IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

Activity-Sensitive Architectural Power Analysis

Paul E. Landman, Member, IEEE,

Abstract—Prompted by demands for portability and low-cost
packaging, the electronics industry has begun to view power
consumption as a critical design criteria. As such there is a
growing need for tools that can accurately predict power con-
sumption early in the design process. Many high-level power
analysis models don’t adequately model activity, however, leading
to inaccurate results. This paper describes an activity-sensitive
power analysis strategy for datapath, memory, control path, and
interconnect elements. Since datapath and memory meodeling
has been described in a previous publication, this paper focuses
mainly on a new Activity-Based Control (ABC) model and on a
hierarchical interconnect analysis strategy that enables estimates
of chip area as well as power consumption. Architecture-level
estimates are compared to switch-level measurements based on
net lists extracted from the layouts of three chips: a digital filter,
a global controller, and a microprocessor. The average power
estimation error is about 9% with a standard deviation of 10%,
and the area estimates err on average by 14% with a standard
deviation of 6%.

I. INTRODUCTION

URRENTLY, the portable consumer electronics market

is undergoing a period of rapid growth. With portability
comes a new set of design requirements. In particular, the
constraints of battery operation have forced designers to focus
on power considerations as well as speed and area. Further-
more, the high-cost of packaging and cooling power-hungry
devices has led to increasing efforts aimed at minimizing
power consumption even in high performance, nonportable
systems.

This trend further complicates the design process as engi-
neers must now consider joint optimization not only of area
and speed, but also of power. CAD tools can help manage this
complexity by providing feedback about the impact of various
design decisions on these three important parameters. Analysis
tools such as SPICE [1] and PowerMill [2] can be useful in
this capacity, but they both require a transistor-level netlist
as input and, therefore, they can only be applied toward the
end of the design flow when major changes are difficult and
expensive to implement.

This paper describes techniques for estimating area and
power consumption given an architecture-level description of
a system. The paper builds on research presented in [3], which
described how to estimate the power of individual architectural
blocks in a datapath. Here we extend that work by introducing

Manuscript received December 1, 1995. This work was supported by
ARPA Grant J-FBI 93-153 and by a Fellowship from the National Science
Foundation. This paper was recommended by Guest Editors M. Pedram and
M. Fujita.

P. E. Landman is with the DSP R&D Center, Texas Instruments, Dallas,
TX 75265 USA.

J. M. Rabaey is with the EECS Department, University of California,

Berkeley, CA 94720 USA.
Publisher Item Identifier S 0278-0070(96)04856-7.

and Jan M. Rabaey, Fellow, IEEE

techniques for control path and interconnect analysis, and by
presenting results obtained from several design examples.
Fig. 1 gives an overview of the power analysis strategy
that we propose in this paper. The inputs from the user
are a description of a candidate architecture at the register-
transfer level and a set of data and instruction inputs for
which a power analysis is desired. Rather than attempting
to find a single model for the entire chip, we take the
approach of identifying four basic classes of components:
datapath, memory, control, and interconnect. The modeling
of power consumption for each class is addressed separately.
For datapath and merory analysis, Section III reviews a word-
level data model known as the Dual Bit Type (or DBT) model.
An architectural model for control path power consumption,
the Activity-Based Control (ABC) model, is presented in
Section IV. Section V describes techniques for estimating the
physical capacitance of interconnect (while producing chip
area estimates as a side effect). It also describes how to com-
bine these physical capacitances with the appropriate activity
measures to obtain estimates of control and data bus power
consumption. Section VI brings together the four classes of
models, describing how they can be integrated to enable
architectural power analysis for entire chips. This section
also describes how the complexity and activity parameters
required by the DBT and ABC models can be derived. In
Section VII, the models are verified using several realistic
examples including a programmable microprocessor.

II. PREVIOUS WORK

The majority of the available literature on power estimation
deals with transistor- or gate-level modeling [2], [4]-[9]. As
stated above, however, we are interested in tools that operate
at the architecture level. In the terminology of this paper,
architecture refers to the register-transfer level of abstraction,
where the primitives are blocks such as multipliers, adders,
memories, and finite state machines. Two principal strategies
have been proposed for estimating power at this level.

The first technique is based on the concept of gate equiv-
alents. In this method, gate equivalent counts are used to
roughly describe the complexity of modules within a chip.
The gate equivalent count specifies the approximate number
of reference gates (e.g., two-input NAND’s) that are required
to implement a particular function (e.g., a 16-b counter).
The power required for that function can then be estimated
by multiplying the approximate number of gate equivalents
required by the average power consumed per gate. This is the
essence of the strategy used in the Chip Estimation System
[10]. Svensson and Liu also model logic power consump-
tion using gate equivalents, but attempt to improve overall

0278-0070/96$05.00 © 1996 IEEE

572

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

Structural & Behavioral
Descriptions of
Architecture

Data and
Instruction
Inputs

Complexity
Analysis
Activity
Analysis

Area/Power Models
& Coefficient Tables

Datapath
Power Analysis

Memo

Power Analysig

Control nterconnect
Power Analysis Analysis

Fig. 1. Overview of architectural power analysis strategy.

accuracy by using custom models to handle memories [11].
Both approaches use derivatives of Rent’s Rule to estimate
interconnect length and capacitance [12].

The second principal modeling strategy can be classified as
a precharacterized cell library approach. Under this scheme,
instead of using a single gate-equivalent model for all “logic”
blocks, a separate model is supplied for each block in the
library: multipliers, adders, buffers, etc. These custom models
better reflect how the complexity of a specific block influences
its power. This technique was first proposed by Powell and
Chau who termed it the Power Factor Approximation method
[13].

The advantage of both these approaches is that they re-
quire minimal design information as input and that they are
straightforward to apply. This simplicity, however, comes at
the expense of accuracy. For, while both techniques do a
satisfactory job of relating design complexity to power, they
do not adequately account for the impact of activity on power.
In both cases, power models are characterized assuming fixed
activity levels—typically, corresponding to an assumption of
random, uniformly distributed white noise (UWN) data. Often
this assumption is not justified as demonstrated by Fig. 2.
In this example, the divider power based on switch-level
simulation of an extracted layout varies by more than a factor
of two as input data statistics change. In the following sections,
we propose architectural power analysis techniques that are
sensitive to activity.

III. DATAPATH AND MEMORY MODELING

Datapath and data memory components perform and store
the results of the numerical computations required by an
algorithm. In previous papers, we have described architectural
power analysis techniques for these elements in detail [3], [14],

l

Power/Area

Estimates
800

S 600 g

2

5}

S

o 400 - 4

D

(o)

o

[

>

< 200} .
0

Data stream

Fig. 2. Divider power from switch-level simulation of various data streams.

[15]. This section will briefly review the principal results of
those papers.

The idea is to produce a black-box model of the capacitance
switched in each module for various types of input activity.
If desired, these capacitance estimates can be converted to an
equivalent energy, £ = CV?2, or power, P = CV? /- The
models must take into account not only the complexity of the
module being characterized, but also the switching activity
within the module.

Complexity is handled by allowing the library designer to
specify appropriate complexity parameters for each module.
These parameters can then be used in a capacitance model to
describe precisely how the physical capacitance of each mod-
ule should scale with its “size” or complexity. For instance,
the capacitance model for a ripple-carry adder is given by

Cr = CersN (1

LANDMAN AND RABAEY: ACTIVITY-SENSITIVE ARCHITECTURAL POWER ANALYSIS 573

BP1 BPO
: : 19 0.50
— 0.40
— 0.30
p = <025 P(0->1)
— 0.20
- 0.10
R R L L1 ! |—j 0.00
14 12 10" 8 6 4 2 0
MSB Bit L.SB

Fig. 3.
relation.

Bit transition activity for data streams with varying temporal cor-

where N is the word length and C.¢ is a capacitive coeffi-
cient describing the effective (activity-dependent) capacitance
switched per bit. If necessary the library designer can specify
more complex expressions. For a typical SRAM

Cr=Cog+CiW+ CoN +CsWN 2)

where W is the number of rows in the currently active block
and N is the number of columns. The dominant CsW N term
stems from charging and discharging bit lines in the cell array.
The remaining terms pertain to the row/column decoders, the
word line drivers, and the sense amps. The equation can be
expressed equally well in vector notation

Op = Cops-N. 3)

Here, the scalar capacitive coefficient and complexity param-
eters of (2) have simply been replaced by vectors

Cer=[Co C1 Cy Cs)F
and

N=[1 W N WN]~.

The model also accounts for activity as well as complexity.
Instead of having a single C.s; coefficient per module based
on a white noise activity assumption, the model employs
several capacitive coefficients for each module, correspond-
ing to different input activity types. For fixed-point two’s-
complement data, we use a dual bit type (DBT) model that
accounts for two classes of bits: sign and data. Fig. 3 con-
firms that two’s-complement data is, indeed, characterized by
two distinct activity regions. The data bits (LSB’s) exhibit
the activity of uniform white noise (UWN), while sign bit
activity, in contrast, depends on the exact sequence of sign
transitions. The likelihood of sign toggling is characterized by
the temporal data stream correlation p = cov (X;—1, X;)/o?.

The DBT method accounts for these differing activities by
using a separate capacitive coefficient for each transition type.
The data region uses a single UWN capacitive coefficient,
Cyy. In contrast, characterizing all possible sign transitions
requires several coefficients of the form, Cgg, where S can

be positive or negative: Cyy, Cy_, C_4, and C__. A
module that operates on two or more input data streams
requires additional capacitive coefficients. Each coefficient
can be either a scalar or a vector depending on the number
of terms in the capacitance model: for the above SRAM
Cw=[Cow Ciw Copw Cswl’.

Capacitive coefficient values are derived for each module
during a library characterization step. This is a one-time
process, not required during power analysis, but instead per-
formed whenever a new cell is added to the library. Pattern
generation is the first step in the three-stage characterization
process. During this phase, white noise and sign input patterns
are genefated. Next, simulation is used to measure the capac-
itance switched for these patterns. In order to characterize the
influence of complexity, as well as activity, the module may
be characterized for several complexity parameter values (e.g.,
word length, storage capacity, etc.). Finally, during coefficient
extraction, the capacitance models are fit to the simulated
capacitance data to produce a set of “best fit” capacitive
coefficients.

The power analysis process itself consists of decomposing
the modules into white noise and sign regions and then
estimating the effective capacitance switched within each
region. The size of the regions depends on the positions of
the model breakpoints (BP0 and BP1) in Fig. 3. Analytical
expressions were derived in [15] that express the breakpoints
as a function of data stream statistics such as mean (u),
variance (o), and correlation (p)

BP1 = log, (lu] + 30) “4)
BP0 = logy, 0+ ABPO 5)
ABPO = log, [1—p%+ %} (6)

This information can be used to calculate the effective ca-
pacitance switched in each region during a typical module
access

Ny

N,
AP

sse(th t7)

P (SS)CSS -N D

where Ny/N and Ns/N are the fraction of UWN and sign
bits, respectively, and P(SS) represents the probability of the
various sign transitions. These probabilities along with the
mean, variance, and correlation statistics can be measured
during a functional simulation of the candidate architecture.
Since this can be a register-transfer level (RTL) simulation, the
required activity statistics for the entire chip can be gathered
rapidly and efficiently.

Results have shown that this method can be used to pro-
duce RT-level power estimates within 15% of switch-level
simulations based on circuits extracted from layout. Thus, it
is possible to accurately model datapath and memory power
consumption at the architecture level by accounting for the
impact of both activity and complexity on power. The DBT

574 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

Input Table: Output Table:
Present State IN Next State OUT
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0
(a)

. N N)
Primary P! N Combinational No Neo Primary
Inputs Control Logic Outputs

Ng Ns
5}
Present | £% | Next
State o § State
LAl

(b)
Fig. 4. Behavioral (a) and structural (b) descriptions of T flip-flop FSM.

model is appropriate for fixed-point two’s-complement data;
other representations might require new activity models.

It should also be clarified that in this section “memory”
has referred to storage elements containing numerical data.
Of course, memory can also contain control path information,
such as instructions. In that case, it is necessary to characterize
the memories under a different activity model. In particular, the
activity model described in the next section is more appropriate
for memories containing instructions or control information.

IV. CONTROL PATH MODELING

Controllers direct the sequence of operations to be executed
by the datapath, initiate memory accesses, and coordinate data
transfers over interconnect. The behavior of a typical controller
can be described by a state transition graph (STG) or, equiv-
alently, by a control table as shown in Fig. 4(a). Controllers
are often implemented using the finite state machine (FSM)
structure of Fig. 4(b). This structure uses combinational logic
to generate the next state and the primary outputs given the
present state and the primary inputs. The implementation style
of the combinational logic can take many forms: e.g., ROM,
PLA, or random logic (i.e., standard cells).

The task of architectural controller power analysis is to
produce an estimate of the final implementation power given
only the target implementation style and a description of the
state machine to be realized, say, in the form of a control table.
It is also possible to envision power estimation based solely
on the FSM behavior; however, behavioral power estimation
[16]-[19], though useful for rough preliminary predictions,
necessarily offers fairly limited accuracy.

Even at the architecture level, accurately estimating con-
troller power is a nontrivial task. In the datapath case, the
circuitry of library elements (such as adders and multipliers) is
often known a priori, in effect, fixing the physical capacitance

of the modules. In contrast, the physical capacitance of a
controller depends on the contents of the control table.

Since it is impractical to characterize each class of controller
for all possible control table contents we, instead, characterize
for random control tables. This results in a fixed, average
physical capacitance somewhere between the extremes of an
“empty” (all zero) table and a “full” (all one) table. Then, for
each implementation style, prototype controllers of different
complexities can be synthesized a priori and characterized for
various activity levels. Since the method accounts explicitly
for the effect of activity on power consumption we refer to it
as the Activity-Based Control, or ABC, model.

The discussion of controller power modeling will be divided
into two parts. Section IV-A will describe model parameters
that influence power regardiess of implementation style, while
Section IV-B will present target-specific power models. This
will be followed by Section IV-C which will discuss tech-
niques for library characterization and Section IV-D which
will review the controller power analysis method being pro-
posed here.

A. Target-Independent Parameters

Two classes of parameters influence controller power re-
gardless of the target implementation style: complexity pa-
rameters and activity parameters. First, the complexity (or
size) of a controller directly influences its physical capacitance
and, therefore, its power consumption. Fig. 4 suggests that
combinational logic block complexity can be measured to
some extent by the number of inputs, N7, and outputs, No.
An increase in No = Ng + Npo requires additional logic
to generate the larger number of next state bits, Ng, and/or
primary outputs, Npo. Similarly, a larger Ny = Ng + Np;
means more input decoding due to an increase in the number
of present state bits, Ng, and/or primary inputs, Np;. Actually,
Ny is only a good measure of input-plane complexity when
exhaustive “address” decoding is used (as in a ROM). In other
cases, the number of min-terms, Ny, in the logic-minimized
control table is a better measure of input-plane complexity.
Section VI-A describes techniques for estimating Ny, Ny,
and NO‘

Complexity gives us some indication of the physical ca-
pacitance contained in a controller, but if the capacitance is
not switched, no power is consumed. Since at the architecture
level we treat combinational logic blocks as black boxes,
activity can best be described by external measures. The input
activity tells us something about how much switching occurs
in the input plane, or “address” decoding, portion of the
combinational logic. For static logic, the transition activity,
oy, is the proper measure of circuit activity in the input plane.
It is equal to the fraction of input bits (including state) that
switch each cycle. For dynamic logic, the signal probabilities
of the inputs—that is, the probability that an input bit is
one (FPr) or zero (1 — Pr)—determine circuit activity, since
precharging to a known state each clock cycle negates the
influence of the previous signal value on current power con-
sumption. The input activity parameters («, Pr) tell only half
of the story, however—we also require a measure of ourput

LANDMAN AND RABAEY: ACTIVITY-SENSITIVE ARCHITECTURAL POWER ANALYSIS

575

N, No
(Address prechargd [Bit line precharge |
] — 1 }I_'I EI’JI
Un IT1 B
8 £ |10 IEJI
n| |8 4%{% o 3 N
2 fé ; 01{[_[1 2
i g
00 {Hi IFJI
i 3 el
A, Ao
[Address Buffer/Invert] [Sense and invert]
R
A1 Ao Dg Ds D, D3 D, Dy Dg

-

Fig. 5. Basic structure of prototype ROM (4 x 7 in this example).

activity: (ao, Po). Section VI-B will describe techniques for
acquiring the necessary activity parameters through functional
simulation.

B. Target-Specific Capacitance Models

The ABC method allows the user to specify a capacitance
model that reflects how the effective capacitance of a particular
controller class scales with changes in complexity and activity.
This section illustrates how to construct a capacitance model
using three case studies: a ROM-based controller, a PLA-based
controller, and a random logic controller. The same concepts
are readily applicable to other implementation styles.

1) ROM-Based Controllers: The exact form of a ROM
capacitance model can vary from one implementation to
another. To address this issue, we use a library-based approach,
allowing the user to define a unique capacitance model for
each implementation in the library. If the ROM structure is not
known, the model can be based on measurements taken from
data books or previous implementations. In this example, we
will use the ROM structure of Fig. 5. The average capacitance
switched during a single access is given by

Cr=Co+ CINIQNI + 02P0N02NI

+C3PoNo + CaNo. ®)

The terms in this expression relate to power consumed in
the input plane (address decoding) and the output plane (bit
lines). We first analyze the complexity and activity of the input
plane. The complexity is proportional to the product of the
number of columns and rows in the input plane: N;277. Since
both true and complement address lines are present, the input-
plane activity is independent of external address activity—i.e.,
during evaluation, half of the precharged lines will remain
high and the other half will discharge, regardless of external
input activity. Thus, no explicit activity factor is present in
the C3 N2 term. It might seem that a separate N term
would be needed to model the address buffers, but remember
that the load being driven by these buffers is proportional to

2NT Thus, the single C;N;2N7 term properly models both
the address buffers and decoders.

In the output plare, the power consumption is dominated
by charging and discharging the bit lines whose lengths (and
capacitances) are proportional to the number of rows in the
array 277 Initially high, the bit lines corresponding to 1 output
bits (on average, PoNo of them) discharge during an access
and then precharge prior to the next read cycle. This explains
the CoPoNo2N7 term. The buffering circuitry for the No
outputs gives rise to the C3PoNo term, but there is also
an activity-independent term CyNo since the sense circuitry
produces both true and complemented signals.

Combining terms yields the ROM capacitance model of
(8), where Cy, C1, (o, C3, and Cy are capacitive coefficients
dependent on the exact circuitry and technology used by
the ROM. These coefficients are extracted through a library
characterization process that will be described in Section IV-C.

As a means of validation, a comparison was made between
a switch-level simulation of the ROM (using IRSIM-CAP)
and the ABC model after characterization for a 1.2 um
technology using random control table contents. IRSIM-CAP
[14] is a modified version of the switch-level simulator IRSIM
[20] with improved capacitance measurement capabilities. The
simulations were performed for random input streams with
distributions chosen to exercise a variety of input and output
activity levels. As with all IRSIM-CAP results described in
this paper, the simulations were allowed to continue until the
average capacitance switched satisfied a convergence criteria
of 5%. This strategy allows us to handle sequential circuits
with reasonable accuracy.

For this example, the results of the validation process are
shown in Fig. 6. The ABC mode! exhibits an rms estimation
error (relative to IRSIM-CAP) of about 2.5% and a maximum
error of 4.5%. The arrows in the figure denote results for
controllers of fixed complexity for which the output signal
probability, Po, varies from zero to one. The fact that power
consumption varies significantly with Py is a strong argument
in favor of a modeling strategy (such as the ABC technique)

576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

5
2 60 _|rsim-cap =
9 = ABC Model [=
§ 50~ / -
& b /=Poi0->1 =
e - =ro- f -
9 40— i I
2 - f .
H - |-
e 30— \ /
< — / / \/
B = ' [y 3
S 20f fl
S ~ =
[o] [£ :
S - / =
S 10- -
s SO e a1
& No: 8 16 32 8 16 32 8 16 32
Ni=6 N=7 N,=8

Fig. 6. ROM-based controller: IRSIM-CAP versus ABC model.

which accounts for activity. It is also of interest to observe
the magnitude of errors that can be expected for nonrandom
control table contents. Section VII-B will show a controller
with highly redundant (nonrandom) control table entries for
which the power for three implementations differs on average
by 12.6% from the ABC prediction and at most by 29%.

2) PLA-Based Controllers: Conceptually, the structure of a
PLA is quite similar to that of a ROM. The principal difference
between a PLA and a ROM is that the input plane of the ROM
performs a full decoding of all possible addresses, while a PLA
uses logic minimization to reduce the amount of decoding
required. As a result, the height of the input and output planes
in a PLA is given by the number of unique min-terms, Vs,
which will usually be less than 277, For a sample PLA with a
static input plane and a dynamic output plane, the capacitance
model was found to follow

Cr =CoarNiNyr + C1PoNo Ny
+ CyPoNo + C3NoNyr + CyNyys. ()]

We can compare this model to the ROM expression of (8).
As expected, 27 has given way to Nj;. Also, since this PLA
happens to use static input decoding, an «; term has been
added to model the effect of input transitions on power. In
the output plane, since no differential signaling is used, the
C4No term disappears. Furthermore, this PLA uses a clocked
virtual ground node in the output plane that charges to Vyy
each cycle, regardless of the output signal values. This gives
rise to the activity-independent terms: C3 No Ny, and CyNpy.
The model resulting from characterization of the PLA (in a
1.2 um technology) has an rms and maximum error of 2.5%
and 6.3%, respectively.

3) Random Logic Controllers: Since a random logic im-
plementation is much less regular than a PLA or ROM, it
is more difficult to come up with an accurate capacitance
model, but an approximate model for a standard cell controller
implemented in static logic might be given by

Cp = Coar NNy + CrapNo Ny (10)

80— __ IrsiM-cAP
= ABC Model

50

RN

40—

RN

30—
activity (o, o) :
varies over intervals v

———

20

Average capacitance switched per access (pF)

L

10:/{\/\[\

o=

No:'8 16 32 8 16 32 8 16 32
Ny: 40 48 60 68 86 117 132 177 225
N|Z 6 7 8

Fig. 7. Random logic controller: IRSIM-CAP versus ABC model.

This expression contains two components—one relating to
the input plane capacitance and the other relating to the
output plane. Since this example is based on static logic, the
appropriate activity measures are oy and «o, respectively. For
the input plane, the complexity is given by the product of the
number of inputs to that plane N; and the number of outputs
that plane produces N,s. The same is true for the output plane,
except in this case there are N, inputs to the plane and No
outputs. Since the exact equation depends on the synthesis
tools being used, the library maintainer is free to tune the
model as needed.

The two capacitive coefficients are derived during a char-
acterization phase and will be a function of the standard cell
library being used and, to some extent, the logic minimization,
placement, and routing tools being applied. A comparison of
the model to switch-level simulations for a 1.2 pm cell library
is shown in Fig. 7. The results are for control tables with
random contents that have been minimized using espresso
[21] and synthesized using MIS [22] and the Lager IV silicon
assembly system [23]. While the agreement is not as good as
the ROM and PLA models, the rms error is still an acceptable
15.1%.

C. Characterization Method

Before the controller capacitance models can be used,
circuit- and technology-dependent values of the capacitive
coefficients must be measured through a characterization
process. For a given class of controller, the idea is to actually
measure the capacitance switched within implementations of
varying complexities for different input and output activities.
The observations are then used to find capacitive coefficients
that give the best fit to the measured data. The characterization
process occurs in three phases: pattern generation, simulation,
and coefficient extraction.

1) Pattern Generation: In the first phase, two distinct sets
of data patterns are generated: the patterns stored in the control

LANDMAN AND RABAEY: ACTIVITY-SENSITIVE ARCHITECTURAL POWER ANALYSIS 577

TABLE 1
“ADDRESS/DATA” PATTERNS FOR GENERATING DESIRED CONTROLLER ACTIVITIES
Label A:[‘;‘;;s Ii“[la:‘(’]] Data
A(0,0) 000000 00 00000000
AQ0,) 01 01010101
A(0,1) 11 11111111
ACG0) 010101 00 00000000
AG.5) 01 01010101
AGLD 11 11111111
A(1,0) 111111 00 00000000
AL) 01 01010101
A(1,1) 11 11111111

table that the FSM implements and the patterns applied as
input to the controller during simulation. Since the control
table patterns can affect the physical capacitance of the con-
troller and since it would be impossible to characterize for all
possible control tables, we instead generate patterns that result
in some sort of average physical capacitance. A reasonable
approximation is to use a random output table with a uniform
distributions of zeros and ones. In real controllers, however,
not all outputs affect system behavior in all states. Setting
a fraction (say, half) of the output table entries to don’t-
cares models this effect. PLA and random logic synthesizers
can then exploit the don’t-cares by using logic minimization
algorithms (such as espresso [21]).

The second phase of pattern generation entails producing
input streams that exercise the controller over a full range of
activities from 0-100%. Three evenly spaced activity levels (0,
1/2, and 1) can be realized by correct sequencing of three basic
patterns: 00---00, 01---01, and 11---11. The input activity
can be controlled by using the patterns as input “addresses”
to the combinational logic block of the controller. The output
activity can be independently controlled by storing the same
three data patterns at each of these three “addresses.” While
three different values cannot be referenced by a single address,
they can, however, be referenced by “similar” addresses. As
exemplified in Table I, the two least significant address bits can
be used to map the three different data patterns to similar, but
unique, addresses. The left-most column provides a convenient
label for each (input, output) activity pair. In summary, while
the output table is still filled primarily with random data, it also
contains nine deterministic values that allow precise control of
input and output activities during characterization.

Using this strategy, input and output activities can be
controlled fairly independently. For instance, desired input
and output signal probabilities can be chosen from nine
possibilities, (Pr, Po) € {0,1/2,1} x {0, 1/2, 1}, sim-
ply by accessing address A(Pr, Po). It is also possible to
generate any of nine different transition activities of the
form (ar, ao) € {0, 1/2, 1} x {0, 1/2, 1} by accessing
an address sequence A(af, o) — A(al, al)) that satisfies
ar = |ab — al| and ap = o — abl.

A0, 0) AG3,0) A(1,0)
.\

A0, 3) ALLD

A0, 1) AG, D AL 1)

Fig. 8. Graphical representation of address sequences for (o7, Po) = (172,
1/2).

Desired address sequences can be represented graphically
by associating the ordered activity pairs with a coordinate
system as shown in Fig. 8, which shows address transitions
corresponding to the activity pair (ar, Po) = (1/2, 1/2). As
the figure demonstrates, the input transition activity determines
how many columns each edge traverses, and the output signal
probability determines at which row each edge terminates.
Recalling (9) from Section 1V-B-2, input transition activity a7,
and output signal probability Po are the activity parameters
appropriate for the PLA-based controller. A full characteriza-
tion of the PLA would include nine activity pairs(ar, Po) €
{0, 1/2, 1}x{0, 1/2, 1}. The standard cell controller requires
nine as well, (ar, ao) € {0, 1/2, 1} x {0, 1/2, 1}, but the
ROM capacitance model requires only three activity values,
Py € {0,1/2,1}. In each case, the simulated capacitance
observations for individual input transitions are averaged to-
gether to produce an aggregate switching capacitance for each
1/O activity level and each implementation style.

Clearly, this strategy for selecting representative control
table and input/output patterns is an approximation. It is dif-
ficult to precisely gauge the sensitivity of the model accuracy
to pattern selection, since pathological cases can always be
constructed. These cases would not say much, however, about
what range of accuracies could be expected in practice. For
this information, it is perhaps best to turn to the real controller
designs that have been characterized with this method. These
are discussed in Section VII where we will see, for example,
that the maximum ABC prediction error for any of the
implementations shown was 29%.

2) Simulation and Coefficient Extraction: During the next
phase of characterization, a module corresponding to a given
set of complexity parameters (e.g., number of inputs, min-
terms, and outputs) is synthesized and simulated for the
data patterns generated by the aforementioned procedure. The
simulation can be performed with either a circuit- or gate-level
tool (e.g., SPICE [1], PowerMill [2], IRSIM [20]) depending
on the time the designer wishes to allow for characterization
and the accuracy desired. As mentioned above, the simulations
described in this paper were all performed with IRSIM-CAP
using a convergence criteria of 5%. Simulating to convergence,

578 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

rather than for a fixed number of steps, allows the method
to handle sequential circuits with reasonable accuracy. The
output of the simulation process is a number of capacitance
observations—one for each controller style, complexity, and
activity level.

Coefficient extraction refers to the process of deriving best-
fit model coefficients from the raw simulation data. This can
be achieved using techniques such as least-squares regression,
which minimizes the mean-squared error of the model. In
vector notation, this amounts to solving the following matrix
equation for the capacitive coefficient vector C.

Csim:PCefere (1D
where Cg,,, is a vector of simulated capacitance observations,
P is a matrix of complexity and activity parameter values
corresponding to the observations, and e is the modeling error.

D. ABC Power Analysis Method

Analyzing controller power requires a capacitance model, a
set of capacitive coefficients, and the appropriate complexity
and activity parameters. Given these inputs, the combinational
logic capacitance model can be evaluated (in vector form) as

cft=C N (12)

where Cffo is a vector of capacitive coefficients and N is
a vector of complexity and activity parameters for a given
module. Aside from the combinational logic block, the state
register also contributes to the overall power consumption
of the controller. Since Ng state bits must be stored, the
capacitance model for the state register will have the following
basic form

C;eg = aSCONS (13)
where ag is the activity of the state bits. The total controller
capacitance per access, then, is Cp = CEL 4+ C779. If many
accesses are involved, the total capacitance switched over a
number of input control transitions Ncr can be computed
using the following expression: Cr|mutti-cycte Ner -

CT |single-cycl€. .

E. Control Path Summary

The ABC model presented here explicitly accounts for
activity and provides a general framework for modeling dif-
ferent controller structures. Three specific examples—based
on ROM’s, PLA’s, and random logic—were presented in this
section, but the same general techniques could be used to
model other implementation styles. Using the ABC method,
analyzing controller power amounts to plugging the appropri-
ate activity and complexity parameters into an equation that
weights these parameters by technology- and implementation-
dependent capacitive coefficients. The result is an accurate
architecture-level estimate that reflects both the physical ca-
pacitance and the circuit activity of the controller being
analyzed.

V. INTERCONNECT MODELING

The final class of component in a typical chip is inter-
connect. This section addresses the problem of estimating
the power consumed in charging and discharging interconnect
capacitance.

A. Interconnect Activity

The activity of a wire depends on the type of signal that
wire carries: data or control. The activity of a data signal can
be described by the DBT model. Using this model, the total
capacitance switched during a series of Npr data transitions
on a bus driven by static logic is given by

static: Cppr = NDT[%CUJNU + P(+-)CyNs] (14)
where 1/4 is the probability that a UWN bit transitions from
zero to one, C,, is the physical capacitance of the wires, Ny is
the number of UWN bits in the data model, Ny is the number
of sign bits, and P(4+—) is the probability of a positive to
negative transition between two successive samples in the
data stream. For a control wire driven by static logic, the
appropriate activity is given by the ABC parameter «, the
fraction of bits in the control signal that transition. The total
bus capacitance switched during N control word transitions
is

static: Capo = NCT[%anN] (15)

where o is the probability that a bit in the control word
makes a transition, 1/2« is the probability of a zero-to-one
transition, and NV is the number of bits required to represent all
values that the control word can assume. The potentially strong
correlation between the control signals making up the control
word is handled by the fact that activities are estimated using
a simulation-based approach as described in Section VI-B.
Equations (14) and (15) apply to static buses. Some buses,
however, use precharged logic. In other words, each clock
cycle they are precharged to V4 and then the 0 bits discharge
during an evaluation phase. For these precharged buses, the
appropriate DBT effective capacitance equation is
dynamic: Cppr = Nax[3CwNy + P(+)CyuNs] (16)
where N is the number of clock cycles being evaluated
and P(+) is the probability that a data sample is positive.
Similarly, the ABC capacitance model becomes
dynamic: Capc = Nex[(1 — P)Cy,N]| (17
where P is the ABC signal probability parameter.
These expressions rely on the availability of DBT/ABC
activity parameters and the physical wire capacitance.
Section VI-B will describe how to derive activity parameters.

The remainder of this section will cover physical capacitance
estimation.

B. Physical Capacitance

In the ideal case, the physical capacitance of the interconnect
network is known and can be used directly in architectural

LANDMAN AND RABAEY: ACTIVITY-SENSITIVE ARCHITECTURAL POWER ANALYSIS 579

Composite Complex

Routing & Clock

Fig. 9. Hierarchical structure of chip.

power estimation. More typically, however, analysis occurs
prior to layout and wire capacitances must be estimated. Given
a process technology and a set of design rules, it is possible
to make fairly accurate estimates of average interconnect
capacitance per unit length. Estimating interconnect length is
difficult, however, and depends intimately on design-specific
layout considerations.

The topic has received a good deal of attention in the
past. Feuer [24] and Donath [25] have presented derivations
based on Rent’s Rule [12], which give rise to expressions for
average lengths proportional to a power (p < 1) of design area.
Sorkin [26] confirms this general rule noting that empirical
data support average lengths proportional to the square root
of the chip area (i.e., p = 1/2). Donath also makes use of
hierarchical partitioning and placement. Our techniques rely
heavily on this notion, as well as the empirical observations
of Sorkin resulting in an intuitive, yet reasonably accurate,
analysis strategy.

C. Wire Length Estimation Strategy

The input to this process is a hierarchical RTL description
of the chip being analyzed, which may contain four classes
of blocks (see Fig. 9). A composite block is used to introduce
further hierarchy into the design. The other three block types
are named for the type of structures within the block: datapath,
memory, and control.

Estimating wire length at a given level of hierarchy requires
area estimates for each component block. This suggests a
recursive analysis scheme using a depth-first traversal strategy.
Datapath, memory, and control blocks are treated as leaf
cells and are handled by dedicated analysis routines. This
hierarchical approach preserves partitioning clues supplied by
the designer. This enables block-by-block estimates of wire
length as opposed to a single chip-wide average. Sections V-
D-G describe the analysis strategies for each of the four block
types: composite, datapath, memory, and control.

D. Composite Blocks

Since we are interested in early estimates of wire length,
precise placement and routing information is not available.
Instead, we must predict what the average length is likely to
be for a “good” placement. One option is to perform an early
floorplanning step, but if this process is deemed too expensive
there are other reasonable alternatives.

The approach advocated here relies on the empirical ob-
servation that the quality of a “good” placement often differs
from a random placement by a constant factor, k£ [25], [26].
Since the average wire length for a random placement on a
square array is 1/3 the side-length of the complex [27], the
average length for a “good” placement is approximately

VA

L:kT' (18)

The exact value of the k factor will depend on the character-
istics of the placement and routing tools being used; however,
an oft-quoted conversion factor is approximately 3/5. Since
this value results in the formula I = v/A /5, it has been called
the “1/5 rule” in the literature [26].

The area of a composite complex is the sum the areas of
the component blocks Ap and the area occupied by wires A,,

A:AU)+AB

=A,+ Y. A

i€ {Blocks}

(19)

The component of area related to routing depends on the total
number of wires in the complex (IV,,), the average pitch at
which they are routed (W,,), and their average length (L)

Ay = NyW, L. (20)

Taken simultaneously, (18)—(20) result in a quadratic expres-

sion that can be solved to yield

_ RPN, W, + /(KN W,)? + 36k%Ap
18 '

L

21

580 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

The above expressions can be used to recursively estimate
the area and average interconnect length of composite com-
plexes. For a parallel discussion of clock length estimation the
reader is referred to [15].

E. Datapath Blocks

Since signals often flow through a datapath in a fairly linear
fashion, datapath blocks often employ a one- rather than two-
dimensional placement of modules, where the modules are
formed by tiling up N individual bit-slices. Thus, interconnect
length is proportional to the length, and not the area, of the
datapath

Lpp
Ly =k ——.

3
As before, we can use a & factor (specific to the datapath tiler)
to convert from a random placement to a “good” one. The
length of the datapath Lpp in turn is determined by module

lengths and by the routing channels separating the modules

> L (23)

i€ {Blocks}

22)

Lpp =Lg+

Module lengths can be read from a library database, but routing
channel lengths must be estimated from wiring pitch W, and
the number of vertical wiring tracks between modules, which
is close to the total number of I/O terminals on all the modules

Lp=W, Y N, (24)

1€{Modules}

In order to connect the terminals of two modules in the
datapath, the wire must first be routed vertically from the
terminals to the selected feedthrough. The length of these
vertical wiring components is related to the width Wgg of
a datapath bit slice

L, =2k ES.

(25)
Combining L, and L, gives us our average interconnect length
L =1L, + L,

Finally, the area of the datapath, required for analyzing the
next level up in the hierarchy, can be approximated as

A=WppLpp

:NWBsLDp. (26)

All these calculations are based on the availability of raw
area data for primitive modules (e.g., adders, shifters, etc.).
Unlike power, however, the area of primitive modules is a
deterministic function of their complexity parameters [15].
Thus, the area data can be entered into the hardware database
from direct measurement of layout dimensions.

F. Memory Blocks

Since the power models for memories already account for
internal wiring, interconnect analysis is not required, per se,
for these modules. Area estimates are required, however, to
analyze parent blocks in the hierarchy. As with datapath mod-
ules, deterministic formulas can be derived relating complexity
parameters (i.e., storage capacity) to expected layout area [15].

RTL Description
of Architecture
ADL/CDL
Parsers

i ivi 3 Data and
Complexity™ (Activity Analysis [
e.g. Simulation lnﬁ%ﬁ%on

Area Area
Models Inf&err]%?;srinse ot Estimates

Capacitance Models
& Coefficient Tables

DBT/ABC
Power Analysis

Power
Estimates

Fig. 10. Process flow for architectural power/area analysis.

G. Control Blocks

As for memory blocks, internal wiring is already included
in the power models for control blocks when these blocks .
are characterized. So, once again, all that is required are area
models for the three basic classes of controllers. The same
model fitting techniques that were used for power can be
abstracted to area modeling; however, since activity does not
come into play, the area models will, in general, be more
straightforward than the power models. Details are available
in [15].

H. Interconnect Summary

To review, we propose a hierarchical approach to inter-
connect analysis that takes advantage of partitioning clues
provided by the designer. This allows a distinction to be
made between local and global interconnects. At each level of
hierarchy, the length of the wires depended largely on the area
of the block being analyzed. Once ascertained, the wire length
estimates can be combined with DBT/ABC activity models to
predict the power consumed in driving interconnect and clock
networks.

The accuracy of these area and interconnect estimation
techniques will be discussed more fully in Section VII. As
a brief preview, the area estimate for the microprocessor
example presented there is within 8% of the actual area.
Moreover, the average interconnect and clock length estimates
are off by 7% and 22%, respectively. Finally, the datapath-
specific interconnect estimate errs by 17%.

VI. SPA: AN ARCHITECTURAL POWER/AREA ANALYZER

The previous sections have presented models and methods
for analyzing the power consumption of the four basic classes
of components: datapath, memory, control, and interconnect.
These techniques have been integrated into an architectural
power/area analysis environment called SPA. The SPA analysis
flow consists of several phases as shown in Fig. 10. The
primary input to SPA is a hierarchical RT-level description
of the architecture under consideration. Currently, SPA uses

LANDMAN AND RABAEY: ACTIVITY-SENSITIVE ARCHITECTURAL POWER ANALYSIS

(inputs (State_Type

(outputs

581

state))
(Counter_Fn_Type a_reg)

(State_Type next_state))

(output-table

; state a_reg b_reg mux0
(LDB) (NOP LD SELO
(INV) (LD NOP SELO
(DIV0a) (NOP NOP SEL1
(DIVOb) (NOP NOP SEL1
(DIVla) (NOP NOP SEL1
(DIV1b) (NOP NOP SEL1
(DIV2a) (NOP NOP SEL1
(DIV2b) (NOP NOP SEL1
(DIV3a) (NOP NOP SEL1
(DIV3b) (NOP NOP SEL1
(MULT) (NOP NOP SEL1

)

Fig. 11.

a textual architectural description language (ADL) for this
purpose; however, the same information could be provided
by a graphical schematic capture interface. The control path
is described using a control description language (CDL) that
employs control tables, which specify how the next state and
outputs of each control module relate to the present state
and inputs. In order to maintain a relatively high level of
abstraction, CDL allows the user to specify control signals
and states as enumerated (Symbolic) types rather than bit
vectors (see Fig. 11). With the structure and behavior of the
architecture fully defined, the next step in the process is to
derive the complexity and activity parameters required by the
power and area analysis models.

A. Complexity Analysis

The exact complexity parameters required and the method
for calculating them differs depending on whether the entity
falls under the DBT or ABC models. DBT complexity param-
eters, such as word length NV, specify the “size” of datapath
and memory elements. DBT complexity analysis consists
of stepping through the various entities in the structural
description and reading off the values specified by the user
in the ADL “parameter” list of each module.

ABC complexity analysis reduces to ascertaining the “size”
of control buses and modules. In order to maintain a high level
of abstraction, all control signals are specified as enumerated
types that take on symbolic, rather than binary, values. For
example, if a control bus carries the function input to an ALU,
the type of the bus might be defined as

ALU_TYPE = {ADD, SUB, SHIFT, CMP}. (27)

The word length N (in bits) required to represent an enumer-
ated type 17" which can take on |T'| different values is
N = [log, |T]. (28)

For instance, two bits are required for a binary encoding of an
ALU_TYPE control bus; however, for a “one-hot” encoding

xi_reg yi_reg muxl next_state
NOP NOP SEL1 INV)
LD NOP SEL1 DIVOa)
NOP LD SELO DIVODb)
LD NOP SEL2 DIVlia)
NOP LD SELO DIV1b)
LD NOP SEL2Z2 DIV2a)
NOP LD SELO DIV2b)
LD NOP SEL2 DIV3a)
NOP LD SELO DIV3b)
LD NOP SEL2 MULT)
LD NOP SEL1 LDB)

Excerpt from CDL description of iterative hardware divider architecture.

strategy, the appropriate complexity formula would simply be
N = |T|. One way to handle multiple encoding schemes
would be to have the user associate an encoding style attribute
with each ABC data type or entity.

Two important complexity parameters for a control module
are the number of input bits /V; and the number of output
bits No for the combinational logic block of each controller.
This block may take many control buses as input and may
feed multiple control buses at its output. The total input and
output widths are calculated by summing individual control
field widths

Nyyo

= > My,

ie{1/0s}

> [log, [I/O-TYPE].
1€{I/Os}

(29)

The number of min-terms N, in the minimized control
table is another important complexity parameter. This is more
difficult to estimate since the amount of minimization that can
be performed depends on the binary encoding of the control
table, which is probably not available at this stage of design.
It is more likely that the control table is specified in terms of
symbolic values as shown in Fig. 11. We can approximate N,
by assuming some binary mapping (e.g., random), performing
logic minimization (e.g., using espresso [21]), and using the
number of min-terms in the minimized table as an estimate
of NV, M.

In summary, the complexity parameters can be determined
from the architectural description of the design in question.
The DBT parameters can be read directly from user specified
parameter lists and the ABC parameters can be computed
using a few simple expressions. Finally, the user is free
to add custom complexity parameters to individual modules
when appropriate as long as their values are specified when
instantiating the module.

582 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

B. Activity Analysis

The next step in the process is to derive the ABC activity
statistics for the design. This is accomplished by a func-
tional simulation of the architecture. Many RT-level simulators
would be suitable for this task, but currently SPA uses a
VHDL simulator provided by Synopsys. A code generator is
used to produce structural VHDL for each ADL block and
behavioral VHDL for each CDL block. A collection of activity
monitors attached to the buses and modules in the VHDL
description accumulate activity statistics during simulation. If
the chip requires data or instruction inputs, these must be
supplied by the user who is, therefore, able to characterize the
power consumption for various input patterns and operating
conditions. Since functional simulation is quite fast, run time
is usually not an important concern and is often on the order
of seconds or minutes.

The activity parameters for the DBT model are the word-
level statistics discussed in Section III. These statistics include:
mean (u), variance (o2), correlation (p), sign transition prob-
abilities, and access count (Npr). For a synchronous system,
this access count may be less than or equal to the number
of clock cycles simulated; or, in the presence of block-level
glitching, it may actually be higher.

ABC activity parameters can pertain either to a control bus
or to a control module. For a control bus we must monitor the
control word transition count, Nor. We must also determine
two other ABC activity parameters: signal probability P and
transition activity «. If the binary encoding of symbols is
known, exact values for P and « can be calculated during
simulation by monitoring control word transitions. Otherwise,
we can assume a random encoding (i.e., P = 1/2 and o = 1/2).

Control modules require two sets of («, /7) activity statis-
tics: one for the combinational logic block input and one for
the output. The input and output, in turn, may consist of several
control buses bundled together. A transition of the controller
input word leads to an increment of Nop and is defined to
occur when any of the component input signals transition,
since this will initiate a reevaluation of the combinational logic
block. If we assume a random encoding, we again expect half
of the input and output bits to be one, so Pr = Po = 1/2. As
for the transition activities, the following expression applies

Z 3N1j0, Ner,
ie{1/0s}

NijoNer

ar/o0 = (30)

where 4 refers to the individual control buses that make up the
input/output words. For the case of input activity, this equation
can be explained as follows: 1/2N, is the number of bits that
switch on average when input ¢ makes a transition. This is then
weighted by the total number of transitions that input 7 makes,
Ner, to yield the number of bits within input 4 that toggle over
the entire simulation. This is then summed across all of the
individual inputs to yield the total number of bits that switch
in the full input word during the simulation. Dividing this by
the number of controller input transitions, Ner, and the total
number of input bits, Ny, results in the fraction of input bits
that toggle during a typical input transition—that is, a.

To review, the ABC activity parameters depend on the
encoding of the control words as binary values. If the user
specifies the actual mapping, then simulated activities can be
quite accurate; however, more likely the user will specify
abstract symbolic types for the control signals and state
machine control tables. In this case, a random assignment can
be assumed in order to allow estimates of the control signal
activities to be formed.

C. Power/Area Analysis

The complexity and activity parameters are then fed to
the core area and power analysis routines along with the
parsed architectural description. SPA then steps through each
datapath, memory, control, and interconnect entity in the
design, applying the appropriate power and area analysis
models. Finally, SPA dumps its results, categorizing area and
power consumption in terms of the four classes of components.
This points the designer to the most power-intensive portions
of the implementation and provides useful guidance for further
optimizations.

VII. RESULTS

In this section, we present results gathered using the
SPA power/area analysis tool. The first example is a
Quadrature Mirror Filter which shows SPA’s applicability
to datapath-intensive applications. The second example is a
control-intensive design—specifically, a finite-state machine
that implements the global control function for a speech
recognition front-end. The final case study is a programmable
instruction set processor that demonstrates SPA’s ability to
handle a real-world example containing significant datapath
and control components. As the microprocessor employs on-
chip instruction and data memories, this example will also
serve as a verification of SPA’s efficacy for memory-intensive
designs.

A. Datapath Intensive: A Quadrature Mirror Filter

SPA allows the designer to efficiently explore the design
space, searching for low-power solutions. This example will
demonstrate a design flow that employs SPA to minimize
the power consumed by a Quadrature Mirror Filter (QMF)
such as might be used in a subband coding algorithm [28].
A quadrature mirror filter takes an input signal and splits it
into two bands: a low-pass band, Hyp(w), and a high-pass
band, Hyp(w). The sample rate chosen for the filter would,
in general, depend on the application. For the purposes of this
example, we select a sample period of 0.3 us or about 3.33
MHz. Four candidate architectures were explored using SPA.

The first version is a direct, naive implementation of the
algorithm. The power and area predictions provided by SPA
are shown in the “Initial” column of Table II. Four costly array
multipliers are required to meet the throughput requirements
of the algorithm at 5 V and this leads to a large die size of
95.9 mm?.

In the second version of the design, the expensive array
multipliers are replaced by shift-add operations, reducing the
chip area to a more reasonable 17.2 mm?. SPA reveals that this

LANDMAN AND RABAEY: ACTIVITY-SENSITIVE ARCHITECTURAL POWER ANALYSIS 583

5.21 mm

A

5.14 mm

\j

Fig. 12. Layout of retimed QMF filter design.

TABLE 11
SPA POWER/AREA PREDICTIONS FOR QMF EXAMPLE
Initial | Shift-Add | Retimed Pipelined
Vaa (V) 5 5 L5 125
Power (mW) 348.8 149.5 21.0 7.0
Area(mm?) | 959 172 244 115.4

version of the chip consumes 57% less power than the initial
version, while at the same time occupying 82% less area.

A third implementation of the QMF example was generated
by applying retiming, which reduces the critical path to 60
ns at 5 V. This allows us to lower the supply voltage of the
implementation to about 1.5 V while still meeting the sampling
rate constraint. Analysis using SPA shows a 7.1x reduction in
power. Additional hardware requirements, however, increase
the implementation area from 17.2 mm? to 24.4 mm?.

A fourth version of the filter can be generated by pipelining
the algorithm enabling a fully parallel implementation. This
further reduces the critical path and allows the voltage supply
to be reduced to 1.25 V. SPA confirms an additional power
reduction of 3x for an overall reduction (from version one to
version four) of 50x. Interestingly enough voltage reduction
accounts for only 46% of the power saved by going from
the retimed to the pipelined design. Fully 54% of the power
saved by pipelining can be attributed to a distributed architec-

\

ture which preserves signal correlations and, thus, minimizes
switching activity. SPA is able to model these effects, but
traditional estimators based on white-noise activity models are
not.

While the pipelined example at 7 mW consumes less power
than the 21 mW retimed design, it is at the cost of a 4.7x area
increase. As a result, the retimed example, which is still 17x
lower power than the initial solution and requires only 24.4
mm? is probably a more desirable solution.

To verify that SPA provided accurate area and power
estimates, this version of the filter has been synthesized (down
to layout), extracted, and simulated with actual speech samples
as inputs. The chip plot is shown in Fig. 12. The predicted
area of 24.4 mm? is within 9% of the actual 26.8 mm?
area. A comparison of the SPA power predictions to switch-
level simulation using IRSIM-CAP is given in Fig. 13. The
figure shows the average power consumed by the chip for
data streams corresponding to increasing input signal powers.
SPA’s estimates are within 5% to 14% of IRSIM-CAP for all
data streams. Estimates based on the white-noise model are
also included. The white-noise estimates do not track signal
statistics and, therefore, err by as much as 71% for some of
the data streams.

By using SPA to compare four candidate architectures we
were able to significantly reduce design time. The four filter

584 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

30 T T T - . :
white-noise model
e 1 IRSIM-CAP
Z 20 m sPaA
)
2 _
I}
Q.
[0]
o
g [
o 10 -
<
0 0 1 2 3 4 5 &
Data stream
Fig. 13. Comparison of SPA to IRSIM-CAP for retimed QMF.

versions described here were synthesized using the HYPER
high-level synthesis system [29] and analyzed with SPA in 5
min on a Sun SPARCstation 10. In contrast, laying out and
simulating the retimed version took 3.2 h. Laying out and
analyzing all four designs using low-level power analysis tools
would have required 13 h or more.

B. Control Intensive: A Speech Recognition FSM

This example will demonstrate the use of SPA to aid in the
design of a global finite state machine taken from the front-
end of a speech recognition system [30]. Since this particular
speech recognition chip-set is targeted at mobile applications,
minimizing power consumption is a significant consideration.
The state machine contains over 100 states, 10 inputs, and 25
outputs. The majority of the control table entries are redundant,
making the FSM a good test of how well the estimation models
can handle nonrandom control table contents.

Fig. 14 shows the estimates provided by SPA for three
possible implementation styles: ROM, PLA, and standard cell.
The estimates are for a system clock of 3.3 MHz and a supply
voltage of 1.5 V. The results show the area and average
power for each candidate implementation. In order to verify
that these predictions are reliable, all three implementations
have been laid out, extracted, and simulated. The results
from these physical designs have been included in Fig. 14 for
comparison. The average error in the area estimates is 17.3%
and the maximum error is 22%. The average error in the power
estimates is 12.6%, while the maximum error is 29% (standard
cell case). The standard cell case is more difficult since random
logic is less regular and is more influenced by the binary
contents of the particular control table being implemented.
SPA still provides reasonable results, however, and more
importantly it correctly tracks the influence of implementation
style on area and power.

Based on the SPA results the designer could immediately
eliminate the ROM-based solution. It consumes by far the most
power and is also very large since it does not take advantage of
redundancies in the control table. Both the PLA and standard
cell implementations use logic minimization to reduce the

800
[] IRSIM-CAP
. 600 Bl SPA |
=
£
)
2
g 400 :
[
(o]
©
o
>
< 200} -
o n |
ROM PLA StdCell
(@)
1.5 + . .
] layout
El SPA
10+ 1
N
£
£
«
@
<
0.5+ i
0.0
ROM PLA StdCell

()

Fig. 14. Power and area results for three possible controller implementations.
(a) Predicted versus actual power. (b) Predicted versus actual area.

amount of input decoding required. The higher regularity of
the PLA allows it to be significantly smaller than the standard
cell design, but the precharged nature of the unit leads to a
higher activity (and power consumption) than the static logic
standard cell implementation.

The time that can be saved by exploring these kinds of trade-
offs at the architecture level is significant. For this example,
on a Sun SPARCstation 10, SPA analyzed the area and power
of the three controller implementations in about 2 min. In
contrast, generating and extracting the layout for the three
controllers took about 5 h. Simulation required another 30 min.
Without high-level analysis tools it would not be practical to
thoroughly explore all implementation possibilities. '

C. Memory Intensive: A Programmable Microprocessor

The previous two examples have demonstrated SPA’s accu-
racy and flexibility by showing how it can be used to analyze
both datapath- and control-intensive applications. In this exam-
ple, we tackle a programmable instruction set processor with
on-chip instruction and data memories. Therefore, this case
study demonstrates SPA’s ability to handle memory-intensive,
as well as datapath- and control-intensive, designs.

Fig. 15 depicts the architecture of the simple microcoded
processor under consideration. The processor can execute the

LANDMAN AND RABAEY: ACTIVITY-SENSITIVE ARCHITECTURAL POWER ANALYSIS 585

Data
Memory

Instruction

Micro-Address
Generator

I

Micro
Store

Fig. 15. Architecture of microcoded instruction set processor.

following nine basic instructions: NOP, LDA, STA, ADD,
SHR, CMP, JMP, BLT, and BGE. Given the ADL and
CDL descriptions of the architecture, SPA is able to make
predictions regarding the area and power consumed by the
proposed design while executing a given program on a given
data stream. Fig. 16(a) contains the power breakdowns as
predicted by SPA for a multiplication program running on the
processor with a 1.5 V supply and a 10 MHz clock rate. The
instruction and data memory accesses account for 47% of the
total power consumption. This information could be used by
the designer to select an appropriate focus for optimization
efforts.

SPA can also be used to analyze the influence of instruction
stream on average power consumption. This is made possible
by the activity profiling approach used by SPA. As described in
Section VI-B, SPA actually runs RT-level simulations profiling
hardware activity for all instruction streams provided by the
user. For example, Fig. 16(b) shows the average power while
running three different programs: a multiplication program
(MULT), a fibonacci sequence generator (FIB), and a circular
queue (QUEUE). The power differs between these programs
by as much as 38% making a prediction tool which can
account for the influence of instruction statistics on power
quite valuable.

In order to confirm the accuracy of these predictions, the
processor has been implemented down to the layout level.
The chip plot is shown in Fig. 17. The extracted layout was
simulated at the switch level for the three programs and
the results are included in Fig. 16(b). The error in the SPA
estimates are: —4.1%, 0.88%, and —2.4%, respectively.

We can also use the layout data to verify the intercon-
nect/area analysis strategy. Table III gives the area analysis
for the design, showing that the estimated area is within 8%
of the actual area. The estimated areas of the various blocks
typically err by less than 20%. The micro sequencer is a
notable exception. In the architectural description, this unit was
defined as three distinct standard cell control blocks, while in
the final implementation they were merged into a single block.
This explains the overestimate and demonstrates the important
point that architecture-level estimates are always subject to

8600 r . - : : -
33 400 -]
)
2
(=N
]
o
g
2 200 - E
0 -
Mem Cirl Exu Wires Logic
(a)
1500 : — T
1 IRSIM-CAP
M SPA
E 1000 F .
@
8
Q.
[
o
o
% 500 1
0 |
MULT FIB QUEUE
Program

(®)

Fig. 16. SPA power results for microprocessor. (a) Power breakdown by
hardware class. (b) Power for different instruction/data streams.

TABLE III
PREDICTED VERSUS ACTUAL AREA FOR SIMPLE MICROPROCESSOR CHIP

Block Actugl Predic;ed Error

(mm?) | (mm°) (%)
Instruction memory 0.16 0.16 0%
Instruction regs 0.05 0.04 -20%
Micro sequencer 0.08 0.14 +75%
Micro store 0.13 0.11 -15%
Data memory 0.25 0.25 0%
Datapath 0.57 0.52 -9%
Wiring/overhead 0.90 0.74 -18%
Total 2.14 1.96 -8%

limitations imposed by an imperfect knowledge of the final
implementation details.

Based on the area estimates, the average interconnect and
clock length are estimated at 554 pym and 2,174 pm. The
actual lengths are 595 pm and 2,796 pm, implying estimation
errors of —7% and —22%. To demonstrate that the interconnect

586 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, JUNE 1996

1.46 mm

S

A

y

1.46 mm

Fig. 17.

models are valid for other design examples, a hardware divider
was analyzed as well. The predicted area was 4.68 mm? versus
an actual implementation area of 4.40 mm®—an error of 6%.
The measured interconnect and clock wire lengths were 858
pm and 2,124 pm, while the predicted lengths were 856 pm
and 2,861 pm for errors of —0.2% and 35%, respectively.

SPA’s main advantage is that it requires only a high-
level description of an architecture. For this example, the
description took only about 2 h to produce, whereas layout
required more than 25 h. Furthermore, SPA analyzed the chip
power consumption in about 1 min (on a Sun SPARCstation
10), including parsing, simulation, and estimation times. In
contrast, extraction and simulation of the layout consumed
about 45 min.

VIII. CONCLUSION

This paper introduced a collection of techniques for analyz-
ing the power consumption of chips at the architecture or RT
level of abstraction. Power analysis for datapath and memory
components was achieved using the Dual Bit Type (DBT)
model. A new technique called the Activity-Based Control
(ABC) model was introduced to handle power estimation for

Implementation of programmable microprocessor in 1.2 gm CMOS.

the control path. Both the DBT and ABC models improve upon
contemporary architectural power analysis techniques such as
gate-equivalent estimation by accurately reflecting the effect
of activity, as well as complexity, on power consumption.
Finally, a strategy for analyzing interconnect power consump-
tion was presented. A useful side-effect of this analysis was a
hierarchical area breakdown for the targeted design.

The above power and area analysis models have been
implemented in a tool called SPA, which was used to gather
results for several fairly realistic design examples. The three
examples were constructed to fully exercise the power models
and included datapath, control, and memory intensive designs
as represented by a quadrature mirror filter, a speech recog-
nition controller, and a microprocessor, respectively. Relative
to switch-level power simulations of extracted layouts, these
case studies revealed an average error of 9% with a standard
deviation of 10%. Area estimation errors were of similar
magnitude averaging 14% with a standard deviation of 6%.

Operating at the architecture level allows designers to obtain
results much earlier in the design process and orders of mag-
nitude faster than can be obtained using lower level analysis
tools. This should allow designers to explore the area-speed-

LANDMAN AND RABAEY: ACTIVITY-SENSITIVE ARCHITECTURAL POWER ANALYSIS 587

power trade-offs of several alternative architectures, while
maintaining acceptable design times. Ideally, architecture-
level analysis tools could be combined with existing gate-
and circuit-level tools to form a seamless, integrated design
environment that allows the user to consider optimizations at
all levels ranging from system to circuit.

ACKNOWLEDGMENT

The authors wish to thank A. Abnous for his significant
contributions to the SPA project—in particular, his implemen-
tation of the ADL and CDL parsers and of the VHDL code
generator.

REFERENCES

[1] L. W. Nagel, “SPICE2: A computer program to simulate semiconductor
circuits,” Univ. California, Berkeley, Tech. Rep. ERL-M520, 1975.

[2] C. Huang, B. Zhang, A. Deng, and B. Swirski, “The design and
implementation of PowerMill,” in Proc. Int. Symp. Low Power Design,
Dana Point, CA, Apr. 1995, pp. 105-110.

[3] P. Landman and J. Rabaey, “Architectural power analysis: The dual bit
type method,” IEEE Trans. VLSI Syst., pp. 173-187, June 1995.

[4] A. Deng, Y. Shiau, and K. Loh, “Time domain current waveform
simulation of CMOS circuits,” in Proc. Int. Conf. Computer-Aided
Design, 1988, pp. 208-211.

[5] M. A. Cirit, “Estimating dynamic power consumption of CMOS cir-
cuits,” in Proc. IEEE Int. Conf. Computer Aided Design, Nov. 1987, pp.
534-537.

[6] F. Najm, I. Hajj, and P. Yang, “Probabilistic simulation for reliability
analysis of CMOS VLSI circuits,” IEEE Trans. Computer-Aided Design,
vol. 9, pp. 439-450, Apr. 1990.

[7] F. Najm, “Transition density, a stochastic measure of activity in dig-

ital circuits,” in Proc. 28th Design Automation Conf., June 1991, pp.

644-649.

A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of average

switching activity in combinational and sequential circuits,” in Proc.

29th Design Automation Conf., June 1992, pp. 253-259.

[9] C.-Y.Tsui, M. Pedram, and A. Despain, “Efficient estimation of dynamic

power consumption under a real delay model,” in Proc. Int. Conf.

Computer-Aided Design, 1993, pp. 224-228.

K. Muller-Glaser, K. Kirsch, and K. Neusinger, “Estimating essential

design characteristics to support project planning for ASIC design

management,” in Proc. IEEE Int. Conf. Computer-Aided Design, Los

Alamitos, CA, Nov. 1991, pp. 148-151.

C. Svensson and D. Liu, “A power estimation tool and prospects of

power savings in CMOS VLSI chips,” in Proc. Int. Workshop Low-

Power Design, Napa Valley, CA, Apr. 1994, pp. 171-176.

B. Landman and R. Russo, “On a pin versus block relationship for

partitions of logic graphs,” [EEE Trans. Computing, vol. C-20, pp.

1469-1479, Dec. 1971.

S. R. Powell and P. M. Chau, “Estimating power dissipation of VLSI

signal processing chips: The PFA technique,” VLSI Signal Processing

1V, pp. 250-259, 1990.

[14] P.Landman and J. Rabaey, “Black-box capacitance models for architec-

tural power analysis,” in Proc. Int. Workshop Low Power Design, Napa

Valley, CA, Apr. 1994, pp. 165-170.

P. Landman, “Low-power architectural design methodologies,” Ph.D.

dissertation, Univ. of California, Berkeley, Aug. 1994.

[16] J. Ward et al., “Figures of merit for VLSI implementations of digital

signal processing algorithms,” Proc. IEE, vol. 131, Part F, pp. 64-70,

Feb. 1984.

S. Powell and P. Chau, “A model for estimating power dissipation in

a class of DSP VLSI chips,” IEEE Trans. Circuits Syst., vol. 38, pp.

646-650, June 1991.

R. Mehra, “High-level power estimation and exploration,” in Proc. Int.

Workshop Low Power Design, Apr. 1994, pp. 197-202.

[8

et

[10]

[11]

[12]

(13}

[15]

(171

[18]

[19] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. W.
Brodersen, “Optimizing power using transformations,” IEEE Trans.
Computer-Aided Design, vol. 14, pp. 12-31, Jan. 1995.

[20] A. Salz and M. Horowitz, “IRSIM: An incremental MOS switch-level
simulator,” in Proc. 26th Design Automation Conf., 1989, pp. 173-178.

[21] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,

Logic Minimization Algorithms for VLSI Synthesis. Boston, MA:

Kluwer Academic, 1984.

L. Lavagno, S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli,

“MIS-MV: Optimization of multi-level logic with multiple-valued in-

puts,” in Proc. IEEE Int. Conf. Computer-Aided Design, Santa Clara,

CA, Nov. 1990, pp. 560-563.

[23] R. W. Brodersen, Ed., Anatomy of a Silicon Compiler.
demic, 1992.

[24] M. Feuer, “Connectivity of random logic,” IEEE Trans. Comput., vol.
C-31, pp. 29-33, Jan. 1982.

[25] W. Donath, “Placement and average interconnection lengths of computer

logic,” IEEE Trans. Circuits Syst. vol. CAS-26, pp. 272-277, Apr. 1979.

G. Sorkin, “Asymptotically perfect trivial global routing: A stochastic

analysis,” IEEE Trans. Computer-Aided Design, vol. CAD-6, p. 820,

1987.

[27] B. Preas and M. Lorenzeiti, Eds., Physical Design Automation of VLSI
Systems. Menlo Park, CA: Benjamin/Cummings, 1988.

[28] N.Jayant and P. Noll, Digital Coding of Waveforms. Englewood Cliffs,
NI: Prentice-Hall (Signal Processing Series), 1984.

[29] J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping

of datapath-intensive architectures,” IEEE Design Test of Comput., pp.

40-51, June 1991.

S. Stoiber, “Low-power digital signal processing for speech recogni-

tion,” Master’s degree thesis, Univ. of California, Berkeley, Dec. 1994.

(22]

Kluwer Aca-

[26]

[30]

Paul E. Landman (S5°92-M’95) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
and computer science from the University of Cali-
fornia, Berkeley, in 1989, 1991, and 1994, respec-
tively. His research focused on low-power digital
design techniques and tools with an emphasis on
DSP applications.

After completing his dissertation, he joined the
low-power design branch of the DSP R&D Center of
Texas Instruments, Dallas. His initial research there
focused on low-power algorithms, architectures, and
circuits for portable video applications. Currently, he is participating in
the development of a low-power programmable DSP targeted at wireless
communication applications.

Dr. Landman is a National Science Foundation Fellowship recipient and is
a member of Tau Beta Pi and Eta Kappa Nu.

Jan M. Rabaey (5'80-M’83-SM’92-F’95) re-
ceived the E.E. and Ph.D. degrees in applied science
from the Katholieke Universiteit Leuven, Belgium,
in 1978 and 1983, respectively.

From 1983 to 1985, he was with the University
of California, Berkeley, as a Visiting Research
Engineer. From 1985 to 1987, he was a Research
Manager with IMEC, Belgium, where he pioneered
the development of the CATHEDRAL II synthesis
system for digital signal processing. In 1987, he
joined the faculty of the Electrical Engineering and
Computer Science Department, University of California, where he is now a
Professor. He has authored or coauthored more than 100 papers in the area
of signal processing and design automation. His research interests include
the exploration of architectures and algorithms for digital signal processing
systems and their interaction. He is also active in various aspects of portable,
distributed communications and computation systems, including low-power
design, networking, and design applications.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

