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Review: Power-Delay Product

pdavtPPDP =
• Product of average power and propagation delay         

is generally a constant (fixed technology and 
topology)

• PDP = Energy consumed by gate per switching event 
(Watts x seconds = Joules)

• Energy is nice because it is a physical quantity, easy 
to relate to actual device

• Can be distorting: to minimize energy, use VDD = 0 V

• Most useful when tpd is constrained by application

– DSP, multimedia applications, real-time operation



R. Amirtharajah, EEC216 Winter 2008 6

Review: Energy-Delay Product

2
pdavpd tPtPDPEDP =×=

• Weight performance more heavily than PDP

– Enables more flexible power-performance tradeoff

• Higher voltages decrease delay but increase energy

• Lower voltages decrease energy but increase delay

• Therefore there exists an optimum supply voltage

• Useful when application allows power and 
performance (e.g., clock frequency) to both vary

– Good for evaluating logic styles, microprocessors, etc.
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Review: Intersignal Correlations
• Activity factor assumes independent, uniformly 

distributed input data, NOT very good assumptions 
typically
– Switching activity strong function of input statistics
– Must use conditional probabilities when evaluating 

circuits with reconvergent fanout
• Several techniques can be applied to reduce activity 

factor of logic internal nodes
– Logic restructuring: rearrange gates, for example in 

chains instead of trees
– Input reordering: put high activity signals late in path
– Consider parallelizing structures instead of time 

multiplexing them
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Review: Glitches

• Glitches due to mismatches in nonzero propagation 
delay of logic gates

– Internal nodes may make spurious transitions before 
settling on final output

– Reduce glitching by balancing logic delays (can also 
speed up circuits)

– Add transparent latches to inputs of complex 
combinational logic blocks to eliminate glitching when 
outputs unused
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Review: Top Level Power Estimation
• System Level Power Estimation

– Allows designer to analyze power impact of system 
partitioning among software, FPGAs, ASICs, etc.

– Spreadsheet analysis using library of models for entire 
components

– Models created from measurements, low-level power 
estimation

• Instruction Level Power Estimation
– Run assembly instructions on target processor and 

measure power
– Create database of power cost for individual 

instructions, pairs, maybe entire frequently used traces
– Add in cache misses, pipeline stalls, etc.
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Interconnect Modeling

• Early days of CMOS, wires could be treated as ideal for 
most digital applications, not so anymore!

• On-chip wires have resistance, capacitance, and 
inductance

– Similar to MOSFET charging, energy depends on 
capacitance

– Resistance might impact adiabatic charging, static 
current dissipation

– Ignore inductance for now

• Interconnect modeling is whole field of research itself!
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Resistance
• Resistance proportional to length and inversely 

proportional to cross section

• Depends on material constant resistivity ρ (Ω-m)
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Parallel-Plate Capacitance
• Width large compared to dielectric thickness, height 

small compared to width: E field lines orthogonal to 
substrate
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Fringing Field Capacitance

• When height comparable to width, must account for 
fringing field component as well
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Total Capacitance Model

• When height comparable to width, must account for 
fringing field component as well

• Model as a cylindrical conductor above substrate
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Total Capacitance Model

• Total capacitance per unit length is parallel-plate (area) 
term plus fringing-field term:

• Model is simple and works fairly well

– More sophisticated numerical models also available

• Process models often give both area and fringing (also 
known as sidewall) capacitance numbers per unit 
length of wire for each interconnect layer
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Capacitive Coupling
• Fringing fields can terminate on adjacent conductors 

as well as substrate

• Mutual capacitance between wires implies crosstalk, 
affects data dependency of power

substrate

dielectric
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Miller Capacitance
• Amount of charge moved onto mutual capacitance 

depends on switching of surrounding wires

• When adjacent wires move in opposite direction, 
capacitance is effectively doubled (Miller effect)
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Data Dependent Switched Capacitance 1
• When adjacent wires move in same direction, mutual 

capacitance is effectively eliminated

A CB OR A CB 0=effC

A CB OR A CB meff CC 4=

A CB OR A CB
meff CC 2=

A CB OR A CB
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Data Dependent Switched Capacitance 2
• When adjacent wires are static, mutual capacitance is 

effectively to ground

• Remember: it is the charging of capacitance where we 
account for energy from supply, not discharging

0 0B OR 1 1B

meff CC 2=1 0B OR 0 1B
0 1B OR 1 0B
1 1B OR 0 0B
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Wire Length Estimation Flow

• Final piece of architectural power estimation: 
incorporate interconnect power 

• Given hierarchical RTL description, estimate wire 
lengths before design actually placed and routed

• Depth-first traversal of hierarchy, where leaf nodes are 
blocks already well characterized for area and wire 
length by dedicated analysis

• Example: consider four block types

– Primitives: memory, datapath, control

– Composite block made up of primitives



R. Amirtharajah, EEC216 Winter 2008 23

Hierarchical Chip Floorplan

Datapath

Memory

Datapath

Composite

Composite

Datapath

Memory

Control

Composite
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Memory and Control Blocks

• Assume given blocks are already characterized or can 
easily be done

– Typical for foundry to provide memory hard or soft 
layout macro for synthesis flow: user given interconnect 
lengths and area

– Random control logic usually small, can be quickly 
synthesized, placed, and routed 

• Fairly straightforward to turn complexity metrics 
(number of memory cells or gate counts) into area 
estimates

– Turn into power models as discussed earlier
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Composite Blocks Wire Length

• Best approach is to estimate length based on early 
floorplan

• Alternative is to use empirical observations
– Studies have shown that “good” cell placement differs 

from random placement by constant fudge factor k (k is 
often quoted as being 3/5)

– Average wire length for random placement on a square 
of area A array is 1/3 length of a side

• Average wire length of “good” placement on square 
array:

53
AAkL ==
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Composite Blocks Area

• Area of composite block equals sum of areas of 
constituent blocks AB and area of wires Aw

• Routing area depends on total number of wires Nw, 
average wire pitch Wp, and average length L

• Using formula on preceding slide, can solve quadratic 
for length L:
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• Datapaths often laid out in linear (bit slice) pattern
– Tile N bit slices to create and N-bit datapath

– Interconnect length thus proportional to datapath length

– Use another empirical factor to relate “good” placement 
to random placement for length in x dimension

• Routing channel length LR estimated from wiring pitch 
and number of I/Os on each block

Datapath Blocks Wire Length
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• Similar approach used to estimate vertical routing in 
feedthroughs within a bit slice of width WBS:

• Total average interconnect length is L = Lx + Ly

• Approximate area as datapath width x datapath length 
for N bit slices:

• Incorporate all of these approximations plus equations 
for physical capacitance into our RTL-level power 
estimates

Datapath Blocks Area

3
2 BS

y
WkL =

DPBSDPDP LNWLWA ==
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• Empirical rule relating number of I/Os in and out of a 
module to number of gates within the module

• Np is average number of pins per gate (~2.5)
• Rent’s exponent r between 0.65 and 0.7
• Numbers can be used to characterize various design 

styles (memories, gate arrays, microprocessors)
• Extended to derive average wire lengths

Rent’s Rule

r
gpIO NNN =Ng NIO
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Low Power Architecture Outline

• Clock Gating

• Power Down Modes

• Parallelization

• Pipelining

• Bit Serial vs. Bit Parallel Datapaths 
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• Use the following example logic pipeline: two 
combinational logic blocks between registers

• Define reference dynamic power:

• Consider various architectural transformations to 
reduce power, primarily through voltage scaling and 
duty cycle

LOGIC
A

LOGIC
BD

f

Example Pipeline

fVCP DD
2

00 =
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• Use enable signal to turn off clock when not in use

• Dynamic power reduction proportional to duty cycle DC
(% time the system in use):

• Must take care in implementation: glitches on enable 
signal result in false clocking

Clock Gated Pipeline

LOGIC
A

LOGIC
BD

f
en

fVCDP DDCG
2

0=
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Clock Gated Pipeline With Power Down

DDV

LOGIC
A

LOGIC
BD

f
en

en

• Disconnect logic from power supply when clock off
• Eliminates leakage, static current for further power 

reduction
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Partitioning Into Gated Clock Domains 

• Generally gate off entire modules or functional units
• Globally Asynchronous Locally Synchronous (GALS) 

domains form natural clock gating partitions
• Synchronize on boundaries (clock gating can introduce 

skew due to logic in clock path)

CLK0

CLK1 CLK2

CLK3

CLK4

CLK5

C
LK

5
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• Only linear reduction in average power, peak power 
stays same (issue for power supply and delivery net)

• Decrease frequency to expand computing to fill time 
allows voltage reduction also: better than linear gain

Power Reduction Due to Clock Gating

( )tPG

t

Clock gating
Stretched 
Operation
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Low Power Architecture Outline
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• Bit Serial vs. Bit Parallel Datapaths 



R. Amirtharajah, EEC216 Winter 2008 38

• Although suboptimal for power reduction, clock gating 
is often used in practice
– Power electronics necessary to generate optimum 

voltage, more cost and complexity

• Tradeoff between power reduction and startup delay to 
return to operation (“light sleep vs. deep sleep”)
– Gate clocks off to individual modules, fastest to start up 

again

– Turn off clock generating PLLs, phase-lock transient 
potentially lasts several ms

– Ground power supply, must charge VDD net before 
even turning on PLL 

An Explosion of Power Down Modes 
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LOGIC
A

LOGIC
B

LOGIC
A

LOGIC
B

D

2
f

Parallelization Driven Voltage Scaling

• Parallelize computation up to N times
• Reduce clock frequency by factor N
• Reduce voltage to meet relaxed frequency constraint
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• Amount of parallelism in application may be limited
• Extra capacitance overhead of multiple datapaths

– N times higher input loading

– N-to-1 selector on output

– Lower clock frequency somewhat offset by higher clock 
load

• Consumes more area, devices, more leakage power 
especially in deep submicron

• Voltage reduction typically results in dramatic power 
gains 
– Chandrakasan92: ~3X power reduction 

Tradeoffs of Parallelization
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Low Power Architecture Outline

• Clock Gating

• Power Down Modes

• Parallelization

• Pipelining

• Bit Serial vs. Bit Parallel Datapaths 



R. Amirtharajah, EEC216 Winter 2008 43

• Pipeline at finer granularity to relax critical path 
constraint

• Clock frequency stays the same
• Reduce voltage to meet relaxed frequency constraint
• Increased clock load offsets power reduction 

somewhat
• Can’t pipeline beyond single gate granularity

LOGIC
A

LOGIC
BD

f

Pipeline Driven Voltage Scaling
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LOGIC
A

LOGIC
B

LOGIC
A

LOGIC
B

D

2
f

Parallel / Pipeline Driven Voltage Scaling

• Combine parallelism and pipelining for lowest voltage
• Reduce clock frequency by parallelism factor N
• Largest increase in area, capacitance, leakage
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Bit Serial vs. Bit Parallel Computation
• So far, we’ve talked about serial versus parallel 

implementations at the functional unit level
• Can also consider serial versus parallel 

implementations at the bit level
– Historically, datapaths have almost always operated on 

words (several bits in parallel)
– In the past, heavily area constrained designs have used 

serial techniques where one output bit is produced per 
clock cycle

– Multipliers in older CMOS processes (> 2 μm) often 
implemented serially

• Rather than area, current and future motivation for bit 
serial techniques may be leakage power
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Bit Serial and Bit Parallel Adders
• Serial Adder:

• Parallel Adder: iS

iA

iB

inC

outC

iS

iAiB

iinC , ioC ,

1+iS

1+iA1+iB

1−iS

1−iA1−iB
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Parallel Array Multiplier

• 16b Parallel multiplier: 32390 μm2, Serial multiplier: 2743 μm2

• 32b Parallel adder: 2543 μm2, Serial adder: 139 μm2
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Supply Voltage – Clock Frequency Tradeoff
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Serial vs. Parallel Adder Power
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Serial vs. Parallel Multiplier Power
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Bit Serial vs. Bit Parallel Arithmetic Power

• At low frequencies, lower leakage of smaller serial 
implementation results in less power

• Similar result for adders, but more impact since array 
multiplier is quadratically larger than serial version

• Are these frequencies interesting?
– Below 10 MHz is typical for sensor applications, 

biomedical DSP, RFID tags
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Next Topic: Low Power Circuit Design

• Logic families

• Transistor sizing for low power

• Clocking methodologies


