EEC 216 Lecture #8A: Subthreshold Circuit Design

Rajeevan Amirtharajah University of California, Davis

Outline

- Announcements
- Review: Low Power Interconnect
- Finish Lecture 7
- Leakage Mechanisms
- Circuit Styles for Low Leakage
- Cache SRAM Design Examples
- Next Time: Energy Recovery Circuits

Announcements

Design Project 2 due February 29, 5 PM in 3173
Kemper Hall

Extremely Brief MOSFET Review

Saturation:
$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

Triode:
$$I_D = \mu C_{ox} \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

Subthreshold:
$$I_D = I_S e^{\frac{V_{GS}}{n^{kT/q}}} \left(1 - e^{-\frac{V_{DS}}{kT/q}}\right)$$

"Classical" MOSFET model, will discuss deep submicron modifications as necessary

Subthreshold Current Equation

$$I_{D} = I_{S}e^{\frac{V_{GS}}{n^{kT/q}}} \left(1 - e^{-\frac{V_{DS}}{kT/q}}\right) \left(1 + \lambda V_{DS}\right)$$

- I_s and n are empirical parameters
- Typically, $n \ge 1$ often ranging around $n \approx 1.5$
- Usually want small subthreshold leakage for digital designs
 - Define quality metric: inverse of rate of decline of current wrt V_{GS} below V_T
 - Subthreshold slope factor S: $S = n \frac{kI}{q} \ln(10)$

Detailed Subthreshold Current Equation

$$I_{D} = A \exp \left(\frac{q}{nkT} \left(V_{GS} - V_{T0} - \gamma V_{S} + \eta V_{D}\right)\right) \left(1 - \exp \left(\frac{-qV_{DS}}{kT}\right)\right)$$

$$A = \mu_0 C_{ox} \frac{W}{L} \left(\frac{kT}{q}\right)^2 e^{1.8}$$

- V_{T0} = zero bias threshold voltage,
- μ0 = zero bias mobility
- Cox = gate oxide capacitance per unit area
- γ = linear body effect coefficient (small source voltage)
- $\eta = DIBL$ coefficient

Leakage Currents vs. Active Currents

• I_{active}/I_{leak} (I_{on}/I_{off}) ratio can be small in subthreshold

Degraded Output Levels

Balance current ratio through sizing, limiting fanin

Degraded Logic Levels Impact Functionality

SRAM Cell Leakage Paths

Leakage paths can degrade read and write noise margins

Conclusions

Subthreshold design similar to ratioed ckt design

- Must guarantee active currents sufficiently greater than leakage currents to maintain valid logic levels
- Degraded logic levels can cause failure in combinational and sequential circuits
- All circuits (esp. SRAMs) sensitive to V_{TH} variation

Be careful with subthreshold circuits

- Consider worst case leakage situations (data dependent) when analyzing I_{on}/I_{off} ratio problems
- Use nonminimum channel lengths, limit fanin
- Watch sneak leakage paths through pass gates
- Interrupt pass gate chains with static logic