IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 2, JUNE 1995 173

Architectural Power Analysis:
The Dual Bit Type Method

Paul E. Landman and Jan M. Rabaey

Abstract—This paper describes a novel strategy for generating
accurate black-box models of datapath power consumption at
the architecture level. This is achieved by recognizing that power
consumption in digital circuits is affected by activity, as well
as physical capacitance. Since existing strategies characterize
modules for purely random inputs, they fail to account for
the effect of signal statistics on switching activity. The Dual
Bit Type (DBT) model, however, accounts not only for the
random activity of the least significant bits (LSB’s), but also
for the correlated activity of the most significant bits (MSB’s),
which contain two’s—complement sign information. The resulting
model is parameterizable in terms of complexity factors such as
word length and can be applied to a wide variety of modules
ranging from adders, shifters, and multipliers to register files
and memories. Since the model operates at the register transfer
level (RTL), it is orders of magnitude faster than gate- or circuit-
level tools, but while other architecture-level techniques often err
by 50-100% or more, the DBT method offers error rates on the
order of 10-15%.

Index Terms—High-level design tools, library characterization,
low power, power estimation, statistical modeling.

I. INTRODUCTION

N RECENT YEARS, power consumption has become a
critical design concern for many VLSI systems. Nowhere
is this more true than for portable applications, where power
consumption has perhaps superseded speed and area as the
overriding implementation constraint. Designers of high per-
formance, nonportable systems are also beginning to run into
power constraints. The recent introduction of a 50 W 300
MHz implementation of the DEC Alpha architecture [1], and
the reliability and cost issues associated with packaging and
cooling such a device is a clear indication of this fact.
Hence, for a variety of reasons, designers are increasingly
led to consider power as a major system design criterion.
This adds another degree of freedom—and complexity—to the
design process and underscores the need for CAD tools that
facilitate an efficient search of the full area-time-power (ATP)
design space. Yet, while estimation and analysis tools exist for
area and delay, similar tools for power are relatively scarce.
Furthermore, although the largest power reductions often
stem from algorithmic and architectural modifications [2], 3],

Manuscript received June 15, 1994; revised February 10, 1995. This work
was supported by a fellowship from the National Science Foundation and by
ARPA under Grant J-FBI 93-153.

P. E. Landman is with the Integrated Systems Laboratory, Texas Instru-
ments, Inc., Dallas, TX 75243 USA.

J. M. Rabaey is with the EECS Department, University of California,
Berkeley, Berkeley, CA 94720 USA.

IEEE Log Number 9411828.

most contemporary power analysis tools operate at the gate or
circuit levels. So, while offering good accuracy, they provide
feedback too late in the design process to be particularly
useful in either the optimization of a specific design or in
the development of generic low-power heuristics. Moreover,
the large number of gate- and circuit-level components makes
rapid analysis of large systems difficult, if not impossible, at
these levels.

In contrast, currently available architecture-level tools,
while providing rapid results, sacrifice a good deal of
accuracy - a weakness stemming from flaws in the underlying
capacitance models. The Dual Bit Type (DBT) model
overcomes these difficulties and is capable of producing
simple and accurate black-box models for digital CMOS
circuits through an automated module characterization process.
As testimony to this, a DBT-based power/area analysis tool,
dubbed SPA, has been developed and was used to generate
many of the results presented in the following sections. Note
that this paper focuses on the power, rather than the area,
estimation capabilities of SPA.

The remainder of this paper consists of six sections. Section
1T will describe previous attempts at power analysis along with
their limitations. Section III will then describe the DBT model
and how it improves upon the state of the art. Section IV
will describe how hardware libraries can be characterized to
produce the data required during DBT power analysis. Section
V will show how to use this data to analyze the power of digital
systems given an RTL description of the architecture. Section
VI will then present several case studies verifying the accuracy
and flexibility of the DBT technique. Finally, Section VII will
present conclusions along with directions for future work.

II. PREVIOUS WORK

To date, nearly all research into power analysis and estima-
tion has dealt with the circuit and gate levels of abstraction. At
the lowest level, power analysis is typically achieved through
circuit simulation, using transistor-, or perhaps, switch-level
tools [4]-[7] such as SPICE (8], [9] or irsim [10]. More
recently, a number of probabilistic gate-level tools [11]-[14]
have emerged, including those of Ghosh [15], Najm [16],
and Tsui [17]. For these tools, the boolean gate, rather than
the transistor, is the primitive unit, and all capacitances are
typically lumped at its output. The power of each gate is then
calculated as P(0 — 1)CV?2f, where P(0 — 1) is the zeroto
one transition probability of the output signal. Unfortunately,
since these tools require a gate-level mapping as input, they

1063-8210/95$04.00 © 1995 IEEE

174 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 2, JUNE 1995

ISR NN N

i

% Error
N W H
(=] o
8 o o
1T i I

‘ | |
2 4 6 8 10 12
Bits of Dynamic Range Utilized

Fig. 1. Error in modeling multiplier power.

are useful more as a back-end verification step, rather than as
an aid in architectural exploration.

Architectural power models do exist [18]-[20]; however,
they offer significantly less accuracy than their circuit- and
gate-level counterparts. For instance, a power model for an
array multiplier might be represented as P = CyNZ2V2f,
where N is the word length of the two inputs. Here, the
quadratic dependence on N accounts for the N2 full adder
cells of which a typical array multiplier is composed. Given
this model, the characterization process consists of simulating
or measuring the power dissipation of a multiplier, and fitting
the capacitive coefficient, C'y, to these results. This capacitive
coefficient can be interpreted as the effective switching capaci-
tance per one bit cell of the multiplier. As will be seen shortly,
however, a module’s power consumption depends on the
inputs applied. It being impossible to characterize the module
for all possible input statistics, purely random inputs—that is
to say, independent uniform white-noise (UWN) inputs—are
typically applied when deriving Cy .

This leads to the chief source of error in architectural
power modeling as illustrated by Fig. 1, which displays
the estimation error (relative to switch-level simulations) for
a 16 x 16 multiplier. Clearly, when the dynamic range
of the inputs doesn’t fully occupy the word length of the
multiplier, the UWN model becomes extremely inaccurate.
Indeed, for a dynamic range of one utilized bit, the UWN error
reaches 6543% (not shown in the figure for lack of space).
Granted, with good design, word length utilization this poor
would typically be avoided; however, errors in the range of
50-100% are not uncommon [21]. Furthermore, regardiess of
the exact magnitude of the error, the figure clearly indicates
an inadequacy in the UWN model. The DBT model addresses
this deficiency and, as a preview of later results, its modeling
error for the multiplier has also been included in Fig. 1.

III. THE DBT POWER ANALYSIS MODEL

This section details the DBT model, which combines the
reduced complexity of the architecture level with the accuracy
of the gate and circuit levels. This is done by producing a
black-box model of the capacitance switched in each module
for various types of inputs. If desired, these capacitance

estimates can be converted to an equivalent energy, E = CV?2,
or power, P = CV?f.

The DBT capacitance models are easily parameterized. For
example, the user can specify precisely how the physical
capacitance of each module should scale with its “size” or
complexity. This allows the model to reflect the fact that a 16-
b adder will contain roughly twice the physical capacitance of
an 8-b adder.

Unlike previous attempts at architectural power analysis,
the model accurately accounts for activity, as well as physical
capacitance. Instead of having a single capacitive coefficient
based on a uniform white noise assumption, the model employs
several coefficients, each corresponding to a different input
type. As a result, the effect of the input statistics on the module
power consumption is reflected in the estimates. Since the
technique accounts for two input bit types rather than one,
we refer to it as the DBT model.

The following sections describe the DBT model in more
detail. Section III-A tells how the models can be parameterized
to scale with module complexity. Section III-B then describes
how the model accurately accounts for variations in signal
activity.

A. Modeling Complexity

Intuitively, the total power consumed by a module should
be a function of its complexity (i.e., “size”). This reflects the
fact that larger modules contain more circuitry and, therefore,
more physical capacitance. For instance, one would expect a
16 x 16 multiplication to consume more power than an 16 x
16 multiplication. Under the DBT model, the user can specify
arbitrary capacitance models for each module in the datapath
library.

For example, consider modeling the capacitance of a ripple-
carry subtracter. The physical capacitance an instance of this
subtracter will contain is determined by its word length, N.
In particular, an N-b subtracter will be realized by N one-
bit full-subtracter cells. The total module capacitance should,
therefore, be proportional to the word length as shown here:

Cr = CessN. (0]
In this equation, C.rs is a capacitive coefficient, which
describes the effective capacitance switched for each bit of the
subtracter. A detailed discussion of the capacitive coefficients
will be postponed until the section on modeling activity.

Many modules besides the subtracter also follow a simple
linear model. For example, ripple-carry adders, comparators,
barrel shifters, multiplexers, and registers all obey (1). The
DBT method is not, however, restricted to linear capacitance
models.

The flexibility of the DBT modeling strategy allows the
user to specify even more complex capacitance models when
necessary. Take the case of the logarithmic shifter depicted in
Fig. 2. This module consists of several stages, each capable of
performing successive shifts by powers of two, conditional on
the binary value of the SHIFT input. If the unit is capable of
performing a maximum shift by M bits, then the shifter will
require L = [log, (M + 1)] stages. The capacitance model

LANDMAN AND RABAEY: THE DUAL BIT TYPE METHOD

L
IN[O]
IN[1]-+]
! O
28 N
Rl
IN[N-1}—]

shift decode

SHIFT[0]
SHIFT(1]
SHIFT[L-1]

Fig. 2. Decomposition of a logarithmic shifter.

for the log shifter is a function of three parameters: the word
length, N, the maximum shift value, M, and the number of
shift stages, L. The exact capacitance model is given by the
following equation:

Cr = CoN + C1L + CoNL + C3sN2L 4+ C;MNL. (2)

Referring to the figure, the CoN term reflects the capaci-
tance of the N output buffers. Likewise, the C L term rep-
resents the overhead capacitance of the decoders and drivers
for the L shift control signals. Since there are NL cells in
the shift array, the capacitance model also contains a CoNL
term. The last two terms correspond to the amount of routing
in the array. Each of these final terms is proportional to the
number of cells in the array, N L. Since the amount of routing
crossing each cell can range between N and M depending
on the position of the cell, the expression includes a term for
each case: C3sN2L and C4MNL.

Since this capacitance model has several terms, it also
requires several capacitive coefficients. This does not pose
a problem for the DBT model. The solution is to use vector
rather than scalar arithmetic. In other words, instead of a scalar
capacitive coefficient, C.s¢, We use a capacitive coefficient
vector

Cerf=[Co C1 Cy C3 Cy. 3

Similarly, rather than a single scalar complexity parameter,
N, we use a parameter vector:

N=[N L NL N’L MNL. 4)
The result is the following vector capacitance model:
Cp =Ce55-N. %)

In summary, the capacitance models used by the DBT
method are extremely flexible. The user or library developer
can specify precisely how various complexity parameters af-
fect the total capacitance of each module. Typical models range
from simple linear expressions involving a single parameter
and capacitive coefficient to complex functions of multiterm
parameter vectors.

175

UWN
099 T T T ‘T 0.50
09
0.8 — 0.40
06 —_
04 -
02 - 0.30 T
P g.g 1025 o
04 4020 &
06
08 —0.10
09
098 1 1 1 14 0.00
6 4 2 0
MSB LSB

Bit
Fig. 3. Transition activity versus bit for Gaussian data streams with varying
temporal correlation, p.

B. Modeling Activity

The previous section described how to model the effect of
module “size” on capacitance through a complexity parame-
ter, N. In that discussion, N was weighted by an effective
capacitance coefficient, C.¢s. This section describes how
C.ss can be used to model activity, as well as physical
capacitance. First, Section III-B1) describes the motivation
behind the DBT activity model. Then Section III-B2) and
B3) discuss the capacitive coefficients required to estimate the
capacitance switched during data and control input transitions,
respectively.

1) The DBT Data Model: Traditional architectural model-
ing techniques use a single coefficient for each module that is
derived for uniform white noise inputs. Therefore, the activity
due to anything but random data transitions is poorly modeled.
The solution is to use several effective capacitance coeffi-
cients—one for each type of data being modeled. This section
explores what additional data types (aside from uniform white
noise) should be modeled.

Fig. 3 shows the bit transition activity for several differ-
ent data streams. In particular, each curve corresponds to a
Gaussian process, X, with a different temporal correlation,

cov Xt—l Xt
p= _(0—2’__). (6)
The uniform white noise model assumes that all bits have
a zero to one transition probability of 0.25. This value can be
derived by recognizing that for uniform white noise, zero and
one bits are equally likely, and all bits are spatially, as well
as temporally independent. Mathematically,

UWN bit activity: P(0 — 1) = P(0)P(1)
=0.5% = 0.25.)
Comparing this to the figure, the UWN model appears to
work well for the least significant bits (LSB’s) up to a low-
end breakpoint BPO. Intuitively, this is not surprising. The
LSB’s tend to cycle rapidly with small changes in word value.
This cycling has a randomizing effect on the bits which, as a
result, begin to look like UWN bits. The uniformity of least

176 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 2, JUNE 1995

LSB

Data template

MSB

(a)

(b)

Transition template

Transition ID’s

(©)
Fig. 4. Templates for identifying data bit types.

significant digits is a well-known statistical phenomenon, and
a detailed discussion of the topic is given by Preece in [22].

In contrast, the high-order bits from the MSB down to break-
point BP1 are sign bits and, in general, their behavior differs
markedly from the data bits. Among the sign bits, P(0 — 1)
represents the probability that the data will transition from a
positive to a negative value. The figure shows that positively
correlated signals (p > 0) experience lower activity in the sign
region, while negative correlation (p < 0) leads to increased
sign activity.

As a minor point, the UWN and sign bit regions do not
quite cover the entire range of bits. A small intermediate
region separates the two constant activity regions. It is not
necessary to create a new bit type to model this region. Instead,
linear interpolation of the sign and UWN activities models the
intermediate region quite well.

The position of the model breakpoints depends on how
many bits are required to represent the numbers in the data
stream; the unused bits will be devoted to sign. A detailed
discussion of how to derive the breakpoint positions is reserved
for Appendix A. For now, suffice it to say that analytical
expressions can be found that express the breakpoints as a
function of word-level statistics such as mean (u), variance
(¢®), and correlation (p):

BP1 = logy (|u| + 30) (8)
BP0 = log, 0 + ABPO 9)

ABPO = log, [v/1 - p? +|p|/8]. (10)

Since the sign bit activity is so different from the LSB,
or UWN, bit activity, the capacitance model should account
for both types of bits. In other words, rather than having a
single capacitive coefficient for UWN bits, there should also
be capacitive coefficients for different sign bit transitions. The
first step in determining these coefficients is to specify what
types of bit transitions need to be characterized.

Fig. 3 demonstrated that the activity of any two’s-
complement data stream can be characterized by two types of
bits: UWN and sign. This implies that a data template such
as that shown in Fig. 4(a) can be associated with any data
stream. The data template classifies bits in the data stream
as either U or S for UWN and sign bits, respectively. The
qualifier “template” refers to the fact that no specific value
for the sign bits (i.e., + or —) is indicated.

Since the ultimate intent is to classify data transi-
tions—which cause capacitive switching—rather than static
values, the concept of a transition template illustrated in Fig.
4(b) will also prove useful. The SS indicates a transition from
one sign value to another (possibly equal) value. Similarly,
UU suggests that the LSB’s all transition from their current
random values to sorhe new random values. As before, a
transition “template” does not imply any particular sign values;
however, a transition ID can be used to denote a specific sign
transition. For instance, the transition template of Fig. 4(b)
encompasses the four possible transition ID’s of Fig. 4(c).

To summarize, the activity of datapath signals cannot be ad-
equately described by using a pure UWN model. This section
has proposed a DBT model that reflects the distinct behaviors
of both the LSB’s and the MSB’s. The LSB’s are still modeled
as UWN bits, however, the MSB’s are recognized as sign bits.
Terminology was presented for identifying these bit types, as
well as the possible transitions they can make. The next section
will describe how the capacitance switched within a module
for these various data transitions can be captured by using
several effective capacitance coefficients, rather than just one.

2) Capacitive Data Coefficients: As mentioned above, the
intent of the capacitive coefficients is to describe the average
amount of capacitance switched within a module during an
input transition. UWN techniques model only one type of
data statistics and, therefore, require a single coefficient to
characterize the effective capacitance of each module. In
contrast, the DBT method accurately accounts for different
types of input statistics by having a separate coefficient for
each possible transition of both the UWN and the sign bits.

The terminology of the previous section, which was used
to distinguish possible input transitions can also be used to
categorize the required capacitive coefficients. For example,
consider a bit-sliced module with a single data input as shown
in Fig. 5. The module can be split into two regions based
on the input bit types. The LSB region experiences random
(UWN) input transitions and the effective capacitance of this
region can, therefore, be characterized by a single capacitive
coefficient, Cyy. The MSB region, in contrast, experiences
sign transitions and will require capacitive sign coefficients,
Css, to reflect its effective capacitance. Since there are four
sign transitions that fit this template, there must also be four
distinct coefficients. In summary, the effective capacitance of
a one-input module is completely characterized by a table of
five coefficients (see Table I).

The number of coefficients that are required will depend
on how many inputs the module has. The one-input module
discussed above requires five coefficients since only five types
of input bit transitions are possible. A two-input module, on
the other hand, must be characterized for transitions on more
than one data stream. This situation is illustrated by Fig. 6.
For this case, the LSB region sees random (UWN) transitions
on both inputs. The transition ID for this region of the module
is written UU/UU, where the “/” separates the transition ID
for IN; from IN,. The effective capacitance of the module in
this region will be described by the coefficient Cyy,uu.

In the sign region, the module transition template has three
components (SS/SS/SS) rather than the two that might be

LANDMAN AND RABAEY: THE DUAL BIT TYPE METHOD

Module

out
Fig. 5. Transition templates for one-input modules.
TABLE 1
CapacITIVE COEFFICIENTS FOR ONE-INPUT MODULES
Transition - .
Capacitive Coefficients

Templates
uu Cou
ss . [Co]C., |c

[11]
o
58 o1
INy—1» 1 8
~ ~ for)
|N2——> ‘U‘: g 9
n
OUT—» @ Module

ouT

Fig. 6. Transition templates for two-input modules (with aligned break-
points).

expected. This is because the output sign can affect the
capacitance switched in the module, and for some modules
the sign of the inputs does not completely determine the
output sign. For example, consider characterizing the effective
capacitance of a subtracter. Subfracting two positive numbers
could produce either a positive or a negative result. If the
transition template for the module only included inputs, then
a particular transition might be classified as + + / + +. This
makes it appear as though the module undergoes no activity
even though it is possible that the output does make a sign
transition (e.g., positive to negative). Specifying the output
sign (e.g., + + / + +/ + —) avoids this ambiguity. For this
reason, the transition template for the sign region of a two-
input module should contain an entry for the output, as
well as the inputs. Expanding the module transition templates
yields 65 different transition ID’s—each of which must have
a characteristic capacitive coefficient (see the UU/UU and
SS/SS/SS entries of Table II).

In Fig. 6 the situation was simplified by assuming that the
breakpoints of the two inputs aligned perfectly. In reality, the
inputs might have different statistics that cause the number

177

TABLE II
CapACITIVE COEFFICIENTS FOR Two-INPUT MODULES
Transition o .
Templates Capacitive Coefficients
0U/0U Courwe
88/88/88 CH'/H'/+~ C0+/0+I~- CO#/Q#I-¢ CQ#/O#/--
C+4/+-/++ C++/4—/+— Co>/4-1-+ Cﬂ./q,-/.._
C--/-'/u- C--I-1-I~- C--/-#I-+ C--/-./--
Coctomtrs | Conpopoa [Conpoaos | Cayeeye
Misaligned
break;?oims uu/ss Cuuree Couse- Cous-+ Cuyy--
only 88/0U0 Cyerou Cs-rou C_s/ou Cotoo
IN
IN4 o > o
3 %

Module

55/88/858 |\

Fig. 7.
points).

Transition templates for two-input modules (with misaligned break-

of UWN bits and sign bits required by each of the inputs
to be different. The general case of misaligned breakpoints
is shown in Fig. 7. Relaxing breakpoint alignment creates
the possibility of a third module region (UU/SS) with one
UWN input and one sign input. This increases the number
of capacitive coefficients and transition templates required to
fully characterize the module to 73 as shown in the bottom
portion of Table II.

Recall from the previous section that capacitive coefficients
can be either scalars or vectors depending on the number
of complexity terms in the capacitance model. For models
with more than one term, the capacitive coefficients described
here would also be vectors rather than scalars. For instance,
the logarithmic shifter described above would require five
coefficient vectors (corresponding to the entries in Table I)
to fully characterize the effective capacitance. Each of these
vectors in turn would consist of five scalar elements. For
example, Cuu = [Co,uu C1,uu Co,uu Cs,uu Cy4uu)”
for the uniform white noise entry of Table L.

The number of capacitive coefficients required to character-
ize a module grows rapidly with the number of inputs. Con-
sequently, approximations must be used for datapath blocks
with more than two inputs (e.g., multiplexers). Fortunately,
most common datapath elements have two inputs or less (e.g.,
multipliers, shifters, adders, subtracters, comparators, etc.).

In summary, there are two types of bits (sign and UWN)
that both have quite different activities. As a result, the
effective capacitance of a module will be different depending
on the exact input transitions that the module experiences. To
accurately account for this effect, the DBT model uses distinct

178 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 2, JUNE 1995

Pattern
Generation

Hardware Library|

Simulation

Coefficient
Extraction

Capacitive
Coefficients

Complexity
Parameters

Fig. 8. Process flow for library characterization.

capacitive coefficients for each type of data transition that can
occur.

3) Multifunction Units and Capacitive Control Coefficients: 1If
a unit performs only a single function (e.g., an adder), then
its power can be described by a single set of capacitive
coefficients. Some units, however, are able to perform multiple
functions, which may each consume different amounts of
power—e.g., an ALU which can perform add, subtract, and
shift operations. In this case, a single set of coefficients is
insufficient. Instead, we must have a unique set of capaci-
tive coefficients for each distinct function that the unit may
be called on to perform. This minor extension allows the
DBT model to handle input data transitions for multifunction
modules in much the same manner as has been described
above.

A multifunction module, however, will have control as well
as data inputs. The control inputs together form an instruction
to the module which tell it what function it is to perform.
For example, an ALU may have several encoded control bits
whose values determine whether the module will implement an
add, subtract, or shift operation. As long as these control lines
remain fixed, the module will execute the same function and
data transitions can be handled in the manner already described
using the set of capacitive coefficients corresponding to the
current instruction. When a control input makes a transition,
however, the state of the module can be affected just as if
a data transition had occurred. This change in state is most
often accompanied by some energy consumption as the internal
nodes of the module transition to their new values. Therefore,
in order to analyze the total power consumption of a module
we must consider capacitance switching initiated by control
transitions, as well as data transitions.

This capacitance can be modeled by adding capacitive
control coefficients that describe the average amount of capaci-
tance switched in the module when the control inputs transition
to a new instruction. Since a transition involves an initial and
final value, it may seem that a module with N functions
would require N2 coefficients to characterize all possible
instruction transitions. Technically, this is true, however, from
a practical standpoint, it is primarily the final instruction
that determines the power consumption since the module
outputs are being recomputed for this new instruction, not the
previous one. So, a complete set of capacitive coefficients for
a multifunction module would consist of a capacitive control

coefficient for each instruction, as well as a table of capacitive
data coefficients for each instruction.

To summarize, the capacitance switched under various types
of input activity can be more accurately modeled by using
a table of effective capacitance coefficients rather than the
traditional single (UWN) coefficient. Separate coefficients can
be used to characterize transitions on data inputs, as well as
control inputs (for multifunction modules). These coefficients
can be plugged into the capacitance models described in
Section IH-A in order to accurately model the effect of
complexity and activity on module power consumption.

IV. LIBRARY CHARACTERIZATION METHOD

The preceding discussion assumes the existence of capaci-
tive coefficient tables, but does not describe how to produce
them. Library characterization refers to the process of gen-
erating effective capacitance coefficients for each module in
the datapath library. This is a one-time process, not performed
during power analysis, but instead performed whenever a new
cell is added to the library.

The procedure consists of several steps (see Fig. 8) but
can be automated so as to require very little intervention
on the part of the user. Partern generation is the first step
in the three-stage process. During this phase, input patterns
for various UWN, sign, and control transitions are generated
for the module being characterized. Next, simulation is used
to measure the capacitance switched for these input activity
patterns. In order to characterize the influence of complexity,
as well as activity, the module may be characterized for several
complexity parameter values (e.g., word length, number of
shift stages, etc.). Finally, during coefficient extraction, the
capacitance models are fit to the simulated capacitance data to
produce a set of “best fit” capacitive coefficients.

A. Pattern Generation

The input patterns applied during characterization must em-
body all important types of input transitions. This includes both
data (UWN/sign) and control (instruction) input transitions.
The pattern generation problem can be simplified by handling
data and control separately.

Data pattern generation is performed assuming fixed control
inputs. In order to fully characterize a module, the data stream
must include patterns for each transition ID. So for a one-
input module, the UU transition ID requires a random data
stream. Similarly, the SS transition template requires inputs
corresponding to the following sign transitions: positive to
positive (+4), positive to negative (+—), negative to positive
(—+), and negative to negative (——). Fig. 9 shows what
a data stream used to characterize a module (with a word
length of 16 b) might look like. Notice that input patterns
containing a UWN component must be simulated for several
cycles to allow the average capacitance switched to converge
during simulation. Also recognize that the data stream must
be repeated for all possible instructions of multifunction units.

Similar input patterns can be generated for two-input mod-
ules. This can be done in a manner that minimizes the overall
simulation length by, whenever possible, using the previous

LANDMAN AND RABAEY: THE DUAL BIT TYPE METHOD

Set control=INST1:

Set control=INST2:

Cap (fF/bit)

100
90
80
70
60
50
40
30
20
10

------- Irsim-cap
—— SPICE

179

1101001010001101 1101001010001101
0010110101001011 0010110101001011
0110101110100101 0110101110100101

UWN UWN
1001001010001101 1001001010001101
1010101101001100 1010101101001100
0111001010111011 0111001010111011
4‘0000000000000000 + 0000000000000000
+ 0000000000000000 z" 0000000000000000
sign -1111111111111111 sign ‘— 1111111111111111
-1111111111111111 " 1111111111111111

+ 0000000000000000 + 0000000000000000

Fig. 9. Sample data input patterns for a 16-b one-input module.

5

566

(&

(&

1y

v

OE OORE

Fig. 10. Sign characterization sequence for an adder.

data values as the initial data types for the next transition
ID. For example, if the current data values have signs given
by +/ + /+, then the next transition ID characterized should
be of the form +0/ + 0/ + O to avoid having to insert an
initialization step during simulation. The full characterization
sequence for the SS/SS/SS transition template of an adder
is given in Fig. 10.

Notice that as mentioned previously, the transition ID’s
for two-input modules include an output sign specification.
In order to control the output sign, the “sign” inputs cannot
always be limited to all 0’s (for positive) or all 1’s (for
negative) as was done for the one-input module. For example,
a multiplier must be characterized for (+) x (=) = (—), but
using all 0 or all 1 inputs would produce:

(000 --- 00) x (111 --- 11) = (000 --- 00). (11)

In other words, (0) x (—1) = (0). The solution is not to require
sign inputs to have all 0’s or all 1’s, but instead to allow a
small number of nonsign bits that can be used to manipulate
the output sign. For instance, the correct multiplier signs can
be generated by:

(000 --- 01) x (111 --- 11) = (111 --- 11).
or (1) x (=1) = (-1).

For multifunction units, the input patterns must include
control, as well as data transitions. In particular, input patterns
exercising the various possible instruction transitions must be
generated. Recall, however, that characterization of instruction
transition energies depends primarily on the final instruction
value. This simplifies the pattern generation process since it
must only generate a transition fo each instruction regardless of
the initial instruction. This means that all control coefficients

(12)

TTTTTITITTITTI I I T
REEENE RN

| 1 L | | L

10 20 30 40 50 60
Input sample

Irsim-cap versus SPICE.

(=]

Fig. 11.

can be characterized by a single pass through the instruction
set.

To summarize, the input patterns should exercise all impor-
tant combinations of sign, UWN, and instruction transitions.
This will allow all required effective capacitance coefficients to
be represented during simulation. The algorithm for generating
minimal length input pattern sequences is relatively straight-
forward and an automatic pattern generation tool (APG) that
performs this function has been implemented.

B. Simulation

Once generated, the input patterns are fed to a simulator
from which module switching capacitances are extracted.
Any simulator may be chosen, depending on the accuracy
desired and the time allotted to characterization. Switch-level
simulators offer, perhaps, the best combination of speed and
accuracy. All results presented here were derived using irsim-
cap, which is a version of irsim-9.0 [10] with improved
capacitance measurement capabilities. Irsim-cap is three to
four orders of magnitude faster than SPICE with its average
power estimates usually differing by only 10-15% (after
proper calibration). Fig. 11 provides a graphical comparison
of SPICE and irsim-cap for a subtracter operating on a stream
of 64 inputs.

Ideally, the simulation would be based on a net list extracted
from an actual implementation of the function being charac-
terized. In this way, design parameters such as device sizes,
as well as technology parameters including gate capacitances
and device transconductances are automatically incorporated
into the resulting model.

Unfortunately, transistor-level net lists of the hardware
module are not always readily available. In these cases, logic
synthesis tools can be used to produce a gate-level mapping of
the function. The UWN and sign-bit input patterns, discussed
above, can then be applied to this boolean network using one
of the many existing gate-level simulators with capacitance
measurement capabilities [11]-[17].

Characterization does not have to be based on simulation.
If physical implementations of library modules are available,
characterization can be performed by applying the input pat-
terns to the actual chip while measuring incremental power
consumption. This would, of course, be the most accurate
technique, however, since library cells are not commonly

180 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 2, JUNE 1995

fabricated individually on chips, simulation must in most cases
suffice.

In any case, it is interesting to note that since each module
is characterized as a multibit unit (e.g., a 16-b or 32-b adder)
glitching within the module can actually be accounted for
during characterization. This is an improvement over many
gate-level power estimation tools that employ a zero-delay
model and, therefore, ignore glitching. Of course, the DBT
model will only account for glitching if the simulator used
during characterization models this phenomenon.

C. Coefficient Extraction

The simulation step produces an output file containing
effective switching capacitances for the entire series of applied
input transitions. It only remains to extract the capacitive
coefficients from this mass of raw data. This can be achieved
using a variety of model fitting techniques such as linear
least-squares regression, which minimizes the mean-squared
error of the model. This amounts to solving the following
matrix equation for the capacitive coefficient vector, C.yy,
that minimizes the error, e:

Csim = PCe_ff +e (13)

where C.;,, is a vector of simulated capacitance observations
and P is a matrix of complexity parameter values correspond-
ing to each observation. Since for each module, there are
several capacitive coefficients (e.g., Cyu, C44, C4_, etc.)
the equation must be solved several times—once for each
capacitive coefficient vector.

The first step in solving these equations is to form the
parameter matrix, P. Each row of the matrix corresponds
to a different value of the complexity vector, N, described
in Section III-A. For example, assume the logarithmic shifter
described in that section was characterized for word lengths
N € {8, 16,32} and number of stages L € {1, 3, 5},
implying M = {1, 7, 31}. After plugging these values into

the complexity vector, N = [N L NL N2L MNIL],
the parameter matrix would be given by:
N L NL N?’L MNL
8 1 8 64 8 1
8 3 24 192 168
8 5 40 320 1240
16 1 16 256 16
P=|16 3 48 768 336 (14)
16 5 80 1280 2480
32 1 32 1024 32
32 3 96 3072 672
32 5 160 5120 4960 |

This matrix and the vector C,;,, of corresponding capacitance
observations would then feed directly into a least-squares
regression algorithm to produce the best-fit coefficient vector,
(je ffe

In summary, characterization is the process used to generate
tables of capacitive coefficients for library modules, which
can be used to evaluate effective capacitances during power
analysis. Characterization consists of three phases: pattern

Data and
In?lrucnon
nputs

Activity
Analysis

Regional

RTL net list Decomposition

Effective
Capacitance
Calculation

Capacitance Models
& Coefficient Tables

Power
Consumption

Fig. 12. Process flow for DBT power analysis.

generation, simulation, and coefficient extraction. As with
pattern generation and simulation, the coefficient extraction
process has been automated and is performed by a tool called
automatic capacitance extractor (ACE).

The accuracy obtained by characterization depends on the
suitability of the chosen capacitance model, as well as the
number of observations used in fitting the model; however, as
an approximate figure, the logarithmic shifter described here
can be modeled with an rms error of only 9.9%. Of course,
other sources of error, aside from model characterization, such
as inaccuracies in the capacitance simulations, contribute to the
overall error of the technique, which is more on the order of
10-15% (relative to switch-level simulations).

V. POWER ANALYSIS METHOD

The capacitive coefficient tables produced by library char-
acterization can be used to analyze the power consumed by
datapath modules. This section describes the specifics of the
DBT power analysis method. Fig. 12 shows the sequence of
steps in the power analysis process. First, the user must provide
a register-transfer level description of the chip architecture
to be analyzed. This gives the power analysis tool a list of
all the different modules that must be analyzed and their
complexities. With this information, the tool can access the
appropriate capacitance models and coefficient tables in the
hardware database. The user must also supply a set of data
and instruction input vectors for which the power consumption
will be evaluated. These will be used along with the RTL
description to derive the necessary activity statistics.

The following sections will describe the three main phases
of power analysis in more detail. First, Section V-A will
describe how the activity parameters are derived based on the
RTL net list and the supplied input vectors. Then, Section
V-B will go on to show how the modules are decomposed
into UWN and sign bit regions based on these word-level
statistics. Finally, Section V-C will describe how the effective
capacitance switched within each module is calculated using
a region-by-region analysis.

A. Activity Analysis

The activity parameters for the DBT model are the word-
level statistics that help to determine the relative activities of

LANDMAN AND RABAEY: THE DUAL BIT TYPE METHOD

the UWN and sign regions of datapath modules and buses.
In particular, these statistics include: mean (), variance (o'2),
correlation (p), and the sign transition probabilities. The first
three affect the placement of breakpoints during regional
decomposition, while the sign (and instruction) transition
probabilities are required to weight the appropriate capacitive
data and control coefficients during the effective capacitance
computation.

We can consider several possible techniques for deriving
these statistics including statistics propagation, transfer func-
tion evaluation, and functional simulation. In most cases,
functional simulation provides the most general and useful
strategy for deriving DBT activity parameters. Given a set
of typical input vectors (data and instruction) for the chip,
the design is simulated at the functional, or RT, level. During
this simulation, the required statistics, including sign transition
probabilities, are accumulated directly. The simulation must be
carried out over a long enough sequence of data samples to
allow the statistics to converge to their true values. This allows
reconvergent fan-out and feedback to exert their influence on
the activity of the design. The exact number of simulation
cycles required depends on the particular design being ana-
lyzed; however, it is possible to monitor the activity statistics
for convergence and then to terminate the simulation once the
desired confidence interval is reached. Most designs require
much less than 100 cycles to adequately converge [23]. Since
RTL simulation is very fast, simulation time is not an important
concern and is typically on the order of seconds or minutes.

The output of the simulation process is a set of activity
parameters that can be used in the DBT power analysis
calculations. These activities, of course, correspond to the data
and instruction input vectors that were supplied by the user.
In this way, the designer can characterize how much power an
architecture consumes for various instruction streams. Such a
characterization might prove useful at the algorithm level in
designing compilers that generate “low-power” programs.

B. Regional Decomposition

Following activity analysis, the modules in the chip must
be decomposed into sign and UWN regions. This allows the
power analysis tool to account for differences in the behavior
and activity levels of these regions. The decomposition strat-
egy utilizes the breakpoint formulas, i.e., (8)—(10), presented in
Section 1II-B1 and derived in Appendix A. The activity statis-
tics derived for each module during functional simulation are
used in these formulas to compute the appropriate breakpoints.

Consider the case of a one-input module as depicted in Fig.
5. The task of regional decomposition reduces to figuring out
the number of sign bits, Ng, and the number of UWN bits,
Ny. Linear interpolation of power consumption for the small
intermediate region can be achieved by attributing half of the
Np intermediate bits to the sign region and half to the UWN
region:

Nt =BP1- BP0 -1 (15)
Ng =(N - BP1) + % (16)

181

Ny
7
Similar decomposition formulas can be derived for the two-
input case of Figs. 6 and 7.

Ny = (BP0 +1)+ 17)

C. Effective Capacitance Calculation

The output of the decomposition process is a list of regions
contained in each module along with their relative sizes. Once
the modules have been decomposed, the effective capacitance
switched in each region- of each module can be analyzed
independently by applying the appropriate capacitance model
and coefficients. The general formula for calculating the ca-
pacitance of a region is given by:

N:
Cr= >
ic (transition IDs)
for region r

where 7 steps through the transition ID’s of region r, C; is
the capacitive coefficient vector for transition ID i, N is the
complexity vector for the module, P(z) is the probability that
transition 4 occurs, and N, is the number of bits in region 7.
In this expression, C; - N taken alone would be the effective
capacitance if the entire module were experiencing transition :.
This must be weighted by the fraction of bits that actually are
in region r, N,./N, as well as the probability that transition
i occurs, P(i).

This general formula can be applied to the cases of one- and
two-input modules. For example, when applied to the case of

one-input bit-sliced modules, the formula leads to the more
specific expression:

P(i)C;-N (18)

P(SS)Css -N|. (19)

A similar expansion can be performed for the case of a two-
input module.

To summarize, analysis of chip power consumption using
the DBT model occurs in three stages. In the first step,
functional simulation of an RTL net list is used to derive
activity statistics for a set of user-supplied data and instruction
input vectors. Using these statistics, the modules in the design
are decomposed into UWN and sign regions of various sizes.
Finally, the effective capacitance of each region in each
module is computed using the appropriate capacitance models
and capacitive coefficients, which are stored in a hardware
database.

As with all models, the applicability of DBT-based power
analysis is subject to certain limitations. For instance, the
model is currently based on two’s-complement data repre-
sentations. It could, however, be extended fairly easily to
account for other representations such as sign-magnitude or
even unsigned. Furthermore, the DBT model applies primarily

182 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 2, JUNE 1995

TABLE II
CAPACITIVE COEFFICIENTS FOR A SUBTRACTER
Transition) - -
/bi
Templates Capacitive Coefficients (fF/bit)
ou/ou 264

jvu/ss |203|351)342{115
ss/uu |118[316[315]199)
88/88 0l190[273 21[302] of124 of363{171] O O 4[0] 0] O
236 01347(107]254{242{107| 0[375{ O 0]348]184| O ©
461[405] O 0[305{ O] 51|218|318| 71{307| 0{i29| 0
of of 16 of o|366{486] 0[230| 0[319] 5[169]152 19

ojole
=3

to datapath elements. More specifically, datapath elements
are those which operate on collections of bits having an
interpretation as a data word. This includes cells such as
comparators, shifters, adders, subtracters, counters, multipliers,
buffers, registers, memories, etc. The blocks that do not fall
under this category are those for which bit vectors do not have
a collective interpretation. An example of this is control logic
for which bits, typically, represent boolean flags and states
rather than arithmetic quantities. A separate model called the
activity-based control (ABC) model has been developed to
handle RT-level power analysis of these elements [24]. Other
techniques for controller power analysis involve building
statistical models based on data from a set of benchmarks. For
example, Mehra described a model for predicting controller
power based on high-level parameters such as the number of
states, the number of control bit outputs, and the number of
status inputs [25].

VI. RESULTS

The DBT power analysis method has been implemented
in a tool called SPA. This section presents results gathered
using this power analysis tool. The first several case stud-
ies demonstrate the accuracy of the DBT model as applied
to four common RTL building blocks: subtracters, shifters,
multipliers, and memories. The final example shows how
SPA was used to design a low-power digital filter. This real-
world example illustrates SPA’s ability to handle complex
designs and provides a concrete demonstration of the power
analysis/design methodology proposed in this paper.

A. Subtracter

The ripple-carry subtracter (and adder) are staples of any
hardware library. Therefore, it is critical that any proposed
modeling techniques perform well on these units. Before the
power consumed by the subtracter can be analyzed, we must
specify a capacitance model and derive a table of capacitive
coefficients. For a linear unit, such as this, the appropriate
capacitance model was derived in Section IlI-A:

Cr = C.54N. (20)

The table of coefficients resulting from the characterization of
a subtracter in a 1.2 pym technology is given in Table III.

To test the overall accuracy of the DBT model, the time-
multiplexed input stream for a 16-b subtracter in a sub-
band speech coding filter was captured, applied to a switch-
level simulator (irsim-cap), and also analyzed using the DBT
method (see Fig. 13). The results are quite good, with the

400 i T T T T T T T]
B Model 1
£ — lIrsim-cap -

300 I

o NG -
:%, 200 - —
8§ Femm s
100 =
0 - L L] | L L 1 I:

14 12 10 8 6 4 2 0
MSB LSB

Bit
Fig. 13. Subtracter: irsim-cap versus DBT model.

DBT model achieving an overall error of only 0.14%. We
might suspect that some error cancellation is occurring here
and, indeed, when we split the error into its UWN and sign
region components we get +5.1% and —12.9%, respectively.
This is still quite good, however, since this level of accuracy
is achieved based purely on an architecture-level model—that
is, without any low-level run-time simulation nor any direct
knowledge of the internal construction of the unit.

B. Logarithmic Shifter

The subtracter obeys a very simple linear capacitance model.
The case of a logarithmic shifter illustrates what can be
achieved for more complex models. The behavioral parameters
for this example were presented in Section III-A and are: the
word length, N; the maximum shift value, M; and the number
of shift stages, L = [logy, (M + 1)]. The current value, S, of
the SHIFT input also affects the power consumption. This
influence could be handled in two ways. Since, technically,
SHIFT is a control input, the technique suggested in the
preceding text would be to consider each SHIFT value as
a different instruction and have a separate coefficient table
for each case. This is not practical, however, since there
may be 16, 32, or more possible values of S. Another
solution would be to add S as an additional capacitance model
parameter along with N, M, and L. This is a preferable
solution since only one coefficient table would be required.
With this addition, the new capacitance model for the shifter
is given by:

Cr =CyN + C,L+ CoNL + C3N2L

+CysMNL+ C5SNL. 21
Fig. 14 shows the fit of the extracted DBT model to simulation
results for a left shift over a wide range of parameter values.
The rms error over all cases is 9.9%.

C. Array Multiplier

The complexity of an array multiplier (Fig. 15) grows
quadratically with the input word length. Specifically, if the
two inputs have word lengths N; and Ny, respectively, then
the multiplier will require N, N5 full-adder cells. We refer to
modules in which the inputs are laid out in a grid with a cell
at each intersection as bit-meshed, as opposed to bit-sliced,

LANDMAN AND RABAEY: THE DUAL BIT TYPE METHOD

M=3 M=7 M=15 M=31
1o 7T T T — T
Co----- Model VA T N=
g: —— Irsim-cap \/\: N=64
~ 7C ——, =
& 8]
Q 5: n
8 4 . N=32
2 . A N=16
Qe TN] N8
0-30+-70 - 150 - 31
SHIFT
Fig. 14. Log shifter: irsim-cap versus DBT model.
pd
N._‘ — — —
< £ L
= N =9
IN¢[O] = +] +]+ +
IN1[1]—’ +t+ e +| +] +
INg[2] ™ + | + +| +| +
—» + |+
|N1[N1'1]—> +! +

Fig. 15. Complexity of an array multiplier.

modules. The appropriate capacitance model for a bit-meshed
module is given by

CT = CefleNQ. (22)

The regional decomposition of a bit-meshed module differs
slightly from the bit-sliced case. Each bit of a bit-sliced
module is a function of the corresponding bits of the inputs.
In other words, the transition template for bit 7 of a two-
input module will be determined by the transition template
for bit 7 of the two inputs: that is, INy[¢] and IN[¢]. In
contrast, the cells of a bit-meshed module bring together all
combinations of input bits: IN;[¢] and IN3[j]. This results in
the module decomposition shown in Fig. 16. Even though their
interpretation differs, the capacitive coefficients of Table II
still apply.

As a demonstration of model accuracy, the power of a mul-
tiplier within an LMS noise cancellation filter was analyzed
using irsim-cap, as well as the DBT and UWN models. Irsim-
cap placed the average capacitance switched per cycle at 40.2
pF, while the DBT model predicted 41.9 pF—an error of
only 4.2%. In contrast, the UWN model put the multiplier
capacitance at 64.8 pF—a substantial overestimate of 61.2%.
Fig. 1 provides the reader with additional multiplier results.

183

IN,
Ss PIJJ
uu @

LB

U uu/ss uu/uu

Ss 8s/s8/8s

8s/uUv

-— pw——— »

st NU2

Fig. 16. Regional decomposition of an array multiplier.

D. Memory

VLSI chips, of course, consist of more than just computa-
tional elements—data must also be stored and retrieved in
memory units. Memory can either be foreground or back-
ground. Foreground memory usually consists of register files,
which are used to store small amounts of frequently accessed
local data for rapid retrieval. Background memory typically
refers to larger, denser, and slower storage units such as
RAM’s and ROM’s, which may contain more global data or
instructions. With relatively few modifications, the DBT model
can be extended to handle memories.

The capacitance switched during an access to a memory
module will be affected by the size, or complexity, of the
module. Therefore, the capacitance formula must be param-
eterized in terms of the appropriate complexity measures.
For example, a register file contains a total of W registers
with N bits each. In determining the appropriate capacitance
model for the register file we refer to Fig. 17. Accessing a
register activates the input buffers, the output buffers, and
a single register in the file. Each of these contains N bits.
We, therefore, expect a capacitance term proportional to N.
We also must broadcast the data across the entire register file
traversing W words for each of NV bits. This gives us a WN
term in the overall capacitance expression. In addition, there
might be some control overhead for each of the W registers in
the file, giving rise to a W term in the formula and, perhaps,
a constant overhead term for the entire file. Weighting each
of these by a capacitive coefficient, gives us an aggregate
capacitance model of

Cr =Co+CiW + CoN + C3WN. (23)

Background memories (Fig. 18) such as SRAM’s, DRAM'’s,
and ROM’s have a structure very similar to a register file and,
therefore, can use the same capacitance model. This model
assumes a memory partitioned into a single block of cells.
Often, memories will be partitioned into several blocks, with
only a subset of them powered-up for any one access. In
this case, the form of the model remains the same, but the
interpretation of the W and N parameters must be modified.

184 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 2, JUNE 1995

IN
| N

Input Buffers —]

CLK [
st

R/W1 :
R/W2 —> T
3 »
€ : w
. Q .
: o
Register | Array

Output Buffers J

!

ouT
Fig. 17. Basic structure of a register file.

N
[0}
©
3
8 w
3
o Memory | |Array
CLK+* i Sense Amps &
RW Column Decode
Address

Data
Fig. 18. Basic structure of a memory.

Specifically, W should be interpreted as the number of rows
in the active memory blocks and N should be interpreted
as the number of columns in the same blocks. Aside from
this slight modification, the overall capacitance model remains
unchanged.

Fig. 19 shows the results of a comparison between the ca-
pacitance model and switch-level simulations for register files
of varying sizes. For the Read operation, the maximum error
is only 5.7% and is even lower for the Write operation at about
4.2%. Similarly, for the SRAM Read and Write operations, the
memory model provides estimated capacitances within 7.7%
and 0.63%, respectively, of irsim-cap for memories ranging in
size from 16 x 4 to 128 x 32.

E. Quadrature Mirror Filter

SPA allows the designer to efficiently explore the design
space, searching for low-power solutions. This example will
demonstrate a design flow that employs SPA to minimize the
power consumed by a quadrature mirror filter (QMF) such
as might be used in a sub-band coding algorithm [26]. A
quadrature mirror filter takes an input signal and splits it
into two bands: a low-pass band, H;p(w), and a high-pass
band, Hy p(w). The sample rate chosen for the filter would,

N

8.0
7.0
6.0
5.0
4.0
3.0
20
1.0

Ll

I

Cap (pF)

R Y I O

[TTTTT T TTTITTTTI

| -
4 -32 4 -32 432 4—+32

1 1 |

N
Fig. 19. Register file: irsim-cap versus model.

TABLE IV
SPA POWER/AREA PREDICTIONS FOR THE QMF EXAMPLE
Initial | Shift-Add| Retimed | Pipelined
Vaa (V) 5 5 1.5 1.25
Power (mW)| 3488 149.5 21.0 7.0
Area (mm?) | 95.9 17.2 24.4 1154

in general, depend on the application. For the purposes of this
example, we select a sample period of 0.3 us or about 3.33
MHz. Four candidate architectures were explored using SPA.

The first version is a direct, naive implementation of the al-
gorithm. The power and area predictions provided by SPA are
shown in the “Initial” column of Table IV. Four costly array
multipliers are required to meet the throughput requirements
of the algorithm at 5 V and this leads to a large die size of
95.9 mm?2.

In the second version of the design, the expensive array
multipliers are replaced by shift-add operations, reducing the
chip area to a more reasonable 17.2 mm?. SPA reveals that this
version of the chip consumes 57% less power than the initial
version, while at the same time occupying 82% less area.

A third implementation of the QMF example was generated
by applying retiming, which reduces the critical path to 60
ns at 5 V. This allows us to lower the supply voltage of the
implementation to about 1.5 V while still meeting the sampling
rate constraint. Analysis using SPA shows a 7.1x reduction in
power. Additional hardware requirements, however, increase
the implementation area from 17.2 mm? to 24.4 mm?.

A fourth version of the filter can be generated by pipelining
the algorithm enabling a fully parallel implementation. This
further reduces the critical path and allows the voltage supply
to be reduced to 1.25 V. SPA confirms an additional power
reduction of 3x for an overall reduction (from version one to
version four) of 50x. Interestingly enough, voltage reduction
accounts for only 46% of the power saved by going from
the retimed to the pipelined design. Fully 54% of the power
saved by pipelining can be attributed to a distributed architec-
ture which preserves signal correlations and, thus, minimizes
switching activity. SPA is able to model these effects, but
traditional estimators based on white-noise activity models are
not.

LANDMAN AND RABAEY: THE DUAL BIT TYPE METHOD

5.21 mm

5.14 mm

30
white-noise qug[

3 [Irsim-cap
E 2| W SPA]
o
2
[«}
[=%
S
&
o 10Ff 9
>
<

0

Data stream

Fig. 21. Comparison of SPA to irsim-cap for the retimed QMF design.

While the pipelined example at 7 mW consumes less power
than the 21 mW retimed design, it is at the cost of a 4.7x
area increase. As a result, the retimed example, which is still
17x lower power than the initial solution and requires only
24.4 mm?, is probably a more desirable solution.

To verify that SPA provided accurate area and power
estimates, this version of the filter has been synthesized (down
to layout), extracted, and simulated. The chip plot is shown
in Fig. 20. The predicted area of 24.4 mm? is within 9% of
the actual 26.8 mm? area. A comparison of the SPA power
predictions to switch-level simulation using irsim-cap is given
in Fig. 21. The figure shows the average power consumed
by the chip for data streams corresponding to increasing input
signal powers. SPA’s estimates are within 5% to 14% of irsim-
cap for all data streams. Estimates based on the white-noise
model are also included. The white-noise estimates do not
track signal statistics and, therefore, err by as much as 71%
for some of the data streams.

By using SPA to compare four candidate architectures we
were able to significantly reduce design time. The four filter

185

versions described here were synthesized using the Hyper
high-level synthesis system [27] and analyzed with SPA in
5 minutes on a Sun SPARCstation 10. In contrast, laying out
and simulating the retimed version took 3.2 hours. Laying out
and analyzing all four designs using low-level power analysis
tools would have required 13 hours or more.

VII. CONCLUSIONS

In summary, previous attempts at architectural datapath
power models have left much to be desired in terms of
accuracy. These inaccuracies can be attributed to the fact
that standard UWN-based models ignore the influence of sign
bits and signal correlations on power consumption. The Dual
Bit Type (DBT) model presented in this paper addresses
this concern by accounting for both LSB and MSB (sign)
behavior. Under this model, datapath library cells can be
characterized for both types of bits. This process results in
a table of effective capacitance coefficients, which allow the
power analysis process to be reduced to little more than a series
of table-lookups. In addition, the DBT power analysis method
uses parameterizable capacitance models that accurately reflect
the effect of complexity, as well as activity on module power
consumption. Aside from the coefficient table, the inputs to the
analysis process are a small number of word level statistics
describing the inputs to the module—in particular, mean,
variance, correlation, and sign transition probabilities.

A power/area analysis tool called SPA has been developed,
which employs the DBT model. A version of SPA resides
within Hyper-—a suite of tools targeting the high level syn-
thesis of DSP systems [27]. A stand-alone version of SPA has
also been implemented using VHDL as an RTL input language
and simulation platform [28].

APPENDIX A
DERIVATION OF BREAKPOINT FORMULAS

The position of the model breakpoints depends on how
many bits are required to represent the numbers in the data
stream; the unused bits will be devoted to sign. First, consider
the high-end breakpoint, BP1. The bits between BP1 and
the MSB are all sign bits. Therefore, the high-end breakpoint
corresponds to the maximum number of nonsign bits required
to represent all likely values of the data word. The range
of likely values is illustrated by Fig. 22, which shows the
probability density function (PDF) for a Gaussian variable
X:. The curve denotes the probability that a particular value
of X; will occur. This probability is highest at the mean ()
and decays to almost zero within three standard deviations
(30). So the most common values of X, fall within the range
R, = [p — 30, g + 30]. Since the largest likely magnitude of
the signal, then, is |x| + 30, the maximum number of nonsign
(data) bits will be:

BP1 = log, (|u| + 30). (24)

Now consider the lower breakpoint, BP0. Bits below
BP0 behave randomly—like uniform white noise bits. This
behavior suggests that the bits from the LSB to BP0 are
almost completely uncorrelated with the other bits of X,.

186 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 2, JUNE 1995

PDF

p3c

p+'3o X4
-
Ry

Fig. 22. Range of likely values for X, based on its PDF.

Therefore, BP0 occurs at the least significant bit that begins
to exhibit some correlation to the word value of X;. This
correlation first appears when the significance (or place value)
of the bit first approaches the “size” of the range of values
covered by X;. The standard deviation (o) is a good measure
of the smallest significant range of values covered by X;. Since
the place value of bit i is 2!, BP0 occurs at:

BP0 = log, o. (25)

This analysis was performed using a univariate approach
(considering only X;). Technically, the breakpoints of P(0 —
1) depend on both X,_; and X,. Still, (25) remains valid
when X,;_1 and X, are uncorrelated (p = 0); however, when
the signals are correlated, p can have an effect on BP0 as Fig.
3 shows. The joint PDF for X,_; and X, with a significant
correlation (p = 0.8) is shown in Fig. 23. Notice that the
1-D measure of distribution “spread,” o, has been replaced by
the 2-D notion of a unit variance ellipse, or ¢-contour. When
calculating BP0, there are now two measures of “spread” in
the X direction to consider. The first relates to the width of the
ellipse, and can be quantified as the standard deviation of X,
conditional on X;_;:0(X¢| X:—1) = 0/1 — p2. The second
is related to the skew of the ellipse from the X, = 0 axis. This
term becomes important as |p| — 1 and the ellipse collapses
to its horizontal centroid: X; = pX;_;. It is important because
even though the width of the ellipse goes to zero, the skew of
its centroid still allows it to cover a significant range of X,
values. Since the centroid follows X; = pX,_; and extends
from the origin to X;_; = %o, its length along the positive X,
axis is |p|o. At least a fraction, f, of this should contribute to
the “spread” of the distribution. Combining the ellipse width
and skew measures yields o' = o [1/1 — p? + f|p|| where the
first term dominates for small correlations (wide ellipses) and
the second term dominates for large correlations. The result

of replacing o with ¢’ in (25) is an offset to the uncorrelated
value of BPO:

BP0 = log, 0 + ABPO (26)
ABPO = logy [v/1 - p? + |p|/8] 27

where f has been replaced by the empirically derived value
of 1.

Equations (24), (26), and (27) fully describe how to deter-
mine the breakpoints of the DBT data model. The equations

o—Contour

&2
;1
7
30 LKL D X85
L TR
-30 R R

Fig. 23. Joint PDF of X;—; and X.(p = 0.8).

express the breakpoints as a function of word-level statis-
tics such as mean (u), variance (02), and correlation (p).
Although the derivation of these equations utilized Gaussian
random variables for the purposes of illustration, the resulting
breakpoint formulas are fairly independent of the underlying
distribution. Altering the distribution merely introduces a small
multiplicative constant to the o terms in the above equations,
but the effect of this is minimized by the logarithmic form of
the breakpoint equations.

ACKNOWLEDGMENT

The authors wish to recognize the support provided by
the developers of the Hyper system, as well as, the useful
editorial suggestions offered by A. Burstein, R. Mehra, and
K. Landman.

REFERENCES

[1] W. Bowhill er al., “A 300 MHz 64b quad-issue CMOS RISC mi-
croprocessor,” in ISSCC‘95 Digest of Tech. Papers, Feb. 1995, pp.
182-183. :

[2] A. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS
design,” IEEE J. Solid-State Circuits, pp. 472-484, Apr. 1992,

[3] P. Duncan, S. Swamy, and R. Jain, “Low-power DSP circuit design
using retimed maximally parallel architectures,” in Proc. Ist Symp.
Integrated Syst., Mar. 1993, pp. 266-275.

[4] F. Najm, I. Hajj, and P. Yang, “An extension of probabilistic simulation
for reliability analysis of CMOS VLSI circuits,” IEEE Trans. Computer-
Aided Design, pp. 1372-1381, Nov. 1991.

, “Probabilistic simulation for reliability analysis of CMOS VLSI

circuits,” IEEE Trans. Computer-Aided Design, pp. 439-450, Apr. 1990.

R. Tjamstrom, “Power dissipation estimate by switch level simulation,”

in Proc. IEEE Int. Symp. Circuits and Syst., May 1989, pp. 881-884.

{71 M. A. Cirit, “Estimating dynamic power consumption of CMOS cir-
cuits,” in Proc. IEEE Int. Conf. Computer Aided Design, Nov. 1987, pp.
534-537.

[8] L. W. Nagel, “SPICE2: A computer program to simulate semiconductor
circuits,” Univ. California, Berkeley, Tech. Rep. ERL-M520, 1975.

[9] S. M. Kang, “Accurate simulation of power dissipation in VLSI cir-

cuits,” IEEE J. Solid-State Circuits, pp. 889-891, Oct. 1986.

A. Salz and M. Horowitz, “IRSIM: An incremental MOS switch-level

simulator,” in Proc. 26th Design Automation Conf., 1989, pp. 173-178.

J. White, S. Devadas, and K. Keutzer, “Estimation of power dissipation

in CMOS combinational circuits using boolean function manipulation,”

IEEE Trans. Computer-Aided Design, pp. 377-383, Mar. 1992,

B. Hoppe, “Optimization of high speed CMOS logic circuits, with

analytical model for signal delay, chip area, and dynamic power dis-

sipation,” IEEE Trans. Computer Design, pp. 236-247, Mar. 1990.

[5]
6

=

[10]
(11]

{12]

LANDMAN AND RABAEY: THE DUAL BIT TYPE METHOD

(13]

[14]

[15]

[16)

171

[18]

[19]

[20}

[21)
[22)

[23]

[24]

[25]
[26]

127)

A. Shen, A. Ghosh, S. Devadas, and K. Keutzer, “On average power
dissipation and random pattern testability of CMOS combinational logic
networks,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1992, pp.
402-407.

R. Burch, F. Najm, P. Yang, and T. Trick, “McPower: A Monte Carlo
approach to power estimation,” in Proc. Int. Conf. Computer-Aided
Design, Nov. 1992, pp. 90-97.

A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of average
switching activity in combinational and sequential circuits,” in Proc.
29th Design Automation Conf., June 1992, pp. 253-259.

F. Najm, “Transition density, a stochastic measure of activity in dig-
ital circuits,” in Proc. 28th Design Automation Conf., June 1991, pp.
644-649.

C.-Y. Tsui, M. Pedram, and A. Despain, “Efficient estimation of dynamic
power consumption under a real delay model,” in Proc. Int. Conf.
Computer-Aided Design‘93, 1993, pp. 224-228.

S. R. Powell and P. M. Chau, “Estimating power dissipation of VLSI
signal processing chips: The PFA technique,” VLSI Signal Processing
1V, pp. 250-259, 1990.

S. Powell and P. Chau, “A model for estimating power dissipation in a
class of DSP VLSI chips,” IEEE Trans. Circuits and Syst., pp. 646-650,
June 1991.

J. Ward et al., “Figures of merit for VLSI impiementations of digital
signal processing algorithms,” Proc. IEEE, vol. 131, part F, pp. 64-70,
Feb. 1984.

P. Landman and J. Rabaey, “Power estimation for high level synthesis,”
in Proc. EDAC-EUROASIC ‘93, Paris, France, Feb. 1993, pp. 361-366.
D. A. Preece, “Distributions of the final digits in data,” The Statistician,
vol. 30, no. 1, pp. 31-60, Mar. 1981.

P. Van Oostende, P. Six, J. Vandewalle, and H. De Man, “Estimation
of typical power of synchronous CMOS circuits using a hierarchy of
simulators,” IEEE J. Solid-State Circuits, vol. 28, no. 1, Jan. 1993.

P. Landman and J. Rabaey, “Activity-sensitive architectural power
analysis for the control path,” in Int. Symp. Low-Power Design'95, Apr.
1995.

R. Mehra and J. Rabaey, “High-level power estimation and exploration,”
in 1994 Int. Workshop on Low Power Design, Apr. 1994.
N. Jayant and P. Noll, Digital Coding of Waveforms.

Cliffs, NJ: Prentice-Hall Signal Processing Series, 1984.
J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping
of datapath-intensive architectures,” IEEE Design & Test of Comput.,
pp. 40-51, June 1991.

Englewood

187

[28] P. Landman, “Low-power architectural design methodologies,” Ph.D.
dissertation, Univ. of California. Berkeley, Aug. 1994.

Paul E. Landman received the B.S., M.S., and
Ph.D. degrees in electrical engineering and com-
puter science from the University of California,
Berkeley, in 1989, 1991, 1994, respectively.

His research at Berkeley focused on low-power
digital design techniques and tools with an emphasis
on DSP applications. After completing his disserta-
tion, he joined the Integrated Systems Laboratory at
Texas Instruments, Dallas. He is currently develop-
ing low-power algorithms, architectures, and circuits
for portable video applications.

Dr. Landman is a National Science Foundation Fellowship recipient and a
member of Tau Beta Pi and Eta Kappa Nu.

it/

Jan M. Rabaey received the EE and Ph.D. degrees
in applied science from the Katholieke Universiteit
Leuven, Belgium, in 1978 and 1983, respectively.
From 1983 to 1985, he was connected to the
University of California, Berkeley as a Visiting
Research Engineer. From 1985 to 1987, he was a
Research Manager at IMEC, Belgium, where he
pioneered the development of the CATHEDRALII
synthesis system for digital signal processing. In
1987 he joined the faculty of the Electrical Engi-
neering and Computer Science Department at the

University of California at Berkeley, where he is now a Professor. He has
authored or coauthored more than 100 papers in the area of signal processing
and design automation. His research interests include the exploration of
architectures and algorithms for digital signal processing systems and their
interaction. He is also active in various aspects of portable, distributed commu-
nication and computation systems, including low-power design, networking

and design applications.

