EEC 216 Lecture #8A: Subthreshold Circuit Design

Rajeevan Amirtharajah
University of California, Davis
Outline

• Announcements
• Review: Low Power Interconnect
• Finish Lecture 7
• Leakage Mechanisms
• Circuit Styles for Low Leakage
• Cache SRAM Design Examples
• Next Time: Energy Recovery Circuits
Announcements

• Design Project 2 due February 29, 5 PM in 3173 Kemper Hall
Extremely Brief MOSFET Review

Saturation: \[I_D = \frac{\mu C_{ox} W}{2L} \left(V_{GS} - V_T \right)^2 \left(1 + \lambda V_{DS} \right) \]

Triode: \[I_D = \mu C_{ox} \frac{W}{L} \left(\left(V_{GS} - V_T \right)V_{DS} - \frac{V_{DS}^2}{2} \right) \]

Subthreshold: \[I_D = I_S e^{\frac{V_{GS}}{n k T}} \left(1 - e^{-\frac{V_{DS}}{k T}} \right) \]

“Classical” MOSFET model, will discuss deep submicron modifications as necessary
Subthreshold Current Equation

\[I_D = I_S e^{\frac{V_{GS}}{n kT/q}} \left(1 - e^{-\frac{V_{DS}}{kT/q}} \right) \left(1 + \lambda V_{DS} \right) \]

- \(I_S \) and \(n \) are empirical parameters
- Typically, \(n \geq 1 \) often ranging around \(n \approx 1.5 \)
- Usually want small subthreshold leakage for digital designs
 - Define quality metric: inverse of rate of decline of current wrt \(V_{GS} \) below \(V_T \)
 - Subthreshold slope factor \(S \): \[S = n \frac{kT}{q} \ln(10) \]
Detailed Subthreshold Current Equation

\[I_D = A \exp \left(\frac{q}{nkT} (V_{GS} - V_{T0} - \gamma V_S + \eta V_D) \right) \left(1 - \exp \left(\frac{-q V_{DS}}{kT} \right) \right) \]

\[A = \mu_0 C_{ox} \frac{W}{L} \left(\frac{kT}{q} \right)^2 e^{1.8} \]

- \(V_{T0} = \) zero bias threshold voltage,
- \(\mu_0 = \) zero bias mobility
- \(C_{ox} = \) gate oxide capacitance per unit area
- \(\gamma = \) linear body effect coefficient (small source voltage)
- \(\eta = \) DIBL coefficient
Leakage Currents vs. Active Currents

\[\frac{I_{\text{active}}}{I_{\text{leak}}} (I_{\text{on}}/I_{\text{off}}) \] ratio can be small in subthreshold.
Degraded Output Levels

• Balance current ratio through sizing, limiting fanin

R. Amirtharajah, EEC216 Winter 2008
Degraded Logic Levels Impact Functionality

- $V_{DD} = 0.3 \text{ V}$
- $C_{lk} = 80 \text{ mV}$
- $\overline{C_{lk}} = 220 \text{ mV}$
- Driven by two inverters to intermediate voltage

D \rightarrow \text{Inverter} \rightarrow \text{Capacitor} \rightarrow \text{Inverter} \rightarrow Q$
• Leakage paths can degrade read and write noise margins
Conclusions

• **Subthreshold design similar to ratioed ckt design**
 – Must guarantee active currents sufficiently greater than leakage currents to maintain valid logic levels
 – Degraded logic levels can cause failure in combinational and sequential circuits
 – All circuits (esp. SRAMs) sensitive to V_{TH} variation

• **Be careful with subthreshold circuits**
 – Consider worst case leakage situations (data dependent) when analyzing I_{on}/I_{off} ratio problems
 – Use nonminimum channel lengths, limit fanin
 – Watch sneak leakage paths through pass gates
 – Interrupt pass gate chains with static logic