# EEC 216 Lecture #6: Clocking and Sequential Circuits

# Rajeevan Amirtharajah University of California, Davis

# Outline

- Announcements
- Review: Dynamic Logic, Transistor Sizing
- Lecture 5: Finish Transistor Sizing
- Lecture 5: Clocking Styles Overview
- Lecture 5: Static Latches and Flip-Flops
- Dynamic Latches and Flip-Flops
- Alternative Flip-Flop Styles
- Self-Timed Circuits

# **Dynamic CMOS Logic Concepts**

#### Precharge Phase

- Output node charged to reference voltage and left floating before evaluation
- Load capacitance "stores" the precharge value

#### Evaluation Phase

- Path to change the output node voltage energized by turning on evaluation transistor
- Depending on inputs, load capacitance "written" with final value (changed from precharge value or left unchanged)
- Inputs must make at most one transition during evaluation
- Output can be left high impedance, unlike static CMOS

# **Dynamic CMOS Logic**



# Intrinsic (Self-Load) and Extrinsic Capacitance

• To analyze delay/sizing tradeoffs, must account for all circuit capacitances



# **RC Switch Model for Inverter Sizing**



Model delay using ideal switch and resistor for MOSFET

R. Amirtharajah, EEC216 Winter 2008

# **Inverter Chain Sizing for Minimum Delay**



- Using inverter sizing, want to minimize delay of driving large load C<sub>L</sub>
- Optimize using equivalent resistance delay equation derived in previous slides

# **Optimal Inverter Stages for Minimum Delay**

- Delay trade off in the number of stages N
  - Too many stages, intrinsic delay term dominates
  - Too few stages, extrinsic term due to fanout ratio dominates
- Taking derivative of  $T_{pd}$  wrt N and setting equal to zero yields scale up factor for optimal number of stages:  $k = o^{\left(1+\frac{\gamma}{k}\right)}$

Closed form solution when 
$$\gamma = 0$$
,  $N = \ln(K)$   
 $k = e = 2.71828$ 

- For more typical case of  $\gamma = 1$ , k = 3.6
- Often choose k=4

# Outline

- Announcements
- Review: Dynamic Logic, Transistor Sizing
- Lecture 5: Finish Transistor Sizing
- Lecture 5: Clocking Styles Overview
- Lecture 5: Static Latches and Flip-Flops
- Dynamic Latches and Flip-Flops
- Alternative Flip-Flop Styles
- Self-Timed Circuits

# **Dynamic Positive Edge-Triggered FF**



- No feedback devices
- Data stored on input capacitances of inverters I0 and I1
- Dynamic logic issues apply: leakage, capacitive coupling, charge sharing

# Staticized Dynamic Positive Edge-Triggered FF



- Use weak feedback inverters to enhance robustness
- Returns to reduced clock load static flip-flop with same sizing issues

# C<sup>2</sup>MOS Edge Triggered Flip-Flop



Eliminates clock overlap race condition

#### **Zero-Zero Overlap Condition**



Both phases low simultaneously enables opposite nets

# **High-High Overlap Condition**



Both phases high simultaneously enables opposite nets

# C<sup>2</sup>MOS Design

- Clock overlap problems eliminated as long as rise and fall times remain fast
  - Slow rise / fall times imply pullup and pulldown nets on simultaneously resulting in potential errors, static power
- Dynamic flip-flop style leaves output high Z
  - Must take care when using since output wire could be exposed to many more noise sources than internal nodes
- Mix and match styles by using C<sup>2</sup>MOS as master and other types of latch as slave
- Clock load small, but potentially larger than transmission gate dynamic latches due to PMOS sizing

#### **True Single-Phase Clock Negative Latch**



Idea is to eliminate one polarity of clock

#### **True Single-Phase Clock Positive Latch**



• Complementary version



• Combine TSPC latches and merge



• Clk low, A = not(D) and B precharged



• Clk high, D = 0, B discharged,  $C_i$  charges, Q goes low



Clk high, D = 1, B stays high, C<sub>i</sub> discharges, Q goes high

# TSPC Design

- Clock overlap problems eliminated since only single clock required
  - Frees routing resources compared to nonoverlapped clocks
- Dynamic flip-flop style leaves internal nodes high Z
  - Inherent race condition in edge-triggered flip-flop must be dealt with by careful sizing
- Small clock load, only four transistors and no local inversion

# Outline

- Announcements
- Review: Dynamic Logic, Transistor Sizing
- Lecture 5: Finish Transistor Sizing
- Lecture 5: Clocking Styles Overview
- Lecture 5: Static Latches and Flip-Flops
- Dynamic Latches and Flip-Flops
- Alternative Flip-Flop Styles
- Self-Timed Circuits

# C<sup>2</sup>MOS Dual-Edge Triggered Flip-Flop





- Advantages in timing discipline
  - Since edge-triggered flip-flop equivalent to transparent latch, there is essentially 0 setup time
  - Hold time is equivalent to glitch width
  - Clock-to-Q delay is only two gate delays
- Reduced clock load and few devices, low area for lower power
- Can use glitch circuit (one-shot) to generate narrow pulses from regular clock
  - Amortize over many state elements
  - High frequency signal (narrow pulse) challenging to distribute over lossy interconnect

# Sense Amplifier Based Edge-Triggered FF



#### Leakage Problem When Inputs Change



#### **M3 Eliminates Leakage Problem**



# Sense Amplifier Register Design

- Designed to detect small (below rail-to-rail) differential inputs
  - Good for low swing large capacitances, since dynamic power drops quadratically with decreasing voltage swing
  - Potentially fast since input swings can be small, less time required to develop adequate differential voltage
- Several analog design issues
  - Must ensure both halves of design well matched to enable minimum input swing (reduced offset)
  - Large area consumed by single flip-flop, especially if good input transistor matching required

# **Flip-Flop Design Example**



Fig. 9. Positive edge-triggered flip-flop with asynchronous clear schematic.

#### • Amirtharajah PhD 99, JSSC 04

# Outline

- Announcements
- Review: Dynamic Logic, Transistor Sizing
- Lecture 5: Finish Transistor Sizing
- Lecture 5: Clocking Styles Overview
- Lecture 5: Static Latches and Flip-Flops
- Dynamic Latches and Flip-Flops
- Alternative Flip-Flop Styles
- Self-Timed Circuits

#### **Two Phase Handshake Protocol**



• Green: sender action, Magenta: receiver action R. Amirtharajah, EEC216 Winter 2008

# **Muller C-Element**



- Signaling protocol requires strict ordering of transitions
- Muller C-element essential component of handshake logic
  - Performs AND operation on events
  - Events required on both inputs before output event generated
  - R. Amirtharajah, EEC216 Winter 2008

#### **Dynamic Muller C-Element**



Dynamic latch on output handles memory function

### **Two Phase Protocol Implementation**



 Two phase protocol can be implemented with single Celement and inverter

### **Two Phase Protocol Issues**

- Simple to implement and good performance
  - Low overhead beneficial for low power applications
- Many logic devices level sensitive or sensitive to only one polarity of transition
  - Event-triggered logic requires extra circuitry and state information
  - All C-elements must be initialized properly to avoid deadlock between logic stages (requires more devices, area, routing of reset signals)
- Alternative signaling approach relies on bringing control signals back to initial state before commencing new cycle

# Four Phase (Return-to-Zero) Protocol



#### All controlling signals back to initial state each cycle

# **Four Phase Protocol Implementation**



 Four phase protocol can be implemented with two Celements and two inverters

### **Four Phase Protocol Issues**

- More complex and requires more overhead than two phase
- More robust implementation of handshaking
  - Logic does not deal with arbitrary transitions, only considers rising/falling edges and logic levels
  - Easy to interface with traditional circuit styles
- Preferred implementation for self-timed pipelines
- Two phase used when sender and receiver far apart
  - Long delays on request and acknowledge signals degrade performance

# Synchronous vs. Asynchronous for Power

• Asynchronous has advantage of inherent higher speed, therefore allows more voltage scaling

- Eliminates large global clock net

- Asynchronous disadvantages: circuit overhead, design complexity
  - Overhead adds capacitance, leakage current (increasingly important)
  - Difficult to design correctly
- Synchronous, or similar styles such as replicabased ring oscillators, likely to remain dominant