EEC 216 Lecture #16: Fundamental Limits of Low Power Design

Rajeevan Amirtharajah
University of California, Davis
Outline

• Announcements
• Limits of Low Power Design
• Last Words: Thermodynamics of Computation
Meindl’s Hierarchy of Limits

- **Fundamental limits**
 - Set by laws of thermodynamics, quantum mechanics, and electromagnetism
 - Applicable to any fabrication process

- **Material limits**
 - Determined by semiconductor, interconnect, and dielectric materials

- **Device Limits**
 - Set by device structure, doping profile

- **Circuit Limits**
 - Set by choice of circuit style

- **System Limits**
Theoretical and Practical Limits

• **Theoretical limits**
 – Limits can be derived for each category from first principles
 – Can lead to unrealistic lower bounds

• **Practical limits**
 – Cost is determining factor for practicality
 – Requiring exotic materials may preclude reaching theoretical limit
 – Incorporating design margins to enhance yield and reliability will pressure designs away from hard limits

• **No one really knows above fundamental limits**
 – Single electron device, atomic size, in vacuum
CMOS Inverter Gain Example

\[
\frac{\partial V_{out}}{\partial V_{in}} = 1
\]

Want: \(A_v \gg 1 \)
CMOS Inverter Gain in Weak Inversion

• Gain at transfer curve midpoint:

\[A_v = \exp\left(\left[\frac{qV_{DD}}{2kT} \right] - 1 \right) \]

• To satisfy gain much greater than 1:

\[V_{DD} \geq \frac{4kT}{q} \]

• At room temperature, minimum supply near 0.1 V
 – At lower temperatures, can use lower supply voltages
CMOS Inverter Transfer Curves

- $V_T's = 160 \text{ mV}$, Swanson and Meindl 1972
Resistor Thermal Noise

$e_n^2 = 4kTR(BW)$

- k is Boltzmann’s constant, BW is node bandwidth

R. Amirtharajah, EEC216 Winter 2009
Thermal Noise Limit

• Noise power available at node N:

\[P_{\text{noise}} = \frac{e_n^2}{R} = kT(BW) \]

• Signal power must be larger for reliable bit storage at node N:

\[P_{\text{signal}} \geq \gamma P_{\text{noise}} = 4P_{\text{noise}} \]

• Switching energy transfer in node N transition:

\[E_s \geq \gamma kT = 4kT \]

• Greater energy implies lower BER:

\[\Pr(\text{error}) = \Pr(E_n > E_s) = \exp\left(-\frac{E_s}{kT}\right) \]
Thermal Noise Limit Example

• Assume $\gamma = 4$, $T = 300$ K:

$$E_s \geq 1.66 \times 10^{-20} \text{ Joules}$$
$$\geq 0.104 \text{ eV}$$

• Energy required to move a single electron through a potential difference of 100 mV
 – Applicable in single electron transistor limit, minimum supply voltage likely to be 0.1 V
 – Current energies about $10^6 - 10^7$ times as large
 – Translates into very good BER on circuit nodes (at least with respect to thermal noise)
Low Voltage CMOS Inverter Operation

- Thermal noise limit:
 \[\frac{4kT}{q} \approx 100 \text{ mV} \]

- Inverter gain limit:
 \[\frac{8kT}{q} \approx 200 \text{ mV} \]

- Equalized NMOS-PMOS off currents:
 \[\frac{2nkT}{q} \approx 57 \text{ mV} \]

Swanson and Meindl, JSSC 1972

Fig. 9. CMOS inverter transfer characteristics. —— experiment; --- theory (12a).
Supply Voltage Scaling With Technology Node

- From 2007 ITRS Roadmap

R. Amirtharajah, EEC216 Winter 2009
Heisenberg Uncertainty Principle Limit

- Physical measurement associated with a switching transition over time Δt obeys Heisenberg uncertainty principle:
 \[\Delta E \geq \frac{h}{\Delta t} \]
 - h is Planck’s constant

- Equivalent power transfer during a switching transition of a single electron wave packet:
 \[P \geq \frac{h}{(\Delta t)^2} \]

- Both limits refer to rate of energy transfer, not necessarily of energy dissipation
 - Adiabatic techniques can reduce dissipation
Power Transfer vs. Transition Interval

\[P = \frac{\gamma kT}{t_d} \]

\[P = \frac{h}{t_d^2} \]

\(\gamma = 4 \)

\(T = 300^\circ K \)

\(\times \) neuron

- Meindl 95
Material Limits

- Semiconductor properties determine key material limits
 - Carrier mobility μ
 - Carrier saturation velocity v_s
 - Self-ionizing (breakdown) electric field E_c
 - Thermal conductivity K

- Compare different bulk materials (Si, GaAs, SiGe, carbon nanotubes, etc.)
Material Electrostatic Limit

Consider cube of undoped silicon in bulk

- Limit on maximum energy stored in electric field across material set by self-ionization voltage

\[E = P t_d = \frac{e_{Si} V_0^2}{2E_c} \quad t_d \geq \frac{V_0}{\nu_s E_c} \]
Material Thermal Limit

• Meindl 95

• Consider isolated hemispherical device with radius $r_i = \nu_s t_d / 2$ attached to ideal heat sink at $T = T_0$

• From Fourier’s law of heat conduction:

$$P = \pi K \nu_s \Delta T t_d$$
Various MOSFET Structures

• Meindl 95
R. Amirtharajah, EEC216 Winter 2009
Device Energy Limit

• Minimum energy limit suggested by minimum channel length L_m for MOSFET

$$E = Pt_d = \frac{C_0L_m^2V_0^2}{2}$$

• C_0 is unit area gate capacitance, V_0 is minimum power supply voltage

• FETs using spacer gate fabrication techniques have been demonstrated below 10 nm
 – Other novel structures under development

• Delay determined by channel length and velocity saturated carrier mobility
Conclusions

• Hierarchy of limits set by a variety of considerations
 – Fundamental limits form loose lower bound on any type of physical implementation

• Thermodynamics of computation
 – Can analyze computation in a thermodynamic (energy, entropy) context
 – Bit erasure requires work and energy dissipation
 – Reversible thermodynamic process provides ultimate energy efficient computation
 – Implications for quantum computing
EEC 216 Course Objectives

• To develop an understanding of power dissipation in modern digital integrated circuits, including the power implications of state-of-the-art architectural and circuit techniques

• To learn architectural and circuit design techniques to decrease power consumption at a fixed performance or trade power for performance

• To develop an understanding of issues related to power delivery and heat removal in electronic systems, including basic power electronics design and thermal system analysis