EEC 216 Lecture #7: Low Power Interconnect

Rajeevan Amirtharajah University of California, Davis

Outline

• Announcements

- Review: Sizing, Clocking, Latches & Flip-Flops
- Low Swing Buses and Level Converters
- Stepwise Charging
- Data Dependent Swings
- Bus Invert Coding
- Modulated Signaling

Corrected Total Capacitance Model

 Total capacitance per unit length is parallel-plate (area) term plus fringing-field term:

$$c = c_{pp} + c_{fringe} = \frac{\varepsilon_r W}{t} + \frac{2\pi\varepsilon_r}{\log(2t/H + 1)}$$

- Model is simple and works fairly well
 - More sophisticated numerical models also available
- Process models often give both area and fringing (also known as sidewall) capacitance numbers per unit length of wire for each interconnect layer

Announcements

Outline

- Announcements
- Review: Sizing, Clocking, Latches & Flip-Flops
- Low Swing Buses and Level Converters
- Stepwise Charging
- Data Dependent Swings
- Bus Invert Coding
- Modulated Signaling

Summary of Sizing for Minimum Energy

- Device sizing combined with voltage reduction is very effective approach to reducing energy consumption
 - For large fanouts, a factor of 10 reduction can be gained
 - K = 1 case is exception; minimum-size device optimal
- Overly large sizing can result in large power penalty
 - Typical of designs today, especially standard cells since cells designed for worst case load conditions to guarantee design meets timing
- Optimal sizing for minimum energy (at fixed delay) smaller than sizing for minimum delay
 - Example: for fanout K = 20, $k_{opt}(energy) = 3.53$ vs. $k_{opt}(delay) = 4.47$
 - Further increasing sizes leads to minimal voltage reductions

Synchronous System With Global Clock

- Simple and convenient design style with minimal circuit overhead
- Challenge is creating and distributing clock with low skew and jitter (timing uncertainty) at high frequencies

Critical Path Replica Self-Timed System

- Similar to synchronous style except clock frequency directly correlated to circuit speed
- Robust to process, voltage, temperature variations
- Minimal circuit overhead for self-timing

Handshaking Between Pipeline Stages

- Truly asynchronous style with maximum performance
 - Each stage computes as fast as possible on each datum
 - Overhead between stages to guarantee information flows correctly through pipeline
- Also robust to process, voltage, temperature variations
- Circuit overhead implies more switched capacitance

Latch and Flip-Flop Design Styles

- Static Latches: use feedback to maintain state
 - Use transmission gate multiplexers and inverters to create conditional feedback
 - Reduce clock loading by using NMOS only pass gates
 - Unconditional feedback with weak (nonminimum channel length) inverters, a ratioed design
- Dynamic Latches: use parasitic capacitances to hold state (like dynamic circuits)
 - Transmission gates conditionally connecting inputs to storage node
 - Many variations: C²MOS, TSPC, others

TSPC Positive Edge Triggered Flip-Flop

• Combine TSPC latches and merge

Outline

- Announcements
- Review: Sizing, Clocking, Latches & Flip-Flops
- Low Swing Buses and Level Converters
- Stepwise Charging
- Data Dependent Swings
- Bus Invert Coding
- Modulated Signaling

Bus Dynamic Power

- Internal buses can contribute significant amounts of dynamic power
- Define reference dynamic power for N bit bus:

$$P_0 = N\alpha C_{bus} V_{DD}^2 f$$

• Consider circuit changes to reduce power, primarily through voltage scaling and data encoding

Reduced Voltage Swing

- Driver circuit attenuates voltage swing toward ground for large on-chip buses
- Receiver amplifies small swings to rail-to-rail
- Quadratic reduction in bus power

CMOS Inverter Down Converter

- Drive input from rail-to-rail
- Output goes from VDDL to Gnd

NMOS Only Inverter Down Converter

- Use NMOS pullup if VDDH > VDDL + V_{Tn}
- Reduced area since NMOS can be smaller than PMOS, but requires extra inverter

Cross Coupled Pullup Up Converter

Cross Coupled Up Converter Design

- Similar issues to sense amp flip-flop design
 - Design input NMOS pair to flip state of converter
 - Potentially fast since input swings can be small, less time required to develop adequate differential voltage on large capacitance bus lines
- Several analog design issues
 - Ratioed differential design like DCVSL
 - Sensitive to P/N mismatch corner
 - Threshold voltage variation results in variable speed
- Can fold in logic to form DCVSL gate
- Also fold in edge-triggered flip-flop for retiming

Sense Amplifier Based FF Receiver

Self-Resetting Up Converter

Self-Resetting Up Converter Design

- Does not rely on ratioed design
 - Less sensitive to process variations
 - Very fast since dynamic circuit
- Dynamic circuit design issues apply!
 - Leakage, charge sharing, noise coupling
 - Extra leakage since low voltage PMOS not fully off

• Inherent race condition

- Output must fully transition before self-reset feedback signal cuts off pullup or pulldown path
- Bigger issue on pulldown since NMOS gate has little overdrive (input at VDDL)
- Consumes significant area especially if delays must be long

Reduced Midrange Swing

- Driver circuit attenuates voltage swing around Vdd/2 for large on-chip buses (VDL, VSL)
- Receiver amplifies small swings to rail-to-rail
- Quadratic reduction in bus power

CMOS Inverter Midrange Driver

 Use reduced threshold devices to maintain gate overdrive and drain current

Symmetric Level Converter

Symmetric Level Converter Operation

• Both pass gates pull internal nodes to VDL, causing positive feedback to switch output rail-to-rail

Implementing Reduced Voltage Swings

- Creating extra power supplies requires power!
 - Linear regulator simple to implement (requires opamp, power FET, voltage reference)
 - Dissipates static power
 - Linear regulator efficiency poor (ratio of output to input voltage)
 - Switching regulators more efficient, but require off chip components (like high Q inductors)
- Midrange swing circuit requires more supplies and overhead power
 - Advantage is symmetry in circuit forms between PMOS and NMOS (less P/N mismatch dependence)

Midrange Swing Dual Linear Regulators

Outline

- Announcements
- Review: Sizing, Clocking, Latches & Flip-Flops
- Low Swing Buses and Level Converters
- Stepwise Charging
- Data Dependent Swings
- Bus Invert Coding
- Modulated Signaling

Stepwise Charging

Stepwise Charger Operation

- Basic idea: charge large capacitance in small incremental steps
 - Voltage swing between steps small, so small power dissipation between intermediate voltage levels
 - Falls off quadratically with number of levels N
 - N steps required, so total dissipation for entire transition goes as 1 / N

$$P = f C_L \sum_{k=1}^{N} \left(\frac{V_{DD}}{N}\right)^2$$
$$= C_L \frac{V_{DD}^2}{N} f$$

Stepwise Charger Design

- Requires large tank capacitors to store intermediate voltage levels
 - Must store enough charge that charge sharing with output node doesn't affect voltage much, share among multiple drivers
 - Unnecessary to generate intermediate voltages independently
 - Charge redistribution after several cycles of operation charges tank capacitors to intermediate levels
- Implement switches with two FETs in parallel
 - One sized for charging transition, other for discharging transition
 - Reduces losses due to driving switch gates

Stepwise Charger Optimization

- Controller generates timing signals to control charging and discharging
 - More steps (*N* bigger), less power in driving load
 - However, more power due to driving switch gates
 - Tradeoff results in optimum number of steps for lowest power dissipation:

$$N_{opt} = \sqrt[3]{\frac{T}{4mRC}}$$

- T: desired rise time of driver output
- *RC*: intrinsic switching speed of process
- *m*: number of RC time constants for each charging step
- R. Amirtharajah, EEC216 Winter 2008

Stepwise Charger Summary

• Is it practical?

- Requires large (presumably off-chip) capacitors
- Shallow minimum, so less constrained
- Often requires only 3-4 voltage steps to get within a few percent of minimum power
- Some care required for generating timing signals
 - Avoid overlap: can result in voltage steps being averaged together
 - Use edge-to-pulse converters with controlled delay elements to meet worst case pulse width requirements
- First example of adiabatic circuit techniques

Outline

- Announcements
- Review: Sizing, Clocking, Latches & Flip-Flops
- Low Swing Buses and Level Converters
- Stepwise Charging
- Data Dependent Swings
- Bus Invert Coding
- Modulated Signaling

Data-Dependent Swing Dynamic Bus

- Charge sharing with pre-discharged dummy line creates data-dependent "0" levels on data lines
- Reduces swing (and power) by n+1, where n is number of 0s being transmitted
- Challenge is building receiver to detect variable swing
 - Use differential circuit based on dummy "1" and "0" lines
 - Include charge sharing and crosstalk on reference
 - Combine using 4 input differential circuit (two tied to data input, third tied to "1" reference, fourth tied to "0" reference")
 - Input data compared to average of "0" and "1" levels

Data-Dependent Swing Bus Circuit

Data-Dependent Swing Bus Operation

*DDL: Data-Dependent Logic Swing

n: Number of Switching Bits Cw: Wiring Capacitance Vcc: Supply Voltage f: Operating Frequency

• Hiraki, JSSC 95

Simulated Data-Dependent Bus Waveforms

• Hiraki, JSSC 95

Data-Dependent Bus Receiver

Data-Dependent Bus Issues

- Dynamic bus so dynamic circuit design rules apply!
- Some overhead in dummy lines
 - Four extra wires if follow design from Hiraki paper
 - Must amortize over wide bus, but wider bus implies smaller voltage swing in worst case
- Complicated receiver consumes area, short circuit current while switching
 - Differential circuit design rules apply
 - Power cost implies optimal ratio between number of data lines and dummy lines, i.e. optimal bus width
- If receiver can be built, why not just use reduced swing at minimum receiver threshold?

Outline

- Announcements
- Review: Sizing, Clocking, Latches & Flip-Flops
- Low Swing Buses and Level Converters
- Stepwise Charging
- Data Dependent Swings
- Bus Invert Coding
- Modulated Signaling

Coding for Low Power Interconnect

- Goal is to reduce number of transitions on bus
 - Techniques explored in past to reduce Ldi/dt (simultaneous switching noise) on output pads
 - Bus-Invert coding special case of "starvation coding" or "limited-weight coding"
- Tradeoff between reduced activity and circuit overhead
 - Extra wires needed on bus
 - Encoding circuitry can be complicated, consumes more power
- Still an area of active research!

Bus Invert Coding

- Algorithm is conceptually simple:
 - Compute Hamming distance (number of bits which differ) between current *N*-bit bus data and next cycle bus data
 - 2. If Hamming distance > N/2, set extra *Invert* signal equal to one and put inverted next data on bus
 - 3. Else set *Invert* = 0 and put next data on bus
 - 4. Receiver conditionally inverts sampled data depending on *Invert* signal (can implement with 2-input XOR gate)
- Bus requires transmitting extra *Invert* signal (*N*+1) wires

Bus Invert Coding Performance

- Maximum number of transitions reduced from *N* to *N*/2, assuming uniform and independent bits
 - Peak dynamic power cut in half
 - Average number of transitions reduced by less than half due to additional *Invert* signal and binomial distribution in Hamming distance
 - With invert coding, N/2 becomes most likely Hamming distance so inverting data values makes no difference
- As *N* gets bigger, average power savings becomes smaller
 - N=8, 18% less average power, but only 15% savings at N=16

Scheme optimal for overhead of one extra wire

Partitioned Code for Lower Average Power

- Divide *N* bit bus into smaller buses and encode those separately
 - Reduces average power dissipation most (limit is N=2, with N/2 additional invert signals)
 - N=2 limit results in 25% lower activity
- Other codes using more than one extra wire can reduce activity even further
 - Code generation challenging, could use lookup tables but would cost a lot of area, power
 - M-limited weight codes are one approach (M is maximum number of transitions between cycles)
 - Number of extra wires grows exponentially

Bus Invert Implementation

Majority Voter Digital Implementation

• Tree of Full Adders with simplified logic at top

Majority Voter Analog Implementation

Resistor summing tree and voltage comparator

Gray Code for Low Power

- For sequential data streams Gray coding reduces activity
 - Only one wire out of N transitions in any given cycle
 - Extra circuit and extra area required
- Useful for address traces which tend to be sequential
 - Program counter, FIFO pointers, indices for arrays stored in RAM
 - Sequential FSM states
- Mix of Gray code and Bus-Invert coding deals with combined random and sequential traces

Impact of Data Statistics on Coding

- Bus invert coding assumes random signals
 - Empirically signal processing data streams exhibit
 Dual Bit-Type behavior
 - Use bus invert coding on random LSBs
 - MSBs don't transition much anyway

Outline

- Announcements
- Review: Sizing, Clocking, Latches & Flip-Flops
- Low Swing Buses and Level Converters
- Stepwise Charging
- Data Dependent Swings
- Bus Invert Coding
- Modulated Signaling

Binary NRZ vs. Modulated RZ

Baseband NRZ: Bit Rate = 1/T

PM/PWM RZ: Bit Rate = (1+m_1+m_2)/(2T+n_1\delta_1+n_2\delta_2)

Modulated RZ Speedup Analysis

Binary NRZ:

$$X_{base} = \frac{1}{T}$$

PM/PWM RZ:
 $X_{mod} = \frac{1+m_1+m_2}{2T+(2^{m_1}-1)\delta_1 + (2^{m_2}-1)\delta_2}$
Speedup:

$$S = \frac{X_{mod}}{X_{base}} = \frac{1 + m_1 + m_2}{2 + (2^{m_1} - 1)} \frac{\delta_1}{T} + (2^{m_2} - 1) \frac{\delta_2}{T}}{T}$$

- Speedup determined by δ_i /T ratio and encoded bits m_i !
- Power benefit: multiple bits encoded in each edge, therefore fewer edges for given data rate

Modulator Circuit

 Use multiple delay lines and muxes to choose positions for leading and trailing edges pulse edges

Demodulator Circuit

 Use multiple delay lines and a reference timing edge to determine transmitted edge positions

- Interconnect power an increasingly important component of total chip power
 - Wires aren't scaling as fast as transistors (to maintain reasonable resistance)
 - Chips tend to get larger, use faster data rates
- Numerous good (and bad) techniques proposed
 - Many rely on low voltage swings on long wires, require amplifiers, possibly more static power
 - Data coded to reduce transitions (requires logic overhead)
 - Modulated signaling to transmit several bits per edge
- Ongoing area of research!