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Corrected Total Capacitance Model

• Total capacitance per unit length is parallel-plate (area) 
term plus fringing-field term:

• Model is simple and works fairly well

– More sophisticated numerical models also available

• Process models often give both area and fringing (also 
known as sidewall) capacitance numbers per unit 
length of wire for each interconnect layer
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Announcements
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Summary of Sizing for Minimum Energy
• Device sizing combined with voltage reduction is very 

effective approach to reducing energy consumption
– For large fanouts, a factor of 10 reduction can be gained
– K = 1 case is exception; minimum-size device optimal

• Overly large sizing can result in large power penalty
– Typical of designs today, especially standard cells since 

cells designed for worst case load conditions to guarantee 
design meets timing

• Optimal sizing for minimum energy (at fixed delay) 
smaller than sizing for minimum delay
– Example: for fanout K = 20, kopt(energy) = 3.53 vs. 

kopt(delay) = 4.47
– Further increasing sizes leads to minimal voltage reductions
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Synchronous System With Global Clock

• Simple and convenient design style with minimal 
circuit overhead

• Challenge is creating and distributing clock with low 
skew and jitter (timing uncertainty) at high frequencies

LOGIC LOGIC

CLK

Reference 
from PLL
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Critical Path Replica Self-Timed System

LOGIC LOGIC

CRITICAL
PATH

REPLICA

• Similar to synchronous style except clock frequency 
directly correlated to circuit speed

• Robust to process, voltage, temperature variations 

• Minimal circuit overhead for self-timing
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Handshaking Between Pipeline Stages

LOGIC LOGIC

HANDSHAKE
CIRCUIT

I DV
HANDSHAKE

CIRCUIT

I DV
Req
Ack

• Truly asynchronous style with maximum performance
– Each stage computes as fast as possible on each datum

– Overhead between stages to guarantee information 
flows correctly through pipeline

• Also robust to process, voltage, temperature variations 
• Circuit overhead implies more switched capacitance
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Latch and Flip-Flop Design Styles

• Static Latches: use feedback to maintain state
– Use transmission gate multiplexers and inverters to 

create conditional feedback
– Reduce clock loading by using NMOS only pass gates
– Unconditional feedback with weak (nonminimum

channel length) inverters, a ratioed design

• Dynamic Latches: use parasitic capacitances to hold 
state (like dynamic circuits)

– Transmission gates conditionally connecting inputs to 
storage node

– Many variations: C2MOS, TSPC, others
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TSPC Positive Edge Triggered Flip-Flop 

• Combine TSPC latches and merge 
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• Internal buses can contribute significant amounts of 
dynamic power
– Problem worsening as chips move to 64, 128 bit 

datapaths

• Define reference dynamic power for N bit bus:

• Consider circuit changes to reduce power, primarily 
through voltage scaling and data encoding
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Reduced Voltage Swing

LOGIC
A

LOGIC
B

busCn
1

× n×

• Driver circuit attenuates voltage swing toward 
ground for large on-chip buses

• Receiver amplifies small swings to rail-to-rail
• Quadratic reduction in bus power

RcvrDriver
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CMOS Inverter Down Converter

VDDL

VDDH

0V

VDDL

0V

• Drive input from rail-to-rail
• Output goes from VDDL to Gnd
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NMOS Only Inverter Down Converter

VDDL

VDDH

0V

VDDL

0V

• Use NMOS pullup if VDDH > VDDL + VTn

• Reduced area since NMOS can be smaller than 
PMOS, but requires extra inverter
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Cross Coupled Pullup Up Converter

Out

In

Out
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Cross Coupled Up Converter Design

• Similar issues to sense amp flip-flop design
– Design input NMOS pair to flip state of converter
– Potentially fast since input swings can be small, less 

time required to develop adequate differential voltage 
on large capacitance bus lines 

• Several analog design issues
– Ratioed differential design like DCVSL
– Sensitive to P/N mismatch corner
– Threshold voltage variation results in variable speed

• Can fold in logic to form DCVSL gate
• Also fold in edge-triggered flip-flop for retiming
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Sense Amplifier Based FF Receiver
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Self-Resetting Up Converter

Out

In

Inverting 
Delay
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Self-Resetting Up Converter Design
• Does not rely on ratioed design

– Less sensitive to process variations
– Very fast since dynamic circuit

• Dynamic circuit design issues apply!
– Leakage, charge sharing, noise coupling
– Extra leakage since low voltage PMOS not fully off 

• Inherent race condition
– Output must fully transition before self-reset 

feedback signal cuts off pullup or pulldown path
– Bigger issue on pulldown since NMOS gate has little 

overdrive (input at VDDL)
• Consumes significant area especially if delays 

must be long
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Reduced Midrange Swing

LOGIC
A

LOGIC
B

busCn
1

× n×

• Driver circuit attenuates voltage swing around 
Vdd/2 for large on-chip buses (VDL, VSL)

• Receiver amplifies small swings to rail-to-rail
• Quadratic reduction in bus power

RcvrDriver
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CMOS Inverter Midrange Driver

VDL

VDDH

0V

VDL

VSL

• Use reduced threshold devices to maintain 
gate overdrive and drain current 

VSL
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Symmetric Level Converter

In
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• Both pass gates pull internal nodes to VDL, causing 
positive feedback to switch output rail-to-rail

In

Out

1

Symmetric Level Converter Operation

2
VDL

VSL

VDDH

0V



R. Amirtharajah, EEC216 Winter 2008 26

Implementing Reduced Voltage Swings
• Creating extra power supplies requires 

power!
– Linear regulator simple to implement (requires 

opamp, power FET, voltage reference)
– Dissipates static power
– Linear regulator efficiency poor (ratio of output to 

input voltage)
– Switching regulators more efficient, but require off 

chip components (like high Q inductors)
• Midrange swing circuit requires more supplies 

and overhead power
– Advantage is symmetry in circuit forms between 

PMOS and NMOS (less P/N mismatch dependence)



R. Amirtharajah, EEC216 Winter 2008 27

Midrange Swing Dual Linear Regulators

• Nakagome, JSSC 95
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Stepwise Charging
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Stepwise Charger Operation

• Basic idea: charge large capacitance in small 
incremental steps
– Voltage swing between steps small, so small power 

dissipation between intermediate voltage levels
– Falls off quadratically with number of levels N
– N steps required, so total dissipation for entire 

transition goes as 1 / N
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Stepwise Charger Design
• Requires large tank capacitors to store 

intermediate voltage levels
– Must store enough charge that charge sharing with 

output node doesn’t affect voltage much, share 
among multiple drivers

– Unnecessary to generate intermediate voltages 
independently

– Charge redistribution after several cycles of 
operation charges tank capacitors to intermediate 
levels

• Implement switches with two FETs in parallel
– One sized for charging transition, other for 

discharging transition
– Reduces losses due to driving switch gates
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Stepwise Charger Optimization

• Controller generates timing signals to control 
charging and discharging
– More steps (N bigger), less power in driving load
– However, more power due to driving switch gates
– Tradeoff results in optimum number of steps for 

lowest power dissipation:

– T: desired rise time of driver output
– RC: intrinsic switching speed of process
– m: number of RC time constants for each charging 

step

3
4mRC

TNopt =
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Stepwise Charger Summary
• Is it practical?

– Requires large (presumably off-chip) capacitors
– Shallow minimum, so less constrained
– Often requires only 3-4 voltage steps to get within a 

few percent of minimum power
• Some care required for generating timing 

signals
– Avoid overlap: can result in voltage steps being 

averaged together
– Use edge-to-pulse converters with controlled delay 

elements to meet worst case pulse width 
requirements

• First example of adiabatic circuit techniques
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Data-Dependent Swing Dynamic Bus
• Charge sharing with pre-discharged dummy line 

creates data-dependent “0” levels on data lines
• Reduces swing (and power) by n+1, where n is number 

of 0s being transmitted
• Challenge is building receiver to detect variable swing

– Use differential circuit based on dummy “1” and “0” lines

– Include charge sharing and crosstalk on reference

– Combine using 4 input differential circuit (two tied to 
data input, third tied to “1” reference, fourth tied to “0”
reference”)

– Input data compared to average of “0” and “1” levels 
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Data-Dependent Swing Bus Circuit

• Hiraki, JSSC 95
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Data-Dependent Swing Bus Operation

• Hiraki, JSSC 95
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Simulated Data-Dependent Bus Waveforms

• Hiraki, JSSC 95
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Data-Dependent Bus Receiver

• Hiraki, JSSC 95
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Data-Dependent Bus Issues
• Dynamic bus so dynamic circuit design rules apply!
• Some overhead in dummy lines 

– Four extra wires if follow design from Hiraki paper

– Must amortize over wide bus, but wider bus implies 
smaller voltage swing in worst case

• Complicated receiver consumes area, short circuit 
current while switching
– Differential circuit design rules apply

– Power cost implies optimal ratio between number of 
data lines and dummy lines, i.e. optimal bus width

• If receiver can be built, why not just use reduced swing 
at minimum receiver threshold?
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Coding for Low Power Interconnect

• Goal is to reduce number of transitions on bus
– Techniques explored in past to reduce Ldi/dt

(simultaneous switching noise) on output pads 
– Bus-Invert coding special case of “starvation coding”

or “limited-weight coding”
• Tradeoff between reduced activity and circuit 

overhead
– Extra wires needed on bus
– Encoding circuitry can be complicated, consumes 

more power
• Still an area of active research!
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Bus Invert Coding

• Algorithm is conceptually simple:
1. Compute Hamming distance (number of bits which 

differ) between current N-bit bus data and next cycle 
bus data 

2. If Hamming distance > N/2, set extra Invert signal 
equal to one and put inverted next data on bus

3. Else set Invert = 0 and put next data on bus
4. Receiver conditionally inverts sampled data 

depending on Invert signal (can implement with 2-
input XOR gate)

• Bus requires transmitting extra Invert signal 
(N+1) wires
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Bus Invert Coding Performance
• Maximum number of transitions reduced from N

to N/2, assuming uniform and independent bits  
– Peak dynamic power cut in half
– Average number of transitions reduced by less than 

half due to additional Invert signal and binomial 
distribution in Hamming distance

– With invert coding, N/2 becomes most likely 
Hamming distance so inverting data values makes 
no difference

• As N gets bigger, average power savings 
becomes smaller
– N=8, 18% less average power, but only 15% savings 

at N=16
• Scheme optimal for overhead of one extra wire
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Partitioned Code for Lower Average Power

• Divide N bit bus into smaller buses and encode 
those separately
– Reduces average power dissipation most (limit is 

N=2, with N/2 additional invert signals)
– N=2 limit results in 25% lower activity

• Other codes using more than one extra wire can 
reduce activity even further
– Code generation challenging, could use lookup 

tables but would cost a lot of area, power
– M-limited weight codes are one approach (M is 

maximum number of transitions between cycles)
– Number of extra wires grows exponentially
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Bus Invert Implementation

D[n]

MAJORITY

D[n+1]

invert
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Majority Voter Digital Implementation

FA

FA

FA

FA

FA

FA*

• Tree of Full Adders with simplified logic at top
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Majority Voter Analog Implementation

• Resistor summing tree and voltage comparator

+
-
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Gray Code for Low Power

• For sequential data streams Gray coding 
reduces activity
– Only one wire out of N transitions in any given cycle
– Extra circuit and extra area required

• Useful for address traces which tend to be 
sequential
– Program counter, FIFO pointers, indices for arrays 

stored in RAM
– Sequential FSM states

• Mix of Gray code and Bus-Invert coding deals 
with combined random and sequential traces
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Impact of Data Statistics on Coding

• Bus invert coding assumes random signals
– Empirically signal processing data streams exhibit 

Dual Bit-Type behavior
– Use bus invert coding on random LSBs
– MSBs don’t transition much anyway
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Binary NRZ vs. Modulated RZ

Baseband NRZ: Bit Rate = 1/T

T

Pulse width = T

T

PM/PWM RZ: Bit Rate = (1+m1+m2)/(2T+n1δ1+n2δ2)

T

Symbol width = 2T+n1δ1+n2δ2

T

δ2 δ2δ1 δ1
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Modulated RZ Speedup Analysis

modX
1+m1+m2

2 T+ (2 m1−1) δ1 + (2 m2−1) δ2
=

base

mod

X
X

S =

Binary NRZ:

PM/PWM RZ:

baseX
T
1=

Speedup:
1+m1+m2

2 + (2 m1−1) δ1 + (2 m2−1) δ2
=

T T
• Speedup determined by δi/T ratio and encoded bits mi!
• Power benefit: multiple bits encoded in each edge,             
therefore fewer edges for given data rate
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Edge 
2

WM MUX REPLICA

MIN PULSE DLY

WM DLY

WM DLY

WM DLY

WM

Edge 1

PM

PM DLY

CLOCK

OUT

• Use multiple delay lines and muxes to choose 
positions for leading and trailing edges pulse edges

Modulator Circuit
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Edge 2

MIN PULSE +
1/2 WM DLY

WM DLY

WM DLY

Edge 1

ARBIT

ARBIT

D
E
C
O
D
E

WM
AMP

REF
CLOCK

. . .
to other

receivers

ARBIT

ARBIT PM

IN

• Use multiple delay lines and a reference timing edge 
to determine transmitted edge positions

Demodulator Circuit
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Conclusions

• Interconnect power an increasingly important 
component of total chip power
– Wires aren’t scaling as fast as transistors (to 

maintain reasonable resistance)
– Chips tend to get larger, use faster data rates

• Numerous good (and bad) techniques proposed
– Many rely on low voltage swings on long wires, 

require amplifiers, possibly more static power
– Data coded to reduce transitions (requires logic 

overhead)
– Modulated signaling to transmit several bits per edge

• Ongoing area of research!
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