EEC 216 Lecture #5: Low Power Circuits 2

Rajeevan Amirtharajah University of California, Davis

Outline

Announcements

- Review: Static, Ratioed, and Pass Gate CMOS Logic
- Dynamic Logic
- Impact of Internal Circuit Nodes
- Sizing
- Clocking Styles Overview
- Static Latches and Flip-Flops

Outline

- Announcements
- Review: Static, Ratioed, and Pass Gate CMOS Logic
- Dynamic Logic
- Impact of Internal Circuit Nodes
- Sizing
- Clocking Styles Overview
- Static Latches and Flip-Flops

Static CMOS Logic

 Pull-Up network consists of PMOS devices connected complementary to NMOS Pull-Down network

Complex Gate Example

Static CMOS for Low Power

- Dynamic power and short circuit current applies
 - Mismatched delays can lead to glitching, increased dynamic power
 - Dynamic logic eliminates glitches, short circuit
- Only static power due to leakage
- Fully complementary design has high noise margin

$$- V_{OH} = V_{DD}, V_{OL} = GND$$

- Design style more scalable to lower supply voltages
- Implies lower threshold voltages can be used also
- PMOS devices may degrade performance
 - High input capacitance, slow series P-stacks

Ratioed Logic Styles

 Pull-Up network replaced by simple (often resistive) load

Ratioed Logic for Low Power

- Dynamic power and static current applies
 - Mismatched delays can lead to glitching, increased dynamic power
 - Conducts current as long as output is low
- Reduced noise margin because of resistance ratios

$$- V_{OH} = V_{DD}, V_{OL} = V_{DD}R_{PDN} / (R_{L} + R_{PDN})$$

- Could increase leakage in load gates whose NMOS gates are at V_{OL} instead of ground
- Reduced transistor count decreases input capacitance
- Low-to-High transition speed determined by load (could be faster or slower than series PMOS)
- Most useful for high fan-in gates

Differential Cascode Voltage Switch Logic

• PDN1 ON implies PDN2 OFF pulls Out low, turning on PMOS which pulls complement high

DCVSL Summary for Low Power

- Differential logic style
 - Generating both polarities of output can improve speed (eliminates inverters)
 - Extra noise immunity to common-mode noise
 - Convenient for self-timed (asynchronous) logic design
- Still a ratioed logic style, even though outputs transition rail-to-rail
 - PMOS must be sized carefully to ensure functionality
 - Pulldown networks must overcome PMOS on other side
- Short circuit current flows while outputs are switching (pulldown fighting opposite side PMOS)
- Twice the number of NMOS inputs compared to singleended ratioed logic styles, higher input capacitance

Complementary Pass Transistor Logic

• Since complementary signals needed anyway, can create a fully differential version of pass gate logic

CPL Basic Gates: AND / NAND

CPL Summary for Low Power

• Fully differential signals

 Requires more devices, but simplifies complex gates like XOR, full adder; eliminates extra inverters

• Static logic style

- Output nodes always have a low impedance path to V_{DD} and GND
- Improves resilience to noise events

• Very modular design style

- All gates share same fundamental topology: only inputs are permuted to implement other logic functions
- Energy is low (good PDP) but speed is poor (bad EDP)
 - Series transistors have high resistance

– Circuit techniques necessary to overcome V_{Tn} drops R. Amirtharajah, EEC216 Winter 2008

Outline

- Announcements
- Review: Static, Ratioed, and Pass Gate CMOS Logic
- Dynamic Logic
- Impact of Internal Circuit Nodes
- Sizing
- Clocking Styles Overview
- Static Latches and Flip-Flops

Summary of CMOS Logic Styles

- Nonclocked Logic
 - Does not require clock for proper logic operation (although clocks may be required for state operation)
 - Static CMOS, ratioed logic, DCVSL, Pass-Gate logic

Clocked Logic

- Periodic signal required for correct logic operation as well as for state (latches and flip-flops)
- Dynamic logic (domino, NP-CMOS)
- Clocked styles faster in general, but also consume more power (can be observed in Power-Delay Product)

Dynamic CMOS Logic Concepts

Precharge Phase

- Output node charged to reference voltage and left floating before evaluation
- Load capacitance "stores" the precharge value

• Evaluation Phase

- Path to change the output node voltage energized by turning on evaluation transistor
- Depending on inputs, load capacitance "written" with final value (changed from precharge value or left unchanged)
- Inputs must make at most one transition during evaluation
- Output can be left high impedance, unlike static CMOS

Dynamic CMOS Logic

Dynamic CMOS Two-Input NAND Gate

PMOS precharges (Clk low), NMOS evaluates (Clk high)

Dynamic CMOS Logic Gate Properties

- Logic function implemented by NMOS pulldown network
 - Design of PDN identical to static CMOS
- Number of transistors for N-input dynamic gate is N+2 (2N for static CMOS gate)
 - Lower area, lower input capacitance
- Nonratioed logic family: sizing of PMOS device independent of sizing of PDN
 - Wider devices imply faster precharge, more clock power
- Gates only consume dynamic power
 - Ideally, no static current path exists when gate evaluates
- Fast! Reduced input capacitance, all current to output

Cascading Dynamic CMOS N-blocks

• Problem: late arriving inputs cause false output discharge

Domino CMOS Logic

NP-CMOS Logic

Variations on the Domino Theme

Multiple-Output Domino

- Exploit situation when certain outputs are subsets of other outputs to reduce area
- Precharge intermediate nodes in PDN and follow with inverters to drive other N-block dynamic gates

Compound Domino

- Use complex static CMOS gates (NANDs, NORs) on outputs of multiple dynamic gates in parallel
- Replaces large fanin domino gates with lower fanin gates
- Capacitive coupling from static gate outputs to dynamic gate outputs an issue

Multiple Output Domino CMOS Logic

Compound Domino CMOS Logic

Static Gate Activity Factor Equation:

$$\alpha_{0 \to 1} = p_0 p_1 = p_0 (1 - p_0)$$

- Dynamic logic has higher activity due to periodic precharge and discharge
- Output transition probability independent of input state, dependent on input probabilities
- Output makes low-high transition if discharged during previous evaluate phase: λI

$$\alpha_{0\to 1} = p_0 = \frac{1}{2^N} \frac{1}{2^N}$$

• N₀ is the number of 0s in truth table output column

Dynamic Logic Design for Low Power

- Advantages for low power
 - Lower physical capacitance since fewer devices used to implement given logic function
 - Input loading lower since no dual PMOS devices
 - Gates *must* allow only one transition for correct operation (i.e., no glitching!)
 - No short circuit power since pullup path not enabled when evaluating output
- Disadvantages for low power
 - Higher clock power since guaranteed clock node transition
 - More than minimal number of devices for implementation
 - Higher switching activity as shown earlier

Signal Integrity Issues in Dynamic Design

Charge leakage

- High impedance nodes can lose charge due to leakage
- Can be offset by adding feedback devices to trickle charge the nodes and maintain state

Charge sharing

 Parasitic capacitances on intermediate nodes in PDN can pull charge from output node, degrading output state

Capacitive coupling

 High impedance nodes sensitive to adjacent node transitions coupling in noise

Clock feedthrough

- Capacitive coupling between clock input and output node

Closing Thoughts on Dynamic Logic

- Dynamic logic is an aggressive design style
 - Performance can be very good, very fast circuits
 - Noise issues require care to guarantee correct operation
 - Sensitivity to noise impedes aggressive voltage scaling
 - Leakage may require "staticizing" gate anyway using feedback to prevent output level degrading
 - Cannot reduce clock frequency arbitrarily for testing
 - Must evaluate power tradeoffs carefully during design

Outline

- Announcements
- Review: Static, Ratioed, and Pass Gate CMOS Logic
- Dynamic Logic
- Impact of Internal Circuit Nodes
- Sizing
- Clocking Styles Overview
- Static Latches and Flip-Flops

Complex Gate Power Example

Internal Node Capacitance Example

- 1. Suppose in Cycle 0, A = B = C = D = 0, F = 1, then C_{i0}, C_{i1} charged to V_{DD}.
- 2. In Cycle 1, A and C transition high, other inputs stay low.
- 3. Capacitors C_{i0} and C_{i1} in addition to output load C_{L} must all be discharged.
- Depending on the state of the inputs in cycles preceding Cycle 0, C_{i2} may need to be discharged as well (for example, if A was the last input to transition low).

Power Consumption With Internal Nodes

- Gate represents a variable capacitance to power and ground rails
 - Capacitance depends on current state and history of input signals
- Optimal routing of equivalent inputs is to put signal with highest activity factor closest to output
 - Reduces the amount of switched capacitance and power for the gate
 - Similar to optimizing gate inputs for speed, but not necessarily the same
- Can incorporate internal node capacitances into power estimation methodology

Power Estimation With Internal Nodes

 Incorporate into internal node capacitances into dynamic power estimation:

$$P = V_{DD}^2 f \left(C_L \alpha_L + \sum_{n_i} C_{n_i} \alpha_{n_i} \right)$$

- Where C_{ni} are normalized internal node capacitances
 - Many internal nodes may typically charge only to V_{DD} - V_{Tn}
 - Can fold this voltage factor into either capacitance or activity, but capacitance makes more sense since it corresponds to charge
- Because input history affects internal nodes, computing activity is NP-hard (usually just estimate)

Final Words on Internal Nodes

- Data dependent capacitance affects speed as well as power
 - Try to minimize through layout: share sources and drains by implementing in the same diffusion whenever possible
- In addition to data dependence, source / drain depletion region capacitances depend on voltage also
- Consider both effects in extreme high performance and extreme low power designs
 - Late generation Alpha processors from Compaq considered data and voltage dependence in delay models for cells
 - Must have a lot of confidence in simulation and process characterization to optimize this way

Outline

- Announcements
- Review: Static, Ratioed, and Pass Gate CMOS Logic
- Dynamic Logic
- Impact of Internal Circuit Nodes
- Sizing
- Clocking Styles Overview
- Static Latches and Flip-Flops

Sizing for Speed and Low Power

- Lowest level of design optimization
 - Explore sizing for minimum delay and energy and compare optimal points
- Will see that device sizing combined with voltage reduction is very effective approach to reducing energy consumption
- Still an ongoing area of research
 - Optimal points can change quantitatively as device characteristics change (for example, due to velocity saturation)
 - Choice of metric to optimize (PDP vs. EDP) important
 - Increased leakage affects shifts optimal point to smaller devices

Intrinsic (Self-Load) and Extrinsic Capacitance

RC Switch Model for Inverter Sizing

Model delay using ideal switch and resistor for MOSFET

• Estimate delay using ideal switch and resistor model (RC time constant):

$$t_{pd} \propto R_{eq} \left(C_i + C_{ext} \right)$$

$$\propto R_{eq} C_i \left(1 + C_{ext} / C_i \right)$$

$$\propto t_{p0} \left(1 + C_{ext} / C_i \right)$$

• Define intrinsic inverter delay (with fudge factor):

$$t_{p0} = 0.69 R_{eq} C_i$$

• C_i consists of source / drain and overlap capacitance

Decrease delay by enlarging transistor (increases current, decreases R_{eq}) by factor S:

- Intrinsic delay independent of sizing
- Infinite S yields fastest gate (eliminates external load), reducing delay to intrinsic in the limit

Relating Self-Load to Gate Capacitance

- Increasing transistor sizing enlarges self-load and gate input capacitance
- Convenient to relate them by a constant factor γ (γ around 1 in submicron processes)

$$C_{i} = \gamma C_{g}$$

$$t_{pd} = t_{p0} \left(1 + \frac{C_{ext}}{\gamma C_{g}} \right) = t_{p0} \left(1 + k/\gamma \right)$$

- *k* is effective fanout of gate
- Delay depends only on ratio between external load capacitance and input capacitance

Inverter Chain Sizing for Minimum Delay

- Using inverter sizing, want to minimize delay of driving large load C_L
- Optimize using equivalent resistance delay equation derived in previous slides

Delay of the jth inverter stage is (ignoring wiring):

$$t_{pd,j} = t_{p0} \left(1 + \frac{C_{g,j+1}}{\gamma C_{g,j}} \right) = t_{p0} \left(1 + \frac{k_j}{\gamma} \right)$$

Total delay is:

where

$$C_{g,N+1} = C_L = KC_{g,1}$$

Optimal Inverter Sizing for Minimum Delay

- Minimize delay by taking partial derivatives wrt $C_{g,j}$, set them equal to 0
 - N-1 equations in N unknowns
 - Solution for jth inverter is geometric mean of its neighbors sizing:

$$C_{g,j} = \sqrt{C_{g,j-1}C_{g,j+1}}$$

Implies each inverter has constant scale-up factor k_i

$$k_j = k = \sqrt[N]{C_L/C_{g,1}} = \sqrt[N]{K}$$

• Minimum delay: $T_{pd} = Nt_{p0} \left(1 + \sqrt[N]{K}/\gamma\right)$

Optimal Inverter Stages for Minimum Delay

- Delay trade off in the number of stages *N*
 - Too many stages, intrinsic delay term dominates
 - Too few stages, extrinsic delay term due to fanout ratio dominates
- Taking derivative of T_{pd} wrt N and setting equal to zero yields scale up factor for optimal number of stages:

$$k = e^{\left(1 + \frac{\gamma}{k}\right)}$$

- Closed form solution when $\gamma = 0$, $N = \ln(K)$ k = e = 2.71828
- For more typical case of $\gamma = 1$, k = 3.6
- Often choose k = 4

Inverter Chain Sizing for Minimum Energy

- Using inverter sizing, want to minimize energy of driving large load C_L while maintaining fixed delay
- Again, optimize using equivalent resistance delay equation derived in previous slides

Optimal Inverter Sizing for Minimum Energy 1

• Write delay equation for chain with two stages:

$$T_{pd} = t_{p0} \left(\left(1 + \frac{k}{\gamma} \right) + \left(1 + \frac{K}{\gamma k} \right) \right)$$

• Delay for an individual stage (assuming velocity saturation): $\alpha(C + C) W$

$$t_{p0} \approx \frac{\alpha (C_i + C_{ext}) V_{DD}}{V_{DD} - V_T - \frac{V_{DSAT}}{2}}$$

• Total energy dissipated depends on total capacitance: $E = V_{DD}^2 C_{\sigma 1} ((1 + \gamma)(1 + k) + K)$

Optimal Inverter Sizing for Minimum Energy 2

- Goal is to choose *k* factor to minimize energy
- Obvious approach is to choose k to minimize delay, then reduce voltage until delay constraint is met
 - In two stage example, this approach yields $k = \sqrt{K}$
- Suppose supply voltage for k = 1 is V_0 and delay is T_0
 - Assuming $\gamma = 1$, increase k and decrease V_{DD} until $T_{pd} = T_0$ again
- Ratio of total energy for reduced voltage case to energy for $V_{DD} = V_0$ is: $\frac{E}{E_0} = \frac{V_{DD}^2}{V_0^2} \frac{(2+2k+K)}{(4+K)}$
- Increasing k allows greater reduction in V_{DD} (1st term) at expense of increased capacitance (2nd term)

Energy vs. Transistor Sizing Factor

Fig. 6. Plot of energy versus transistor sizing factor for various parasitic contributions.

• From Chandrakasan92, "Low-Power CMOS Digital Design"

Summary of Sizing for Minimum Energy

- Device sizing combined with voltage reduction is very effective approach to reducing energy consumption
 - For large fanouts, a factor of 10 reduction can be gained
 - K = 1 case is exception; minimum-size device optimal
- Overly large sizing can result in large power penalty
 - Typical of designs today, especially standard cells since cells designed for worst case load conditions to guarantee design meets timing
- Optimal sizing for minimum energy (at fixed delay) smaller than sizing for minimum delay
 - Example: for fanout K = 20, $k_{opt}(energy) = 3.53$ vs. $k_{opt}(delay) = 4.47$
 - Further increasing sizes leads to minimal voltage reductions

- Leakage power ignored in analysis so far
 - Increase pressure for smaller devices, shifting optimal point to smaller scaling factors
- Sizing opportunities may be limited
 - Synthesized design, cannot customize each cell very finely
 - Best approach is not to overdesign cells by assuming pessimistic loading conditions
 - Have many device sizes (INV_1X, INV_2X, NAND2_4X) so tool can pick cells to meet timing-driven synthesis, place, and route constraints

Extending Sizing Optimization to Logic

- So far only looked at sizing of inverter chains
- Can extend results to explore sizing of more complex logic gates
 - RC model leads to design concept of *logical effort*
 - Logical effort is systematic way of sizing arbitrary logic gates in a critical path to minimize delay
- Choose appropriate metric and constraints to optimize for low power design
 - Previous examples focused on minimizing power for a fixed delay constraint (corresponds to Power-Delay Product)
 - Can minimize Energy-Delay Product instead to count performance more heavily

Outline

- Announcements
- Review: Static, Ratioed, and Pass Gate CMOS Logic
- Dynamic Logic
- Impact of Internal Circuit Nodes
- Sizing
- Clocking Styles Overview
- Static Latches and Flip-Flops

High Level Clocking Styles

- Timing classification of digital systems (Messerschmitt 1990) depends on relation to system clock
 - Synchronous: same frequency, known fixed phase offset
 - Mesochronous: same frequency, unknown phase offset
 - *Plesiochronous*: nominally same frequency, but slightly different (difference causes phase offset to drift in time)
 - Asynchronous: signals transition at arbitrary times relative to system clock
- Traditionally designed for synchronous operation
- As speeds get higher, clock skew and jitter increases, total synchronization less likely
- Mesochronous, Plesiochronous, Asynchronous styles more prevalent (for example, GALS)

Synchronous System With Global Clock

- Simple and convenient design style with minimal circuit overhead
- Challenge is creating and distributing clock with low skew and jitter (timing uncertainty) at high frequencies

Critical Path Replica Self-Timed System

- Similar to synchronous style except clock frequency directly correlated to circuit speed
- Robust to process, voltage, temperature variations
- Minimal circuit overhead for self-timing

Handshaking Between Pipeline Stages

- Truly asynchronous style with maximum performance
 - Each stage computes as fast as possible on each datum
 - Overhead between stages to guarantee information flows correctly through pipeline
- Also robust to process, voltage, temperature variations
- Circuit overhead implies more switched capacitance

Clocking Styles for Low Power

- No definitive conclusions on which is better ... yet
- Asynchronous styles offer highest speed and greatest voltage reductions
 - Offset significantly by higher switched capacitance
 - Difficulty of designing circuits properly a barrier to widespread adoption
 - Functions reliably with respect to voltage variations, allows aggressive supply scaling and battery operation
- Synchronous benefits include ease of design and minimum circuit overhead
- Combination of styles likely in future
 - Globally Asynchronous, Locally Synchronous blocks
 - Mixed clocked and self-timed pipeline stages

Outline

- Announcements
- Review: Static, Ratioed, and Pass Gate CMOS Logic
- Dynamic Logic
- Impact of Internal Circuit Nodes
- Sizing
- Clocking Styles Overview
- Static Latches and Flip-Flops

Sequential Element Design for Low Power

- Clock power is often large component of chip dynamic power
 - Activity factor is high (charges every cycle)
 - Interconnect capacitance due to clock distribution wiring is very large
 - Clock inputs to latches and flip-flops can present significant capacitance
- Sequential element design style must balance several competing demands
 - Robustness wrt noise, timing uncertainty, leakage current
 - Speed since setup/hold times and clock-to-Q delays directly impact critical path delay
 - Power dissipation

Static vs. Dynamic Design Styles

- Tradeoffs are similar to static and dynamic combinational logic styles
- Static designs rely on feedback to maintain state
 - Internal nodes as well as outputs always driven to supply rails by low impedance path
 - Requires more devices, area, possibly power
 - Robust design style with wide noise margins, scales to lower frequencies and supply voltages
- Dynamic designs store state on parasitic capacitances
 - Very fast since fewer devices, no static current fights
 - Sensitive to noise, challenging to scale to lower frequencies / voltages
 - Power dissipation depends on specific circumstances

Static Latch Bistability

Multiplexer-Based Static Latches

Negative Latch

Positive Latch

• Latches are transparent during half of clock cycle

Transmission Gate Positive Latch

NMOS Pass Gate Positive Latch

- Fewer devices, less area, lower clock load
- Threshold drop on internal nodes implies more static power, less noise margin

Master-Slave Positive Edge-Triggered FF

Master Latch

Slave Latch

• Connect two opposite phase transparent latches

Positive Edge-Triggered FF Clock Load

- Latch choice clearly impacts flip-flop power
- Full transmission gate latch has high loading
 - Requires 7 inverters (one extra to create local inverted clock, can be amortized over entire registers)
 - Clock touches 1 inverter and 8 transmission gate FETs
 - Transmission gate load less than inverter since PMOS can be sized same as NMOS (mobility ratio is overkill)
- NMOS only pass gate latches reduce loading
 - Requires 5 inverters including local clock inversion
 - Clock touches 1 inverter and 4 transmission gate FETs
 - Static power when storing 1 since internal nodes charged to V_{DD} - V_{Tn}

• Specific circumstances dictate which is better

Reduced Clock Load Static Positive FF

- Reduce clock load by directly cross-coupling inverters
- Ratioed circuit: must size transmission gate to overpower feedback inverters I1 and I3
 - Can make I1, I3 intentionally weak (> minimum length)

Reverse Conduction Problem

- Second stage output can affect first stage state
- Must size feedback inverter I3 to avoid contamination by making it weak enough

Clock Overlap Failures

1. Both high simultaneously, race condition from *D* to *Q*

2. Node A can be driven simultaneously by D and B

Race Through and Feedback Paths

1. Both high simultaneously, race condition from *D* to *Q*

2. Node A can be driven simultaneously by D and B

Nonoverlapping Clocks Methodology

- Guarantee nonoverlap period long enough
- Note: internal nodes left high Z during nonoverlap

- Rich design space of circuit styles, sizing methodology, and clocking strategies
 - Must balance large circuit capacitance (static CMOS) vs. higher activity factor (dynamic CMOS)
 - Dynamic logic is faster, so must be used if speed is priority
 - Can mitigate higher activity by sharing pulldown networks (multiple-output domino) or using complex static gates to eliminate dynamic gates and inverters (compound domino)
- Next topic: dynamic latch styles, self-timed circuits