative), then the complemented multiplicand is added to
the partial product and the sum is right-shifted to produce the
nal product. The multiplier bitwidth determines the num-
ber of iterations. Energy scalability is realized by treating
the trailing bits of the multiplier as zeros regardless of their
original values. Power is decreased due to the reduced num-
ber of operations for the zero mbit. Result precision is data-
dependent because certain input values are more susceptible
to the error introduced by energy scaled operation. For ex-
ample, 1101 × 1100 would be more robust to energy scaling

II ­ 75

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

2 4 8 12 16

Number of non-energy-scaled computation iterations

a
v
e
ra

g
e
 p

o
w

e
r@

1
0
M

H
z
(m

W
)

0

10

20

30

40

50

60

70

80

90

a
v
e
ra

g
e
 e

rr
o

r%

average pow er

average error%

Fig. 9. SMUL average power vs. result quality.

than 1101× 1011. Number representation also impacts result
accuracy. Energy scaling affects the worst case multiplier er-
ror in Q.15 fractional representation much less than in integer
representation. Fig. 9 shows the power-quality tradeoff as the
number of iterations scales.

4. IMPLEMENTATION AND RESULTS

Power results presented here are based on post-layout simula-
tion of a semicustom implementation in 0.25 μm CMOS. The
SRAM-based input shift memory and LUT layouts are cre-
ated manually. Remaining blocks are implemented with the
OSU standard cell library[6]. Cadence Encounter is used to
place and route the design (Fig.10) and the extracted netlist is
simulated using Synopsys VCS-NanoSim.

Fig. 10. Functional unit layout view.

Function OperandBitWidth AvgPower(mW)

add/sub 32-bit signed 1.163

complex add/sub 16-bit signed real and imag. 0.765

serial mulitply 16-bit signed 1.19575

complex multiply 16-bit signed fractional 4.399

division 16-bit signed 0.697

power function 16-bit fractional 2.7375

logarithm base 2 16-bit unsigned 0.824225

square root 16-bit unsigned 1.087225

vector dot product* 16-bit signed 0.152

*computation @39.1KHz, shiftout@10MHz; other functions @10MHz

Fig. 11. Average power at 10 MHz.
Fig. 11 lists the average current for each function running

at 10MHz and operating on random vectors. With the nom-
inal power supply for the 0.25 μm CMOS process at 2.5 V,

the functional unit consumes an average power of a few mW.
The most power-hungry function is complex multiply because
it involves four multiplications, two additions, and several
operand swaps. Based on the device count and a frequency
of 10 MHz, we estimate the active power consumption should
be around 1 mW. Several factors may contribute to the exces-
sive power consumption, for instance, the under-buffered in-
terface signals between custom blocks and the standard cells
and the suboptimal standard cell synthesis of the controller.
With a full custom implementation, signi cant power reduc-
tion is expected.

5. CONCLUSION AND FUTUREWORK

We have described a functional unit which can compute sev-
eral essential DSP functions in an energy scalable way. We
have shown the architecture and circuit-level implementation
of an SRAM-based input shift memory and lookup table. We
have demonstrated the advantage of using serial arithmetic
in energy scalable design by describing energy scalable im-
plementations for several functions using serial algorithms.
The simulated power for semi-custom implementation, while
suboptimal, nevertheless demonstrates the concept of power
scalable implementation. In future work, we will focus on
controller optimization and transistor-level design of the re-
maining datapath blocks.

6. REFERENCES

[1] L. Guo, M. Scott, and R. Amirtharajah, “An energy scal-
able computational array for sensor signal processing,” in
Proc. IEEE CICC Conference, San Jose, 2006, pp. 317–
320.

[2] R. Amirtharajah and A. P. Chandrakasan, “A micropower
programmable DSP using approximate signal processing
based on distributed arithmetic,” IEEE J. Solid State Cir-
cuits, vol. 39, no. 2, pp. 337–347, 2004.

[3] Rajeevan Amirtharajah, Jeff Wenck, Jamie Collier, Jeff
Siebert, and Bici Zhou, “Circuits for energy harvesting
sensor signal processing,” in Proc. of the 43rd Design
Automation Conference, July 2006, pp. 639–44.

[4] Rajeevan Amirtharajah, Jamie Collier, Jeff Siebert, Bici
Zhou, and A. Chandrakasan, “DSPs for energy harvesting
sensors: Applications and architectures,” IEEE Pervasive
Computing, vol. 4, no. 3, pp. 72–9, 7-9 2005.

[5] S. A. White, “Applications of distributed arithmetic to
digital signal processing: A tutorial review,” IEEE ASSP
Magazine, pp. 4–19, July 1989.

[6] J.E.Stine et. al., “A framework for high-level synthesis of
system-on-chip designs,” Int’l. Conf. on Microelectronic
Systems Education, IEEE Computer Society, pp. 11–12,
2005.

II ­ 76

