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Announcements

• In-class Midterm February 15

• Office Hours Thursday, February 14, 2-4 PM
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Midterm Summary
• Allowed calculator and 1 side of 8.5 x 11 paper 

for formulas

• Covers following material:
1. Power: Dynamic and Short Circuit Current

2. Metrics: PDP and EDP

3. Logic Level Power: Activity Factors and Transition 
Probabilities

4. Architectural Power Estimation and Reduction

5. Logic Styles: Static CMOS, Pseudo NMOS, Dynamic, Pass 
Gate

6. Latches, Flip-Flops, and Self-Timed Circuits

7. Low Power Interconnect
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Midterm Examples
1. Derive and optimize a low power design metric given a 

current equation

2. Design a combinational logic datapath at the gate level to 
compute some function and derive the activity factors of the 
circuit nodes 

3. Design at the transistor level a complex gate, size it based 
on RC models, and derive worst case switched capacitance 

4. Estimate interconnect capacitance and minimize 
interconnect power

5. Essay question on design tradeoffs
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CMOS Inverter Down Converter

VDDL

VDDH

0V

VDDL

0V

• Drive input from rail-to-rail
• Output goes from VDDL to Gnd
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Cross Coupled Pullup Up Converter
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Stepwise Charging
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Data-Dependent Swing Bus Circuit

• Hiraki, JSSC 95
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CMOS Inverter Example
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Components of CMOS Power Dissipation 
• Dynamic Power

– Charging and discharging load capacitances

• Short Circuit (Overlap) Current

– Occurs when PMOS and NMOS devices on 
simultaneously

• Static Current
– Bias circuitry in analog circuits

• Leakage Current
– Reverse-biased diode leakage
– Subthreshold leakage
– Tunneling through gate oxide
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Extremely Brief MOSFET Review

Triode:

“Classical” MOSFET model, will discuss deep submicron 
modifications as necessary
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Subthreshold Conduction

+
TGS VV <

n n

p

• Weak inversion, MOSFET partially conducting
• n+ source – p+ bulk – n+ drain forms parasitic bipolar
• Approximate current with exponential function 
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Drain Current vs. Gate-Source Voltage
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Subthreshold Current Equation
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• Is and n are empirical parameters

• Typically,             often ranging around 

• Usually want small subthreshold leakage for digital 
designs

– Define quality metric: inverse of rate of decline of 
current wrt VGS below VT

– Subthreshold slope factor S:

1≥n 5.1≈n

( )10ln
q

kTnS =
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Subthreshold Slope Factor

• Ideal case: n = 1
– S evaluates to 60 mV/decade (each 60 mV VGS

drops below VT, current drops by 10X)
– Typically n = 1.5 implies slower current decrease at 

90 mV/decade
– Current rolloff further decreased at high temperature, 

where fast CMOS logic tends to operate
• n determined by intrinsic device topology and 

structure
– Changing n requires different process, like SOI
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Leakage Currents in Deep Submicron

S D

G
I7, I8

I2, I3, I6

I1

B

I4
I5

• Many physical mechanisms produce static currents 
in deep submicron 
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Transistor Leakage Mechanisms
1. pn Reverse Bias Current (I1) 

2. Subthreshold (Weak Inversion) (I2)

3. Drain Induced Barrier Lowering (I3)

4. Gate Induced Drain Leakage (I4)

5. Punchthrough (I5)

6. Narrow Width Effect (I6)

7. Gate Oxide Tunneling (I7)

8. Hot Carrier Injection (I8)
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pn Reverse Bias Current (I1)
• Reverse-biased pn junction current has two main 

components
– Minority carrier drift near edge of depletion region
– Electron-hole pair generation in depletion region of 

reverse-biased junction
– If both n and p regions doped heavily, Zener tunneling 

may also be present
• In MOSFET, additional leakage can occur

– Gated diode device action (gate overlap of drain-well pn 
junctions)

– Carrier generation in drain-well depletion regions 
influenced by gate

• Function of junction area, doping concentration
• Minimal contributor to total off current
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Drain Current vs. Gate-Source Voltage
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Subthreshold Current Equation
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• Is and n are empirical parameters

• Typically,             often ranging around 

• Usually want small subthreshold leakage for digital 
designs

– Define quality metric: inverse rate of decline of current 
wrt VGS below VT

– Subthreshold slope factor S:

1≥n 5.1≈n
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Detailed Subthreshold Current Equation
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• VT0 = zero bias threshold voltage,

• μ0 = zero bias mobility

• Cox = gate oxide capacitance per unit area

• γ = linear body effect coefficient (small source 
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Subthreshold Slope of Various Processes

Technology Doping
S (mV / 
decade)

0.8 μm, 5 V CMOS LDD 86

0.6 μm, 5 V CMOS LDD 80

0.35 μm, 3.3 V BiCMOS LDD 80

0.35 μm, 2.5 V CMOS HDD 78

0.25 μm, 1.8 V CMOS HDD 85

• Roy & Prasad, p. 216
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Drain Induced Barrier Lowering (I3)

• DIBL occurs when drain depletion region 
interacts with source near channel surface
– Lowering source potential barrier
– Source injects carriers into channel without influence 

of gate voltage
– DIBL enhanced at higher drain voltage, shorter 

effective channel length
– Surface DIBL happens before deep bulk punchthrough

• DIBL does not change S but lowers VT

– Higher surface, channel doping and shallow junctions 
reduce DIBL leakage current mechanism
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Gate Induced Drain Leakage (I4)

• GIDL current appears in high E-field region under 
gate / drain overlap causing deep depletion
– Occurs at low VG and high VD bias
– Generates carriers into substrate from surface traps, 

band-to-band tunneling 
– Localized along channel width between gate and drain
– Seen as “hook” in I-V characteristic causing increasing 

current for negative VG

– Thinner oxide, higher VDD, lightly-doped drain 
enhance GIDL

• Can be major obstacle to reducing off current
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Revised Drain Current vs. Gate Voltage
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• Roy & Prasad, p. 217
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Punchthrough

n n

p

• Source / Drain depletion regions “touch” deep inside 
channel

DSV
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Punchthrough Channel Current (I5)

• Space-charge condition allows channel current 
to flow deep in subgate region
– Gate loses control of subgate channel region

• Current varies quadratically with drain voltage
– Subthreshold slope factor S increases to reflect 

increase in drain leakage
• Regarded as subsurface version of DIBL
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Gate Oxide Tunneling (I7)

OXEB
OXOX eAEI −= 2

• High E-field EOX can cause direct tunneling 
through gate oxide or Fowler-Nordheim (FN) 
tunneling through oxide bands

• Typically, FN tunneling at higher field strength 
than operating conditions (likely remain in future)

• Significant at oxide thickness < 50 Angstroms
• Could become dominant leakage mechanism as 

oxides get thinner
– High K dielectrics might make better
– Interesting circuit design issues (see ISSCC 2004)
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Other Leakage Effects

• Narrow Width Effect (I6)
– VT increases for geometric gate widths around 0.5 
μm in non-trench isolated technologies

– Opposite effect in trench isolated technologies: VT
decreases for widths below 0.5 μm

• Hot Carrier Injection (I8)
– Short channel devices susceptible to energetic 

carrier injection into gate oxide
– Measurable as gate and substrate currents
– Charges are a reliability risk leading to device failure
– Increased amplitude as length reduced unless VDD

scaled accordingly
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Leakage Summary

DSI

1210−

1010−

810−

610−

pn junction
• Roy & Prasad, p. 219
• No punchthrough
• No width effect
• No gate leakage

1410−

Weak inversion + pn junction
(S = 80 mV/decade, VD = 0.1 V)

Weak inversion + pn junction +
DIBL (VD = 2.7 V)

Weak inversion + pn junction +
DIBL + GIDL (VD = 3.9 V)
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Leakage Current Estimation

∑=
i

DSDSleak ii
VIP

• Parallel transistors, simply add leakage 
contributions for each one

• For series connected devices, calculating leakage 
currents more complex
– Equate subthreshold currents through each device in 

series stack
– Solve for VDS1 (first device in series stack) in terms of 

VDD assuming source voltage small
– Remaining voltages must sum to total voltage drop 

across series stack
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Outline
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• Next Time: Energy Recovery Circuits
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Channel Engineering for Reduced Leakage

n n

p

• Goal: optimize channel profile
• Minimize leakage while maximizing drive current

Retrograde well

Halo doping
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Modifying Channel for Leakage Reduction

• Process modifications can be used to decrease 
subthreshold leakage

• Retrograde doping
– Vertically non uniform, low to high doping 

concentration going deeper into the substrate
– Increase mobility near channel surface
– Creates barrier to punchthrough in bulk 
– Reduce impact of short channel length on VT

• Halo doping
– Highly doped p-type implanted near channel ends
– Reduces charge-sharing effects from source and 

drain fields, decreases DIBL and punchthrough 
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Stacking Effect in Two-Input NAND Gate

A

B

Out

VM

M0

M1

Ileak

• Multiple off transistors dramatically cuts leakage
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Stacking Transistors Leakage Effects

• Intermediate node voltage VM > 0 V
• Positive source voltage for device M0 has three 

major effects:
1. VGS0 = Vin – VM = 0 V – VM < 0 V reduces 

subthreshold current exponentially

2. Body to source potential (VBS0 = 0 V – VM < 0 V) 
becomes negative, increasing VTH through 
increased body effect, thus decreasing Ileak

3. Drain to source potential (VDS0 = VDD – VM) 
decreases, increasing VTH through reduced DIBL, 
thus decreasing Ileak further
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Stacking Effect Impact

• Leakage current drops by an order of 
magnitude

• Leakage highly dependent on input vector
– Can reduce leakage power by choosing input bits 

carefully 
– Large search space (2N possible vectors), so 

exhaustive search impossible for large fan-in logic
– Can use genetic algorithm to find near-optimal input 

vector
• Can effectively control leakage in standby mode
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Multiple Threshold Voltages

• If process implements two threshold devices, 
can control leakage by mixing both types of 
devices
– Use high VT transistors to interrupt leakage paths
– Use low VT devices for high performance

• Implementing multiple thresholds
– Multiple channel doping densities 
– Multiple gate oxides
– Multiple channel lengths
– Multiple body biases
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Implementing Multiple Threshold Voltages I

• Multiple Channel Doping
– Varying channel dopant concentration shifts VT

– Requires additional mask steps
– Threshold voltage variation makes it challenging to 

achieve consistently, esp. when thresholds close
– Increasingly difficult in future deep submicron

• Multiple Gate Oxides
– Grow two different oxide thicknesses
– Thicker oxide results in higher VT, lower subthreshold 

leakage and gate tunneling current, lower dynamic 
power through reduced gate capacitance

– Must increase channel length with oxide thickness
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Implementing Multiple Threshold Voltages II

• Multiple Channel Lengths
– Decreasing channel length reduces “VT” (consider 

threshold to be VGS which results in a fixed current)
– Achieved in conventional CMOS technology
– Longer channels increase gate capacitance and 

dynamic power
• Multiple Body Biases

– Body (substrate) voltage changed to modify VT

– For individual transistor control, requires triple well 
process since devices cannot share same well

– Easy to include in Silicon-on-Insulator (SOI) 
processes since devices automatically isolated
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Multiple Threshold CMOS

A
B

Out

VDDV
P0

N0

VSSV

Sleep

Sleep
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PMOS Insertion Multiple Threshold CMOS

A
B

Out

VDDV
P0Sleep

• Use only PMOS high VT device to limit leakage current
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NMOS Insertion Multiple Threshold CMOS

A
B

Out

VDD

N0

VSSV

Sleep

• Use only NMOS high VT device to limit leakage current
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Multiple Threshold CMOS Design

• Must design sleep transistors with low on 
resistance so virtual supplies almost function 
like real supplies
– NMOS insertion better since a narrower device 

results in same on resistance
– Easy to implement based on existing circuits

• MTCMOS only reduces standby leakage
– Active mode leakage also a concern

• Large inserted FETs increase area and delay
• Data retention in standby mode requires extra 

high VT memory circuit
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Super Cutoff CMOS

A
B

Out
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Dual Threshold Datapath
A
B

Ci

Y1 Co

Y0

Y2

Y3

B

Ci

A

• Assign high VT devices to non critical path 
gates (e.g.,Y0 = A * B for Full Adder carry logic)

• Use low VT in critical path (e.g., carry in from 
preceding adder stages)
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Variable Threshold CMOS

VDD

VSS

standby

standby

active

active
VBP

VBN
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Variable Threshold CMOS Design

• Body biasing technique
– Self-substrate bias circuit used to control body bias 

and adjust threshold voltage
• Active mode: nearly zero applied bias

– Slightly forward substrate bias can increase speed in 
active mode

• Standby mode: deep reverse bias applied
– Increases threshold voltage
– Reduces subthreshold leakage current

• Routing body net adds to overall area
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Dynamic Threshold CMOS

VDD

VSS
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Dynamic Threshold CMOS Design

• Threshold voltage adjusted dynamically with 
operating state of circuit
– Want high threshold in standby mode for low 

subthreshold leakage
– Want low threshold in active mode for high drive 

current
• Implement by tying body terminal to input

– Requires triple well technology in bulk CMOS
– Supply voltage limited by diode built-in potential 

(source-body pn diode should be reverse biased)
– Ultra low supply voltage (VDD < 0.6 V)

• Stronger advantages in partially depleted SOI
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Dual Gated SOI MOSFET

• Double gate for dynamic threshold adjustment

GSV

n np

+
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DG Dynamic Threshold SOI Design

• Asymmetrical double gate SOI MOSFET 
– Back gate oxide thicker than front gate oxide 
– Threshold voltage of back gate larger than supply 

voltage
– Front gate threshold voltage changes dynamically 

with back gate voltage
• Nearly ideal symmetric subthreshold 

characteristics
• Power delay product better (smaller) than 

symmetric double gate SOI CMOS
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Threshold Voltage Hopping Scheme

VBP0

VBN0

VDD

VSS

VBP1

VBN1

en VTH
en VTL

en VTH en VTL
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Leakage Power Significant for Caches

• Large fraction of current processor die devoted 
to memory structures (caches, TLB, etc.) 
– Alpha 21264: 30% of area, StrongARM 60%

• Caches account for large component of total 
leakage power

• At 130 nm process node:
– Leakage equals 30% of total L1 cache energy
– Leakage accounts for 80% of total L2 cache energy

• Explore techniques for reducing leakage power 
in caches (SRAMs in general)
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SRAM Cell Leakage Paths

BL BL

WL

0 1

• Dominant leakage paths: bitline to GND, VDD to GND 
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Gated Ground SRAM Cell Operation
• Extra NMOS device gates power on and off 

– Can be shared among all cells in a row, amortizing 
area and power overhead

– Sizing strongly affects power, performance, and data 
retention capability of SRAM cell

– Must be large enough to sink read/write current and 
maintain SRAM state, but if too large reduces 
stacking effect and increases leakage 

• Word line decoder controls bottom NMOS
• Turning off NMOS device cuts off leakage

– Also allows virtual ground to float higher in standby, 
reducing noise immunity 

– Simulate to verify SRAM data maintained in standby
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Data Retention Gated-Ground SRAM Cell

BL BL

WL

0 1

• Sleep device turned ON in active rows, OFF in inactive  

N0

VSSV

Sleep
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Drowsy SRAM Cell Operation

• Idea: during access, SRAM cell in high power and 
performance mode, otherwise in low power 
“drowsy” mode 

• Approach: switch between low and high VDD

– Rely on short channel effects to decrease leakage at 
low supply voltage

• Implement using two high VT PMOS devices to 
switch between supplies
– High VT required to reduce leakage between supplies
– Requires a separate VDD mux for each cache line

• Scale VDD to about 1.5 times VT and still maintain 
state (0.3 V in 70 nm)
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Drowsy SRAM Cell

BL BL

WL

0 1

• Virtual VDD switched by high VT PMOS devices 

VDDV
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Dynamic Threshold SRAM Cell Operation

• Idea: during access, SRAM cell in high power and 
performance mode (low VT), otherwise in low 
leakage (high VT) mode 

• Approach: switch between low and high body 
bias
– Body bias at 0 V for high speed
– Body bias negative to increase VT and cut leakage

• Energy for single substrate transition greater than 
saved in leakage for a single clock cycle
– Body bias updates must be at larger time increments
– Exploit spatial and temporal locality to bias one cache 

line at a time based on program accesses
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Dynamic Threshold SRAM Cell

BL BL

WL

0 1

VBN0

VBN1

en VTH en VTL

Nsub

Nsub
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Conclusions

• Leakage is an increasingly important component 
of total power dissipation
– A variety of physical mechanisms cause leakage 

currents
– Subthreshold conduction probably most important

• Many proposed circuit techniques to deal with it
– Multiple thresholds available in process: use stacked 

devices or low leakage series devices
– Adjust thresholds using bulk terminal dynamically

• Techniques starting to appear in commercial 
designs, especially for large memories such as 
on-chip cache
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