EEC 216 Lecture #8: Leakage

Rajeevan Amirtharajah University of California, Davis

Outline

Announcements

- Review: Low Power Interconnect
- Finish Lecture 7
- Leakage Mechanisms
- Circuit Styles for Low Leakage
- Cache SRAM Design Examples
- Next Time: Energy Recovery Circuits

- In-class Midterm February 15
- Office Hours Thursday, February 14, 2-4 PM

Midterm Summary

• Allowed calculator and 1 side of 8.5 x 11 paper for formulas

• Covers following material:

- 1. Power: Dynamic and Short Circuit Current
- 2. Metrics: PDP and EDP
- 3. Logic Level Power: Activity Factors and Transition Probabilities
- 4. Architectural Power Estimation and Reduction
- 5. Logic Styles: Static CMOS, Pseudo NMOS, Dynamic, Pass Gate
- 6. Latches, Flip-Flops, and Self-Timed Circuits
- 7. Low Power Interconnect

Midterm Examples

- 1. Derive and optimize a low power design metric given a current equation
- 2. Design a combinational logic datapath at the gate level to compute some function and derive the activity factors of the circuit nodes
- 3. Design at the transistor level a complex gate, size it based on RC models, and derive worst case switched capacitance
- 4. Estimate interconnect capacitance and minimize interconnect power
- 5. Essay question on design tradeoffs

Outline

- Announcements
- Review: Low Power Interconnect
- Finish Lecture 7
- Leakage Mechanisms
- Circuit Styles for Low Leakage
- Cache SRAM Design Examples
- Next Time: Energy Recovery Circuits

CMOS Inverter Down Converter

- Drive input from rail-to-rail
- Output goes from VDDL to Gnd

Cross Coupled Pullup Up Converter

Stepwise Charging

Data-Dependent Swing Bus Circuit

Outline

- Announcements
- Review: Low Power Interconnect
- Finish Lecture 7
- Leakage Mechanisms
- Circuit Styles for Low Leakage
- Cache SRAM Design Examples
- Next Topic: Energy Recovery Circuits

CMOS Inverter Example

Components of CMOS Power Dissipation

Dynamic Power

- Charging and discharging load capacitances

• Short Circuit (Overlap) Current

 Occurs when PMOS and NMOS devices on simultaneously

• Static Current

- Bias circuitry in analog circuits
- Leakage Current
 - Reverse-biased diode leakage
 - Subthreshold leakage
 - Tunneling through gate oxide

Extremely Brief MOSFET Review

Saturation:
$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

Triode:
$$I_D = \mu C_{ox} \frac{W}{L} \left(\left(V_{GS} - V_T \right) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

Subthreshold:
$$I_D = I_S e^{\frac{V_{GS}}{n^{kT/q}}} \left(1 - e^{-\frac{V_{DS}}{kT/q}}\right)$$

"Classical" MOSFET model, will discuss deep submicron modifications as necessary

Subthreshold Conduction

- Weak inversion, MOSFET partially conducting
- n+ source p+ bulk n+ drain forms parasitic bipolar
- Approximate current with exponential function

Drain Current vs. Gate-Source Voltage

Subthreshold Current Equation

$$I_{D} = I_{S} e^{\frac{V_{GS}}{n^{kT/q}}} \left(1 - e^{-\frac{V_{DS}}{kT/q}}\right) \left(1 + \lambda V_{DS}\right)$$

- I_s and *n* are empirical parameters
- Typically, $n \ge 1$ often ranging around $n \approx 1.5$
- Usually want small subthreshold leakage for digital designs
 - Define quality metric: inverse of rate of decline of current wrt V_{GS} below V_T

- <u>Subthreshold slope</u> factor S: $S = n \frac{kT}{a} \ln(10)$

Subthreshold Slope Factor

• Ideal case: *n* = 1

- S evaluates to 60 mV/decade (each 60 mV V_{GS} drops below V_{T} , current drops by 10X)
- Typically n = 1.5 implies slower current decrease at 90 mV/decade
- Current rolloff further decreased at high temperature, where fast CMOS logic tends to operate
- *n* determined by intrinsic device topology and structure
 - Changing n requires different process, like SOI

Leakage Currents in Deep Submicron

• Many physical mechanisms produce static currents in deep submicron

Transistor Leakage Mechanisms

- 1. pn Reverse Bias Current (I1)
- 2. Subthreshold (Weak Inversion) (I2)
- 3. Drain Induced Barrier Lowering (I3)
- 4. Gate Induced Drain Leakage (I4)
- 5. Punchthrough (I5)
- 6. Narrow Width Effect (I6)
- 7. Gate Oxide Tunneling (I7)
- 8. Hot Carrier Injection (I8)

pn Reverse Bias Current (I1)

- Reverse-biased pn junction current has two main components
 - Minority carrier drift near edge of depletion region
 - Electron-hole pair generation in depletion region of reverse-biased junction
 - If both n and p regions doped heavily, Zener tunneling may also be present

• In MOSFET, additional leakage can occur

- Gated diode device action (gate overlap of drain-well pn junctions)
- Carrier generation in drain-well depletion regions influenced by gate
- Function of junction area, doping concentration
- Minimal contributor to total off current

Drain Current vs. Gate-Source Voltage

Subthreshold Current Equation

$$I_{D} = I_{S} e^{\frac{V_{GS}}{n^{kT/q}}} \left(1 - e^{-\frac{V_{DS}}{kT/q}}\right) \left(1 + \lambda V_{DS}\right)$$

- I_s and *n* are empirical parameters
- Typically, $n \ge 1$ often ranging around $n \approx 1.5$
- Usually want small subthreshold leakage for digital designs
 - Define quality metric: inverse rate of decline of current wrt V_{GS} below V_T

 $- \underline{\text{Subthreshold slope}}_{r} \text{ factor } S: \quad S = n \frac{kT}{q} \ln(10)$

Detailed Subthreshold Current Equation

$$I_{D} = A \exp\left(\frac{q}{nkT} \left(V_{GS} - V_{T0} - \gamma V_{S} + \eta V_{D}\right)\right) \left(1 - \exp\left(\frac{-qV_{DS}}{kT}\right)\right)$$
$$A = \mu_{0}C_{ox}\frac{W}{L} \left(\frac{kT}{q}\right)^{2} e^{1.8}$$

- V_{T0} = zero bias threshold voltage,
- μ**0 = zero bias mobility**
- Cox = gate oxide capacitance per unit area
- γ = linear body effect coefficient (small source voltage)
- $\eta = \text{DIBL coefficient}$

Subthreshold Slope of Various Processes

Technology	Doping	S (mV / decade)
0.8 μm, 5 V CMOS	LDD	86
0.6 μm, 5 V CMOS	LDD	80
0.35 μm, 3.3 V BiCMOS	LDD	80
0.35 μm, 2.5 V CMOS	HDD	78
0.25 μm, 1.8 V CMOS	HDD	85

• Roy & Prasad, p. 216

Drain Induced Barrier Lowering (I3)

- DIBL occurs when drain depletion region interacts with source near channel surface
 - Lowering source potential barrier
 - Source injects carriers into channel without influence of gate voltage
 - DIBL enhanced at higher drain voltage, shorter effective channel length
 - Surface DIBL happens before deep bulk punchthrough
- DIBL does not change S but lowers V_T
 - Higher surface, channel doping and shallow junctions reduce DIBL leakage current mechanism

Gate Induced Drain Leakage (I4)

- GIDL current appears in high E-field region under gate / drain overlap causing deep depletion
 - Occurs at low $V_{\rm G}$ and high $V_{\rm D}$ bias
 - Generates carriers into substrate from surface traps, band-to-band tunneling
 - Localized along channel width between gate and drain
 - Seen as "hook" in I-V characteristic causing increasing current for negative $\rm V_{G}$
 - Thinner oxide, higher VDD, lightly-doped drain enhance GIDL
- Can be major obstacle to reducing off current

Revised Drain Current vs. Gate Voltage

Punchthrough

• Source / Drain depletion regions "touch" deep inside channel

Punchthrough Channel Current (I5)

- Space-charge condition allows channel current to flow deep in subgate region
 - Gate loses control of subgate channel region
- Current varies quadratically with drain voltage
 - Subthreshold slope factor S increases to reflect increase in drain leakage
- Regarded as subsurface version of DIBL

Gate Oxide Tunneling (I7)

$$I_{OX} = AE_{OX}^2 e^{-B/E_{OX}}$$

- High E-field *E_{ox}* can cause direct tunneling through gate oxide or Fowler-Nordheim (FN) tunneling through oxide bands
- Typically, FN tunneling at higher field strength than operating conditions (likely remain in future)
- Significant at oxide thickness < 50 Angstroms
- Could become dominant leakage mechanism as oxides get thinner
 - High K dielectrics might make better
 - Interesting circuit design issues (see ISSCC 2004)

Other Leakage Effects

• Narrow Width Effect (I6)

- V_T increases for geometric gate widths around 0.5 μm in non-trench isolated technologies
- Opposite effect in trench isolated technologies: V_{T} decreases for widths below 0.5 μm

• Hot Carrier Injection (18)

- Short channel devices susceptible to energetic carrier injection into gate oxide
- Measurable as gate and substrate currents
- Charges are a reliability risk leading to device failure
- Increased amplitude as length reduced unless V_{DD} scaled accordingly

Leakage Summary

$$P_{leak} = \sum_{i} I_{DS_i} V_{DS_i}$$

- Parallel transistors, simply add leakage contributions for each one
- For series connected devices, calculating leakage currents more complex
 - Equate subthreshold currents through each device in series stack
 - Solve for V_{DS1} (first device in series stack) in terms of V_{DD} assuming source voltage small
 - Remaining voltages must sum to total voltage drop across series stack

Outline

- Announcements
- Review: Low Power Interconnect
- Finish Lecture 7
- Leakage Mechanisms
- Circuit Styles for Low Leakage
- Cache SRAM Design Examples
- Next Time: Energy Recovery Circuits

Channel Engineering for Reduced Leakage

- Goal: optimize channel profile
- Minimize leakage while maximizing drive current

Modifying Channel for Leakage Reduction

- Process modifications can be used to decrease subthreshold leakage
- Retrograde doping
 - Vertically non uniform, low to high doping concentration going deeper into the substrate
 - Increase mobility near channel surface
 - Creates barrier to punchthrough in bulk
 - Reduce impact of short channel length on V_{T}

Halo doping

- Highly doped p-type implanted near channel ends
- Reduces charge-sharing effects from source and drain fields, decreases DIBL and punchthrough

Stacking Effect in Two-Input NAND Gate

• Multiple off transistors dramatically cuts leakage

Stacking Transistors Leakage Effects

- Intermediate node voltage $V_M > 0 V$
- Positive source voltage for device M0 has three major effects:
 - 1. $V_{GS0} = V_{in} V_M = 0 V V_M < 0 V$ reduces subthreshold current exponentially
 - 2. Body to source potential ($V_{BS0} = 0 V V_M < 0 V$) becomes negative, increasing V_{TH} through increased body effect, thus decreasing I_{leak}
 - 3. Drain to source potential ($V_{DS0} = V_{DD} V_M$) decreases, increasing V_{TH} through reduced DIBL, thus decreasing I_{leak} further

Stacking Effect Impact

- Leakage current drops by an order of magnitude
- Leakage highly dependent on input vector
 - Can reduce leakage power by choosing input bits carefully
 - Large search space (2^N possible vectors), so exhaustive search impossible for large fan-in logic
 - Can use genetic algorithm to find near-optimal input vector
- Can effectively control leakage in standby mode

Multiple Threshold Voltages

- If process implements two threshold devices, can control leakage by mixing both types of devices
 - Use high V_T transistors to interrupt leakage paths
 - Use low V_T devices for high performance
- Implementing multiple thresholds
 - Multiple channel doping densities
 - Multiple gate oxides
 - Multiple channel lengths
 - Multiple body biases

Implementing Multiple Threshold Voltages I

- Multiple Channel Doping
 - Varying channel dopant concentration shifts V_{T}
 - Requires additional mask steps
 - Threshold voltage variation makes it challenging to achieve consistently, esp. when thresholds close
 - Increasingly difficult in future deep submicron

Multiple Gate Oxides

- Grow two different oxide thicknesses
- Thicker oxide results in higher V_T , lower subthreshold leakage and gate tunneling current, lower dynamic power through reduced gate capacitance
- Must increase channel length with oxide thickness

Implementing Multiple Threshold Voltages II

- Multiple Channel Lengths
 - Decreasing channel length reduces " V_T " (consider threshold to be V_{GS} which results in a fixed current)
 - Achieved in conventional CMOS technology
 - Longer channels increase gate capacitance and dynamic power

Multiple Body Biases

- Body (substrate) voltage changed to modify V_T
- For individual transistor control, requires triple well process since devices cannot share same well
- Easy to include in Silicon-on-Insulator (SOI)
 processes since devices automatically isolated

Multiple Threshold CMOS

PMOS Insertion Multiple Threshold CMOS

• Use only PMOS high V_T device to limit leakage current

NMOS Insertion Multiple Threshold CMOS

• Use only NMOS high V_T device to limit leakage current

Multiple Threshold CMOS Design

- Must design sleep transistors with low on resistance so virtual supplies almost function like real supplies
 - NMOS insertion better since a narrower device results in same on resistance
 - Easy to implement based on existing circuits
- MTCMOS only reduces standby leakage
 - Active mode leakage also a concern
- Large inserted FETs increase area and delay
- Data retention in standby mode requires extra high V_T memory circuit

Super Cutoff CMOS

Dual Threshold Datapath

- Assign high V_T devices to non critical path gates (e.g.,Y0 = A * B for Full Adder carry logic)
- Use low V_T in critical path (e.g., carry in from preceding adder stages)

Variable Threshold CMOS

Variable Threshold CMOS Design

Body biasing technique

- Self-substrate bias circuit used to control body bias and adjust threshold voltage
- Active mode: nearly zero applied bias
 - Slightly forward substrate bias can increase speed in active mode
- Standby mode: deep reverse bias applied
 - Increases threshold voltage
 - Reduces subthreshold leakage current
- Routing body net adds to overall area

Dynamic Threshold CMOS

Dynamic Threshold CMOS Design

- Threshold voltage adjusted dynamically with operating state of circuit
 - Want high threshold in standby mode for low subthreshold leakage
 - Want low threshold in active mode for high drive current
- Implement by tying body terminal to input
 - Requires triple well technology in bulk CMOS
 - Supply voltage limited by diode built-in potential (source-body pn diode should be reverse biased)
 - Ultra low supply voltage ($V_{DD} < 0.6 V$)

Stronger advantages in partially depleted SOI

Dual Gated SOI MOSFET

Double gate for dynamic threshold adjustment

DG Dynamic Threshold SOI Design

- Asymmetrical double gate SOI MOSFET
 - Back gate oxide thicker than front gate oxide
 - Threshold voltage of back gate larger than supply voltage
 - Front gate threshold voltage changes dynamically with back gate voltage
- Nearly ideal symmetric subthreshold characteristics
- Power delay product better (smaller) than symmetric double gate SOI CMOS

Threshold Voltage Hopping Scheme

Outline

- Announcements
- Review: Low Power Interconnect
- Finish Lecture 7
- Leakage Mechanisms
- Circuit Styles for Low Leakage
- Cache SRAM Design Examples
- Next Time: Energy Recovery Circuits

Leakage Power Significant for Caches

• Large fraction of current processor die devoted to memory structures (caches, TLB, etc.)

- Alpha 21264: 30% of area, StrongARM 60%

- Caches account for large component of total leakage power
- At 130 nm process node:
 - Leakage equals 30% of total L1 cache energy
 - Leakage accounts for 80% of total L2 cache energy
- Explore techniques for reducing leakage power in caches (SRAMs in general)

SRAM Cell Leakage Paths

• Dominant leakage paths: bitline to GND, V_{DD} to GND

Gated Ground SRAM Cell Operation

• Extra NMOS device gates power on and off

- Can be shared among all cells in a row, amortizing area and power overhead
- Sizing strongly affects power, performance, and data retention capability of SRAM cell
- Must be large enough to sink read/write current and maintain SRAM state, but if too large reduces stacking effect and increases leakage
- Word line decoder controls bottom NMOS
- Turning off NMOS device cuts off leakage
 - Also allows virtual ground to float higher in standby, reducing noise immunity
 - Simulate to verify SRAM data maintained in standby

Data Retention Gated-Ground SRAM Cell

• Sleep device turned ON in active rows, OFF in inactive

Drowsy SRAM Cell Operation

- Idea: during access, SRAM cell in high power and performance mode, otherwise in low power "drowsy" mode
- Approach: switch between low and high V_{DD}
 - Rely on short channel effects to decrease leakage at low supply voltage
- Implement using two high V_T PMOS devices to switch between supplies
 - High V_T required to reduce leakage between supplies
 - Requires a separate V_{DD} mux for each cache line
- Scale V_{DD} to about 1.5 times V_{T} and still maintain state (0.3 V in 70 nm)

Drowsy SRAM Cell

• Virtual V_{DD} switched by high V_T PMOS devices

Dynamic Threshold SRAM Cell Operation

- Idea: during access, SRAM cell in high power and performance mode (low V_T), otherwise in low leakage (high V_T) mode
- Approach: switch between low and high body bias
 - Body bias at 0 V for high speed
 - Body bias negative to increase V_{T} and cut leakage

• Energy for single substrate transition greater than saved in leakage for a single clock cycle

- Body bias updates must be at larger time increments
- Exploit spatial and temporal locality to bias one cache line at a time based on program accesses

Dynamic Threshold SRAM Cell

Conclusions

- Leakage is an increasingly important component of total power dissipation
 - A variety of physical mechanisms cause leakage currents
 - Subthreshold conduction probably most important
- Many proposed circuit techniques to deal with it
 - Multiple thresholds available in process: use stacked devices or low leakage series devices
 - Adjust thresholds using bulk terminal dynamically
- Techniques starting to appear in commercial designs, especially for large memories such as on-chip cache