EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture

Rajeevan Amirtharajah
University of California, Davis
Outline

• Announcements
• Review: PDP, EDP, Intersignal Correlations, Glitching, Top Level Power Estimation
• Behavioral Level Power Estimation
• Architectural Level Power Estimation
• Interconnect Power
• Low Power Architecture
Outline

• Announcements
• Review: PDP, EDP, Intersignal Correlations, Glitching, Top Level Power Estimation
• Behavioral Level Power Estimation
• Architectural Level Power Estimation
• Interconnect Power
• Low Power Architecture
Review: Power-Delay Product

\[
PDP = P_{av} t_{pd}
\]

• Product of average power and propagation delay is generally a constant (fixed technology and topology)

• PDP = Energy consumed by gate per switching event (Watts x seconds = Joules)

• Energy is nice because it is a physical quantity, easy to relate to actual device

• Can be distorting: to minimize energy, use \(V_{DD} = 0 \) V

• Most useful when \(t_{pd} \) is constrained by application
 – DSP, multimedia applications, real-time operation
Review: Energy-Delay Product

\[EDP = PDP \times t_{pd} = P_{av} t_{pd}^2 \]

- Weight performance more heavily than PDP
 - Enables more flexible power-performance tradeoff
- Higher voltages decrease delay but increase energy
- Lower voltages decrease energy but increase delay
- Therefore there exists an optimum supply voltage
- Useful when application allows power and performance (e.g., clock frequency) to both vary
 - Good for evaluating logic styles, microprocessors, etc.
Review: Intersignal Correlations

• **Activity factor assumes independent, uniformly distributed input data, NOT very good assumptions typically**
 – Switching activity strong function of input statistics
 – Must use conditional probabilities when evaluating circuits with reconvergent fanout

• **Several techniques can be applied to reduce activity factor of logic internal nodes**
 – Logic restructuring: rearrange gates, for example in chains instead of trees
 – Input reordering: put high activity signals late in path
 – Consider parallelizing structures instead of time multiplexing them
Review: Glitches

- Glitches due to mismatches in nonzero propagation delay of logic gates
 - Internal nodes may make spurious transitions before settling on final output
 - Reduce glitching by balancing logic delays (can also speed up circuits)
 - Add transparent latches to inputs of complex combinational logic blocks to eliminate glitching when outputs unused
Review: Top Level Power Estimation

• **System Level Power Estimation**
 – Allows designer to analyze power impact of system partitioning among software, FPGAs, ASICs, etc.
 – Spreadsheet analysis using library of models for entire components
 – Models created from measurements, low-level power estimation

• **Instruction Level Power Estimation**
 – Run assembly instructions on target processor and measure power
 – Create database of power cost for individual instructions, pairs, maybe entire frequently used traces
 – Add in cache misses, pipeline stalls, etc.
Outline

• Announcements
• Review: PDP, EDP, Intersignal Correlations, Glitching, Top Level Power Estimation
• Behavioral Level Power Estimation
• Architectural Level Power Estimation
• Interconnect Power
• Low Power Architecture
Outline

• Announcements

• Review: PDP, EDP, Intersignal Correlations, Glitching, Top Level Power Estimation

• Behavioral Level Power Estimation

• Architectural Level Power Estimation

• Interconnect Power

• Low Power Architecture
Interconnect Modeling

• Early days of CMOS, wires could be treated as ideal for most digital applications, not so anymore!

• On-chip wires have resistance, capacitance, and inductance
 – Similar to MOSFET charging, energy depends on capacitance
 – Resistance might impact adiabatic charging, static current dissipation
 – Ignore inductance for now

• Interconnect modeling is whole field of research itself!
Resistance

• Resistance proportional to length and inversely proportional to cross section

• Depends on material constant resistivity ρ (\(\Omega\)-m)

\[
R = \frac{\rho L}{A} = \frac{\rho L}{HW} = R_{sq} \frac{L}{W} \quad R_{sq} = \frac{\rho}{H}
\]
Parallel-Plate Capacitance

- Width large compared to dielectric thickness, height small compared to width: E field lines orthogonal to substrate

$$C = \frac{\varepsilon_r}{t} WL$$
Fringing Field Capacitance

- When height comparable to width, must account for fringing field component as well
Total Capacitance Model

- When height comparable to width, must account for fringing field component as well
- Model as a cylindrical conductor above substrate
Corrected Total Capacitance Model

- Total capacitance per unit length is parallel-plate (area) term plus fringing-field term:

\[
C = C_{pp} + C_{fringe} = \frac{\varepsilon_r W}{t} + \frac{2\pi\varepsilon_r}{\log(2t/H + 1)}
\]

- Model is simple and works fairly well
 - More sophisticated numerical models also available
- Process models often give both area and fringing (also known as sidewall) capacitance numbers per unit length of wire for each interconnect layer
Capacitive Coupling

• Fringing fields can terminate on adjacent conductors as well as substrate

• Mutual capacitance between wires implies crosstalk, affects data dependency of power
Miller Capacitance

- Amount of charge moved onto mutual capacitance depends on switching of surrounding wires.
- When adjacent wires move in opposite direction, capacitance is effectively doubled (Miller effect).

\[
\Delta Q = C_m (V_f - V_i) = C_m (V_{DD} - (-V_{DD})) = 2C_m V_{DD}
\]
Data Dependent Switched Capacitance 1

- When adjacent wires move in same direction, mutual capacitance is effectively eliminated

\[
A \uparrow B \uparrow C \uparrow \quad \text{OR} \quad A \downarrow B \downarrow C \downarrow \quad C_{\text{eff}} = 0
\]

\[
A \downarrow B \uparrow C \downarrow \quad \text{OR} \quad A \uparrow B \downarrow C \uparrow \quad C_{\text{eff}} = 4C_m
\]

\[
A \downarrow B \uparrow C \uparrow \quad \text{OR} \quad A \downarrow B \downarrow C \uparrow \quad C_{\text{eff}} = 2C_m
\]

\[
A \uparrow B \uparrow C \downarrow \quad \text{OR} \quad A \uparrow B \downarrow C \downarrow
\]
Data Dependent Switched Capacitance 2

- When adjacent wires are static, mutual capacitance is effectively to ground

\[
0 \uparrow 0 \quad \text{OR} \quad 1 \downarrow 1 \\
1 \uparrow 0 \quad \text{OR} \quad 0 \downarrow 1 \\
0 \uparrow 1 \quad \text{OR} \quad 1 \downarrow 0 \\
1 \uparrow 1 \quad \text{OR} \quad 0 \downarrow 0
\]

\[C_{\text{eff}} = 2C_m\]

- Remember: it is the \textit{charging} of capacitance where we account for energy from supply, \textit{not} discharging
Wire Length Estimation Flow

• Final piece of architectural power estimation: incorporate interconnect power

• Given hierarchical RTL description, estimate wire lengths before design actually placed and routed

• Depth-first traversal of hierarchy, where leaf nodes are blocks already well characterized for area and wire length by dedicated analysis

• Example: consider four block types
 – Primitives: memory, datapath, control
 – Composite block made up of primitives
Hierarchical Chip Floorplan

- Datapath
- Composite
- Memory
- Memory
- Composite
- Control
- Datapath
- Datapath
- Composite
Memory and Control Blocks

• Assume given blocks are already characterized or can easily be done
 – Typical for foundry to provide memory hard or soft layout macro for synthesis flow: user given interconnect lengths and area
 – Random control logic usually small, can be quickly synthesized, placed, and routed

• Fairly straightforward to turn complexity metrics (number of memory cells or gate counts) into area estimates
 – Turn into power models as discussed earlier
Composite Blocks Wire Length

- Best approach is to estimate length based on early floorplan
- Alternative is to use empirical observations
 - Studies have shown that “good” cell placement differs from random placement by constant fudge factor k (k is often quoted as being $3/5$)
 - Average wire length for random placement on a square of area A array is $1/3$ length of a side
- Average wire length of “good” placement on square array:
 \[
 L = k \frac{\sqrt{A}}{3} = \frac{\sqrt{A}}{5}
 \]
Composite Blocks Area

- Area of composite block equals sum of areas of constituent blocks A_B and area of wires A_w

$$A = A_w + A_B = A_w + \sum_{i \in \{blocks\}} A_i$$

- Routing area depends on total number of wires N_w, average wire pitch W_p, and average length L

$$A_w = N_w W_p L$$

- Using formula on preceding slide, can solve quadratic for length L:

$$L = \frac{k^2 N_w W_p + \sqrt{(k^2 N_w W_p)^2 + 36 k^2 A_B}}{18}$$
Datapath Blocks Wire Length

- Datapaths often laid out in linear (bit slice) pattern
 - Tile N bit slices to create an N-bit datapath
 - Interconnect length thus proportional to datapath length
 - Use another empirical factor to relate “good” placement to random placement for length in x dimension

$$L_x = k \frac{L_{DP}}{3} = \frac{k}{3} \left(L_R + \sum_{i \in \{blocks\}} L_i \right)$$

- Routing channel length L_R estimated from wiring pitch and number of I/Os on each block

$$L_R = W_p \sum_{i \in \{blocks\}} N_{IO_i}$$
Similar approach used to estimate vertical routing in feedthroughs within a bit slice of width W_{BS}:

$$L_y = 2k \frac{W_{BS}}{3}$$

Total average interconnect length is $L = L_x + L_y$

Approximate area as datapath width x datapath length for N bit slices:

$$A = W_{DP}L_{DP} = NW_{BS}L_{DP}$$

Incorporate all of these approximations plus equations for physical capacitance into our RTL-level power estimates
Rent’s Rule

\[N_{IO} = N_p N_g^r \]

- Empirical rule relating number of I/Os in and out of a module to number of gates within the module
- \(N_p \) is average number of pins per gate (~2.5)
- Rent’s exponent \(r \) between 0.65 and 0.7
- Numbers can be used to characterize various design styles (memories, gate arrays, microprocessors)
- Extended to derive average wire lengths
Outline

• Announcements
• Review: PDP, EDP, Intersignal Correlations, Glitching, Top Level Power Estimation
• Behavioral Level Power Estimation
• Architectural Level Power Estimation
• Interconnect Power
• Low Power Architecture
Low Power Architecture Outline

• Clock Gating
• Power Down Modes
• Parallelization
• Pipelining
• Bit Serial vs. Bit Parallel Datapaths
Example Pipeline

- Use the following example logic pipeline: two combinational logic blocks between registers

\[D \rightarrow \text{LOGIC A} \rightarrow \text{LOGIC B} \]

- Define reference dynamic power:

\[P_0 = C_0 V_{DD}^2 f \]

- Consider various architectural transformations to reduce power, primarily through voltage scaling and duty cycle
Clock Gated Pipeline

- Use enable signal to turn off clock when not in use

- Dynamic power reduction proportional to duty cycle D_c (% time the system in use):

$$P_G = D_c C_0 V_{DD}^2 f$$

- Must take care in implementation: glitches on enable signal result in false clocking
Clock Gated Pipeline With Power Down

- Disconnect logic from power supply when clock off
- Eliminates leakage, static current for further power reduction
Partitioning Into Gated Clock Domains

- Generally gate off entire modules or functional units
- Globally Asynchronous Locally Synchronous (GALS) domains form natural clock gating partitions
- Synchronize on boundaries (clock gating can introduce skew due to logic in clock path)
• Only linear reduction in average power, peak power stays same (issue for power supply and delivery net)
• Decrease frequency to expand computing to fill time allows voltage reduction also: better than linear gain

Power Reduction Due to Clock Gating

$P_G(t)$
Low Power Architecture Outline

- Clock Gating
- Power Down Modes
- Parallelization
- Pipelining
- Bit Serial vs. Bit Parallel Datapaths
An Explosion of Power Down Modes

- Although suboptimal for power reduction, clock gating is often used in practice
 - Power electronics necessary to generate optimum voltage, more cost and complexity
- Tradeoff between power reduction and startup delay to return to operation (“light sleep vs. deep sleep”)
 - Gate clocks off to individual modules, fastest to start up again
 - Turn off clock generating PLLs, phase-lock transient potentially lasts several ms
 - Ground power supply, must charge VDD net before even turning on PLL
Low Power Architecture Outline

• Clock Gating
• Power Down Modes
• Parallelization
• Pipelining
• Bit Serial vs. Bit Parallel Datapaths
Parallelization Driven Voltage Scaling

- Parallelize computation up to N times
- Reduce clock frequency by factor N
- Reduce voltage to meet relaxed frequency constraint
Tradeoffs of Parallelization

- Amount of parallelism in application may be limited
- Extra capacitance overhead of multiple datapaths
 - N times higher input loading
 - N-to-1 selector on output
 - Lower clock frequency somewhat offset by higher clock load
- Consumes more area, devices, more leakage power especially in deep submicron
- Voltage reduction typically results in dramatic power gains
 - Chandrakasan92: ~3X power reduction
Low Power Architecture Outline

• Clock Gating
• Power Down Modes
• Parallelization
• Pipelining
• Bit Serial vs. Bit Parallel Datapaths
Pipeline Driven Voltage Scaling

- Pipeline at finer granularity to relax critical path constraint
- Clock frequency stays the same
- Reduce voltage to meet relaxed frequency constraint
- Increased clock load offsets power reduction somewhat
- Can’t pipeline beyond single gate granularity
Parallel / Pipeline Driven Voltage Scaling

- Combine parallelism and pipelining for lowest voltage
- Reduce clock frequency by parallelism factor N
- Largest increase in area, capacitance, leakage
Low Power Architecture Outline

- Clock Gating
- Power Down Modes
- Parallelization
- Pipelining
- Bit Serial vs. Bit Parallel Datapaths
Bit Serial vs. Bit Parallel Computation

- So far, we’ve talked about serial versus parallel implementations at the functional unit level
- Can also consider serial versus parallel implementations at the bit level
 - Historically, datapaths have almost always operated on words (several bits in parallel)
 - In the past, heavily area constrained designs have used serial techniques where one output bit is produced per clock cycle
 - Multipliers in older CMOS processes (> 2 μm) often implemented serially
- Rather than area, current and future motivation for bit serial techniques may be leakage power
Bit Serial and Bit Parallel Adders

• Serial Adder:

• Parallel Adder:
Parallel Array Multiplier

- 16b Parallel multiplier: 32390 μm2, Serial multiplier: 2743 μm2
- 32b Parallel adder: 2543 μm2, Serial adder: 139 μm2
Supply Voltage – Clock Frequency Tradeoff

Power Supply Voltage vs. Frequency for Multipliers

- Parallel (70nm)
- Parallel (100nm)
- Parallel (130nm)
- Serial (70nm)
- Serial (100nm)
- Serial (130nm)

Voltage (V) vs. Frequency (Hz)
Serial vs. Parallel Multiplier Power

Power vs. Frequency for Multipliers

- parallel (70nm)
- parallel (100nm)
- parallel (130nm)
- serial (70nm)
- serial (100nm)
- serial (130nm)
Bit Serial vs. Bit Parallel Arithmetic Power

• At low frequencies, lower leakage of smaller serial implementation results in less power
• Similar result for adders, but more impact since array multiplier is quadratically larger than serial version
• Are these frequencies interesting?
 – Below 10 MHz is typical for sensor applications, biomedical DSP, RFID tags
Next Topic: Low Power Circuit Design

- Logic families
- Transistor sizing for low power
- Clocking methodologies
Total Capacitance Model (Incorrect)

- Total capacitance per unit length is parallel-plate (area) term plus fringing-field term:

\[C = C_{pp} + C_{fringe} = \frac{\varepsilon_r}{t} \left(W - \frac{H}{2} \right) + \frac{2\pi \varepsilon_r}{\log(2t/H + 1)} \]

- Model is simple and works fairly well
 - More sophisticated numerical models also available
- Process models often give both area and fringing (also known as sidewall) capacitance numbers per unit length of wire for each interconnect layer