EEC 216 Lecture #7: Low Power Interconnect

Rajeevan Amirtharajah
University of California, Davis
Outline

• Announcements
• Review: Sizing, Clocking, Latches & Flip-Flops
• Low Swing Buses and Level Converters
• Stepwise Charging
• Data Dependent Swings
• Bus Invert Coding
• Modulated Signaling
Outline

• Announcements

• **Review: Sizing, Clocking, Latches & Flip-Flops**

• Low Swing Buses and Level Converters

• Stepwise Charging

• Data Dependent Swings

• Bus Invert Coding

• Modulated Signaling
Summary of Sizing for Minimum Energy

- Device sizing combined with voltage reduction is very effective approach to reducing energy consumption
 - For large fanouts, a factor of 10 reduction can be gained
 - $K = 1$ case is exception; minimum-size device optimal
- Overly large sizing can result in large power penalty
 - Typical of designs today, especially standard cells since cells designed for worst case load conditions to guarantee design meets timing
- Optimal sizing for minimum energy (at fixed delay) smaller than sizing for minimum delay
 - Example: for fanout $K = 20$, $k_{opt}(energy) = 3.53$ vs. $k_{opt}(delay) = 4.47$
 - Further increasing sizes leads to minimal voltage reductions
Synchronous System With Global Clock

- Simple and convenient design style with minimal circuit overhead
- Challenge is creating and distributing clock with low skew and jitter (timing uncertainty) at high frequencies
Critical Path Replica Self-Timed System

- Similar to synchronous style except clock frequency directly correlated to circuit speed
- Robust to process, voltage, temperature variations
- Minimal circuit overhead for self-timing
Handshaking Between Pipeline Stages

- Truly asynchronous style with maximum performance
 - Each stage computes as fast as possible on each datum
 - Overhead between stages to guarantee information flows correctly through pipeline
- Also robust to process, voltage, temperature variations
- Circuit overhead implies more switched capacitance
Latch and Flip-Flop Design Styles

- **Static Latches:** use feedback to maintain state
 - Use transmission gate multiplexers and inverters to create conditional feedback
 - Reduce clock loading by using NMOS only pass gates
 - Unconditional feedback with weak (nonminimum channel length) inverters, a ratioed design

- **Dynamic Latches:** use parasitic capacitances to hold state (like dynamic circuits)
 - Transmission gates conditionally connecting inputs to storage node
 - Many variations: C²MOS, TSPC, others
• Combine TSPC latches and merge

R. Amirtharajah, EEC216 Winter 2009
Outline

• Announcements
• Review: Sizing, Clocking, Latches & Flip-Flops
• Low Swing Buses and Level Converters
• Stepwise Charging
• Data Dependent Swings
• Bus Invert Coding
• Modulated Signaling
Internal buses can contribute significant amounts of dynamic power

- Problem worsening as chips move to 64, 128 bit datapaths

Define reference dynamic power for N bit bus:

\[P_0 = N \alpha C_{bus} V_{DD}^2 f \]

Consider circuit changes to reduce power, primarily through voltage scaling and data encoding
Reduced Voltage Swing

- Driver circuit attenuates voltage swing toward ground for large on-chip buses
- Receiver amplifies small swings to rail-to-rail
- Quadratic reduction in bus power
CMOS Inverter Down Converter

- Drive input from rail-to-rail
- Output goes from VDDDL to Gnd
• Use NMOS pullup if $V_{DDH} > V_{DDL} + V_{Tn}$

• Reduced area since NMOS can be smaller than PMOS, but requires extra inverter
Cross Coupled Pullup Up Converter
Cross Coupled Up Converter Design

- Similar issues to sense amp flip-flop design
 - Design input NMOS pair to flip state of converter
 - Potentially fast since input swings can be small, less time required to develop adequate differential voltage on large capacitance bus lines

- Several analog design issues
 - Ratioed differential design like DCVSL
 - Sensitive to P/N mismatch corner
 - Threshold voltage variation results in variable speed

- Can fold in logic to form DCVSL gate
- Also fold in edge-triggered flip-flop for retiming
Sense Amplifier Based FF Receiver
Self-Resetting Up Converter

In

Out

Inverting Delay
Self-Resetting Up Converter Design

• Does not rely on ratioed design
 – Less sensitive to process variations
 – Very fast since dynamic circuit

• Dynamic circuit design issues apply!
 – Leakage, charge sharing, noise coupling
 – Extra leakage since low voltage PMOS not fully off

• Inherent race condition
 – Output must fully transition before self-reset feedback signal cuts off pullup or pulldown path
 – Bigger issue on pulldown since NMOS gate has little overdrive (input at VDDL)

• Consumes significant area especially if delays must be long
Reduced Midrange Swing

- Driver circuit attenuates voltage swing around Vdd/2 for large on-chip buses (VDL, VSL)
- Receiver amplifies small swings to rail-to-rail
- Quadratic reduction in bus power
• Use reduced threshold devices to maintain gate overdrive and drain current
Symmetric Level Converter

In

Out

VSL

VDL

1

2

R. Amirtharajah, EEC216 Winter 2009
• Both pass gates pull internal nodes to VDL, causing positive feedback to switch output rail-to-rail
Implementing Reduced Voltage Swings

• Creating extra power supplies requires power!
 – Linear regulator simple to implement (requires opamp, power FET, voltage reference)
 – Dissipates static power
 – Linear regulator efficiency poor (ratio of output to input voltage)
 – Switching regulators more efficient, but require off chip components (like high Q inductors)

• Midrange swing circuit requires more supplies and overhead power
 – Advantage is symmetry in circuit forms between PMOS and NMOS (less P/N mismatch dependence)
Midrange Swing Dual Linear Regulators

- Nakagome, JSSC 95
Outline

• Announcements
• Review: Sizing, Clocking, Latches & Flip-Flops
• Low Swing Buses and Level Converters
• Stepwise Charging
• Data Dependent Swings
• Bus Invert Coding
• Modulated Signaling
Stepwise Charging

\[\Phi_{N-1} \]

\[V_{N-1} \]

\[+ \]

\[C_T \]

\[\Phi_1 \]

\[V_1 \]

\[- \]

\[+ \]

\[C_T \]

\[\Phi_0 \]

\[V_0 \]

\[- \]

\[+ \]

\[C_T \]

\[\Phi_{GND} \]

\[Out \]
Stepwise Charger Operation

• Basic idea: charge large capacitance in small incremental steps
 – Voltage swing between steps small, so small power dissipation between intermediate voltage levels
 – Falls off quadratically with number of levels N
 – N steps required, so total dissipation for entire transition goes as $1/N$

\[
P = f C_L \sum_{k=1}^{N} \left(\frac{V_{DD}}{N} \right)^2
\]

\[
= C_L \frac{V_{DD}^2}{N} f
\]
Stepwise Charger Design

- Requires large tank capacitors to store intermediate voltage levels
 - Must store enough charge that charge sharing with output node doesn’t affect voltage much, share among multiple drivers
 - Unnecessary to generate intermediate voltages independently
 - Charge redistribution after several cycles of operation charges tank capacitors to intermediate levels

- Implement switches with two FETs in parallel
 - One sized for charging transition, other for discharging transition
 - Reduces losses due to driving switch gates
Stepwise Charger Optimization

• Controller generates timing signals to control charging and discharging
 – More steps (N bigger), less power in driving load
 – However, more power due to driving switch gates
 – Tradeoff results in optimum number of steps for lowest power dissipation:

 $$N_{opt} = \frac{3 \sqrt{T}}{4mRC}$$

 – T: desired rise time of driver output
 – RC: intrinsic switching speed of process
 – m: number of RC time constants for each charging step
Stepwise Charger Summary

- **Is it practical?**
 - Requires large (presumably off-chip) capacitors
 - Shallow minimum, so less constrained
 - Often requires only 3-4 voltage steps to get within a few percent of minimum power

- **Some care required for generating timing signals**
 - Avoid overlap: can result in voltage steps being averaged together
 - Use edge-to-pulse converters with controlled delay elements to meet worst case pulse width requirements

- **First example of adiabatic circuit techniques**
Outline

• Announcements
• Review: Sizing, Clocking, Latches & Flip-Flops
• Low Swing Buses and Level Converters
• Stepwise Charging
• Data Dependent Swings
• Bus Invert Coding
• Modulated Signaling
Data-Dependent Swing Dynamic Bus

• Charge sharing with pre-discharged dummy line creates data-dependent “0” levels on data lines
• Reduces swing (and power) by $n+1$, where n is number of 0s being transmitted
• Challenge is building receiver to detect variable swing
 – Use differential circuit based on dummy “1” and “0” lines
 – Include charge sharing and crosstalk on reference
 – Combine using 4 input differential circuit (two tied to data input, third tied to “1” reference, fourth tied to “0” reference)
 – Input data compared to average of “0” and “1” levels
Data-Dependent Swing Bus Circuit

- Hiraki, JSSC 95
Data-Dependent Swing Bus Operation

<table>
<thead>
<tr>
<th>Bus Operation</th>
<th>Voltage Swing</th>
<th>Power Dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Bus</td>
<td></td>
<td>(n \cdot f \cdot C_w \cdot V_{cc}^2)</td>
</tr>
<tr>
<td>DDL Bus* (Proposed)</td>
<td></td>
<td>(\frac{n}{n+1} \cdot f \cdot C_w \cdot V_{cc}^2)</td>
</tr>
</tbody>
</table>

*DDL: Data-Dependent Logic Swing

- Hiraki, JSSC 95

R. Amirtharajah, EEC216 Winter 2009
Simulated Data-Dependent Bus Waveforms

- Hiraki, JSSC 95
Data-Dependent Bus Receiver

- Hiraki, JSSC 95
Data-Dependent Bus Issues

• Dynamic bus so dynamic circuit design rules apply!

• Some overhead in dummy lines
 – Four extra wires if follow design from Hiraki paper
 – Must amortize over wide bus, but wider bus implies smaller voltage swing in worst case

• Complicated receiver consumes area, short circuit current while switching
 – Differential circuit design rules apply
 – Power cost implies optimal ratio between number of data lines and dummy lines, i.e. optimal bus width

• If receiver can be built, why not just use reduced swing at minimum receiver threshold?
Outline

• Announcements
• Review: Sizing, Clocking, Latches & Flip-Flops
• Low Swing Buses and Level Converters
• Stepwise Charging
• Data Dependent Swings
• Bus Invert Coding
• Modulated Signaling
Coding for Low Power Interconnect

- **Goal is to reduce number of transitions on bus**
 - Techniques explored in past to reduce Ldi/dt (simultaneous switching noise) on output pads
 - *Bus-Invert coding* special case of “starvation coding” or “limited-weight coding”

- **Tradeoff between reduced activity and circuit overhead**
 - Extra wires needed on bus
 - Encoding circuitry can be complicated, consumes more power

- **Still an area of active research!**
Bus Invert Coding

- Algorithm is conceptually simple:
 1. Compute Hamming distance (number of bits which differ) between current N-bit bus data and next cycle bus data
 2. If Hamming distance $> N/2$, set extra Invert signal equal to one and put inverted next data on bus
 3. Else set $Invert = 0$ and put next data on bus
 4. Receiver conditionally inverts sampled data depending on $Invert$ signal (can implement with 2-input XOR gate)

- Bus requires transmitting extra Invert signal ($N+1$) wires
Bus Invert Coding Performance

• Maximum number of transitions reduced from \(N \) to \(N/2 \), assuming uniform and independent bits
 – Peak dynamic power cut in half
 – Average number of transitions reduced by less than half due to additional *Invert* signal and binomial distribution in Hamming distance
 – With invert coding, \(N/2 \) becomes most likely Hamming distance so inverting data values makes no difference

• As \(N \) gets bigger, average power savings becomes smaller
 – \(N=8 \), 18% less average power, but only 15% savings at \(N=16 \)

• Scheme optimal for overhead of one extra wire
Partitioned Code for Lower Average Power

• Divide N bit bus into smaller buses and encode those separately
 – Reduces average power dissipation most (limit is $N=2$, with $N/2$ additional invert signals)
 – $N=2$ limit results in 25% lower activity

• Other codes using more than one extra wire can reduce activity even further
 – Code generation challenging, could use lookup tables but would cost a lot of area, power
 – M-limited weight codes are one approach (M is maximum number of transitions between cycles)
 – Number of extra wires grows exponentially
Bus Invert Implementation

\[D[n+1] \]
\[D[n] \]

invert

MAJORITY
Majority Voter Digital Implementation

- Tree of Full Adders with simplified logic at top
Majority Voter Analog Implementation

- Resistor summing tree and voltage comparator
Gray Code for Low Power

• For sequential data streams Gray coding reduces activity
 – Only one wire out of N transitions in any given cycle
 – Extra circuit and extra area required

• Useful for address traces which tend to be sequential
 – Program counter, FIFO pointers, indices for arrays stored in RAM
 – Sequential FSM states

• Mix of Gray code and Bus-Invert coding deals with combined random and sequential traces
Impact of Data Statistics on Coding

- **Bus invert coding assumes random signals**
 - Empirically signal processing data streams exhibit Dual Bit-Type behavior
 - Use bus invert coding on random LSBs
 - MSBs don’t transition much anyway
Outline

• Announcements
• Review: Sizing, Clocking, Latches & Flip-Flops
• Low Swing Buses and Level Converters
• Stepwise Charging
• Data Dependent Swings
• Bus Invert Coding
• Modulated Signaling
Binary NRZ vs. Modulated RZ

Baseband NRZ: Bit Rate = 1/T

Pulse width = T

PM/PWM RZ: Bit Rate = (1+m_1+m_2)/(2T+n_1\delta_1+n_2\delta_2)

Symbol width = 2T+n_1\delta_1+n_2\delta_2
Modulated RZ Speedup Analysis

Binary NRZ:

\[X_{\text{base}} = \frac{1}{T} \]

PM/PWM RZ:

\[X_{\text{mod}} = \frac{1+m_1+m_2}{2 + (2^{m_1-1}) \frac{\delta_1}{T} + (2^{m_2-1}) \frac{\delta_2}{T}} \]

Speedup:

\[S = \frac{X_{\text{mod}}}{X_{\text{base}}} = \frac{1+m_1+m_2}{2 + (2^{m_1-1}) \frac{\delta_1}{T} + (2^{m_2-1}) \frac{\delta_2}{T}} \]

- Speedup determined by \(\frac{\delta_i}{T} \) ratio and encoded bits \(m_i ! \)
- Power benefit: multiple bits encoded in each edge, therefore fewer edges for given data rate
• Use multiple delay lines and muxes to choose positions for leading and trailing edges pulse edges
• Use multiple delay lines and a reference timing edge to determine transmitted edge positions
Conclusions

• **Interconnect power an increasingly important component of total chip power**
 – Wires aren’t scaling as fast as transistors (to maintain reasonable resistance)
 – Chips tend to get larger, use faster data rates

• **Numerous good (and bad) techniques proposed**
 – Many rely on low voltage swings on long wires, require amplifiers, possibly more static power
 – Data coded to reduce transitions (requires logic overhead)
 – Modulated signaling to transmit several bits per edge

• **Ongoing area of research!**