EEC 216 Lecture #2: Metrics and Logic Level Power Estimation

Rajeevan Amirtharajah University of California, Davis • PS1 available online tonight

Outline

- Announcements
- Aside: Environmental Impact of Electronics
- Finish Lecture 1 Topics
- Intersignal Correlations
- Glitches
- High Level Power Estimation
- Behavioral Level Power Estimation
- Architectural Level Power Estimation

Power Consumption at the System Level

- 500 MHz Pentium III with 17 in. Monitor: 150-200 W
- Server: 300 W
- Mainframe: 10-20 kW
- Author's home office: 2 CPUs, 2 monitors, laptop, 3 printers, scanner, plus misc. peripherals
 - Nameplate rating: 2.4 kW
 - Max power (incl. peripherals): 700 W
 - Typical usage: 150-170 W
 - Average over 10 days: 77 W (9% of total consumption)

From B. Hayes, "The Computer and the Dynamo", *American Scientist*, Sep-Oct 2001 R. Amirtharajah, EEC216 Winter 2008 4

Power Consumption at the National Level

- All office equipment consumes 74 TW-hours / year (about 2% US total)
- Adding telecoms increases total to 3.2 %
- Power down and sleep modes could save 23-40 TWh
- Technology has dramatically improved power cost of computing
 - ENIAC (1940s): 18,000 vacuum tubes, 174 kW, roughly 10
 W / tube
 - Today's microprocessors: 100 M transistors, 100 W, roughly 1 μW / transistor (would draw 10 GW if no change from 1940s)

From B. Hayes, "The Computer and the Dynamo", *American Scientist*, Sep-Oct 2001 R. Amirtharajah, EEC216 Winter 2008 5

Outline

- Announcements
- Aside: Environmental Impact of Electronics
- Finish Lecture 1 Topics
- Intersignal Correlations
- Glitches
- High Level Power Estimation
- Behavioral Level Power Estimation
- Architectural Level Power Estimation

Outline

- Announcements
- Aside: Environmental Impact of Electronics
- Finish Lecture 1 Topics
- Intersignal Correlations
- Glitches
- High Level Power Estimation
- Behavioral Level Power Estimation
- Architectural Level Power Estimation

Permissions to Use Conditions & Acknowledgment

- Permission is granted to copy and distribute this slide set for educational purposes only, provided that the complete bibliographic citation and following credit line is included: "Copyright 2002 J. Rabaey et al." Permission is granted to alter and distribute this material provided that the following credit line is included: "Adapted from (complete bibliographic citation). Copyright 2002 J. Rabaey et al." This material may not be copied or distributed for commercial purposes without express written permission of the copyright holders.
- Slides 9-20, 22-5 Adapted from CSE477 VLSI Digital Circuits Lecture Slides by Vijay Narayanan and Mary Jane Irwin, Penn State University

NOR Gate Transition Probabilities

Switching activity is a strong function of the input signal statistics

 $P_{0\to 1} = P_0 \times P_1 = (1 - (1 - P_A)(1 - P_B)) (1 - P_A)(1 - P_B)$

Transition Probabilities for Basic Gates

	$P_{0 \rightarrow 1} = P_{out=0} \times P_{out=1}$
NOR	(1 - (1 - P _A)(1 - P _B)) x (1 - P _A)(1 - P _B)
OR	(1 - P _A)(1 - P _B) x (1 - (1 - P _A)(1 - P _B))
NAND	$P_A P_B x (1 - P_A P_B)$
AND	$(1 - P_A P_B) \times P_A P_B$
XOR	$(1 - (P_A + P_B - 2P_A P_B)) \times (P_A + P_B - 2P_A P_B)$

For X: $P_{0 \rightarrow 1} =$

For Z: $P_{0\rightarrow 1} =$

Transition Probabilities for Basic Gates

	$P_{0 \rightarrow 1} = P_{out=0} \times P_{out=1}$
NOR	(1 - (1 - P _A)(1 - P _B)) x (1 - P _A)(1 - P _B)
OR	(1 - P _A)(1 - P _B) x (1 - (1 - P _A)(1 - P _B))
NAND	$P_A P_B x (1 - P_A P_B)$
AND	$(1 - P_A P_B) \times P_A P_B$
XOR	$(1 - (P_A + P_B - 2P_A P_B)) \times (P_A + P_B - 2P_A P_B)$

For X: $P_{0\to 1} = P_0 \times P_1 = (1-P_A) P_A = 0.25$

For Z: $P_{0\to 1} = P_0 \times P_1 = (1 - P_X P_B) P_X P_B = 3/16$

Problems With Input-to-Output Evaluation

- Signal and transition probabilities are progressively evaluated from input to output node
 - Straightforward approach determined by circuit topology
 - Does not deal with feedback (for example in sequential circuits)
 - Assumes input signal probabilities are independent

Problems With Input-to-Output Evaluation

- Signal and transition probabilities are progressively evaluated from input to output node
 - Straightforward approach determined by circuit topology
 - Does not deal with feedback (for example in sequential circuits)
 - Assumes input signal probabilities are independent

Problems With Input-to-Output Evaluation

- Signal and transition probabilities are progressively evaluated from input to output node
 - Straightforward approach determined by circuit topology
 - Does not deal with feedback (for example in sequential circuits)
 - Assumes input signal probabilities are independent

Intersignal Correlations

 Determining switching activity is complicated by the fact that signals exhibit correlation in space and time, e.g. by circuits with reconvergent fanout

Reconvergent fanout:

Intersignal Correlations

 Determining switching activity is complicated by the fact that signals exhibit correlation in space and time, e.g. by circuits with reconvergent fanout

Reconvergent fanout:

Intersignal Correlations

 Determining switching activity is complicated by the fact that signals exhibit correlation in space and time, e.g. by circuits with reconvergent fanout

Reconvergent fanout:

$$P(Z=1) = P(B=1) \times P(X=1 | B=1)$$

• Have to use conditional probabilities!

Logic Restructuring

 Logic restructuring: changing the topology of a logic network to reduce transitions

AND:
$$P_{0\to 1} = P_0 \times P_1 = (1 - P_A P_B) \times P_A P_B$$

- Chain implementation has a lower overall switching activity than the tree implementation for random inputs
- Ignores glitching effects

Two alternate implementations with inputs reordered, same function so output stats identical

Beneficial to postpone the introduction of signals with a high transition rate (signals with signal probability close to 0.5)

Input Ordering

Two alternate implementations with inputs reordered, same function so output stats identical

Beneficial to postpone the introduction of signals with a high transition rate (signals with signal probability close to 0.5)

Time Multiplexing Resources

- Time multiplexing can conserve area at the expense of increased switched capacitance
- Consider the case of parallel vs. serial data transmission: more transitions due to muxing

Outline

- Announcements
- Aside: Environmental Impact of Electronics
- Finish Lecture 1 Topics
- Intersignal Correlations
- Glitches
- High Level Power Estimation
- Behavioral Level Power Estimation
- Architectural Level Power Estimation

Glitching in Static CMOS Networks

- Gates have a nonzero propagation delay resulting in spurious transitions or glitches (dynamic hazards)
 - Glitch: node exhibits multiple transitions in a single cycle before settling to the correct logic value

Glitching in Static CMOS Networks

- Gates have a nonzero propagation delay resulting in spurious transitions or glitches (dynamic hazards)
 - Glitch: node exhibits multiple transitions in a single cycle before settling to the correct logic value

Glitching In A Ripple Carry Adder

Balanced Delay Paths to Reduce Glitching

 Glitching is due to a mismatch in the path lengths in the logic network; if all input signals of a gate change simultaneously, no glitching occurs

So equalize the lengths of timing paths through logic

Example: F₁ and F₂ have unit delay

Switching Activity in Sequential Circuits

- Estimating activity more difficult for sequential than combinational circuits
 - Due to activity of state nodes typically being unknown at beginning of estimation process
 - Compute activity assuming steady state
- Assume sequential circuits implement FSM where states follow Markov process
 - Solve for probabilities of states using state transition probabilities
- Best implemented in CAD tools

Some Notes on Tools

- Switch-level simulators (e.g. IRSIM)
 - Replace MOSFETs with ideal switch and equivalent resistance in series for driver
 - Uses capacitors as loads
 - Very fast, captures switching activity, not very accurate
- Lookup Table simulators (e.g. PowerMill, Nanosim)
 - Create lookup table for device I-V curve from Spice, rather than implement I_{DS} equations
 - Fast, more accurate than switches, sometimes fails in odd operating regimes like subthreshold
- Spice-like analog circuit simulations
 - Most accurate accuracy, most time consuming

- Beware of Garbage In-Garbage Out problems
 - Rely heavily on process modeling for device I-V curves
 - Generating I-V curve lookup tables can introduce errors
 - Inconsistent simulations: e.g., circuit works in Spice but not in LUT-based tool

• Sanity check simulation outputs

- Make sure peak currents consistent with total device width in design by estimating on resistance of every pullup/pulldown network in parallel
- Convert power number to equivalent switched capacitance and compare to hand estimate of total capacitance in design

Outline

- Announcements
- Aside: Environmental Impact of Electronics
- Finish Lecture 1 Topics
- Intersignal Correlations
- Glitches
- High Level Power Estimation
- Behavioral Level Power Estimation
- Architectural Level Power Estimation

Alternative Power Estimation Flows

- Top approach very compute-intensive
 - Difficult to determine minimum number of simulation runs, long time to simulate large designs
 - Provides greatest accuracy

R. Amirtharajah, EEC216 Winter 2008

High-Level Power Estimation

- Estimate power early in design process
 - Feedback on system partitioning, architecture, instruction set choice
 - Rough estimate enables optimization of major power consuming modules
 - Only relative accuracy required
- Final design stages use device-based power estimation, absolute accuracy required
 - Logic synthesis or custom approach generates design
 - Switch-level simulations
 - Lookup table based simulations
 - SPICE-like analog circuit simulations

Top Level Power Estimation

- System Level Power Estimation
 - Allows designer to analyze power impact of system partitioning among software, FPGAs, ASICs, etc.
 - Spreadsheet analysis using library of models for entire components
 - Models created from measurements, low-level power estimation
- Instruction Level Power Estimation
 - Run assembly instructions on target processor and measure power
 - Create database of power cost for individual instructions, pairs, maybe entire frequently used traces
 - Add in cache misses, pipeline stalls, etc.

R. Amirtharajah, EEC216 Winter 2008

Outline

- Announcements
- Aside: Environmental Impact of Electronics
- Finish Lecture 1 Topics
- Intersignal Correlations
- Glitches
- High Level Power Estimation
- Behavioral Level Power Estimation
- Architectural Level Power Estimation

Behavioral Level Power Estimation

- Start at the behavioral specification or algorithm level
 - Typically assume some architecture for execution
 - Must predict memory configuration, number of accesses, bus architecture, average wire length, number of bus transactions, control path complexity
 - Components of power include capacitance and activity
- Physical capacitance can be computed using estimated gate count, previous design experiences
- Two styles of activity prediction
 - Static: based on estimating access frequency of resources
 - Dynamic: based on profiling simulations with user supplied inputs

Static Activity Prediction

- Start with behavioral specification of function (HDL, C)
 - Static analysis of control-data flow graph to determine frequency of resource accesses f_r
 - Fast: requires only one analysis pass through program
 - Ignores data dependencies, must use approximations or profiling (dynamic activity prediction) results to incorporate these

P =

$$\sum C_r V_{DD}^2 f_r$$

 $r \in \{all \, data path, control, memory, bus \, resources\}$

- C_r determined by empirical models (for example, benchmarking previous designs)
- Low absolute accuracy but captures general trends
- Dynamic prediction slow since requires many sims

R. Amirtharajah, EEC216 Winter 2008

Outline

- Announcements
- Aside: Environmental Impact of Electronics
- Finish Lecture 1 Topics
- Intersignal Correlations
- Glitches
- High Level Power Estimation
- Behavioral Level Power Estimation
- Architectural Level Power Estimation

Architecture Level Power Estimation

- Start at register-transfer (RTL) level
 - Primitives are functional units: adders, multipliers, controllers, register files, memory arrays
 - Gate, circuit, layout level details not yet specified
 - Floorplan may not be available, must estimate interconnect and clock distribution
- Two strategies: analytical and empirical methods
 - Each technique can be subdivided further
- Goal: Relate power consumption of RTL to physical capacitance and switching activity

Analytical Method 1: Complexity-Based

- Complexity of a chip architecture can be described in terms of "gate equivalents"
 - Primitives are specified as the number of reference gates required to implement
 - Example: 256 AND gates + 256 full adders = 16 x 16 array multiplier
 - Gate-equivalents specified in database or provided by user
- Power estimated by multiplying gate equivalent by average power per gate

$$P = \sum_{i \in \{functional units\}} GE_i \left(E_{typ} + C_L^i V_{DD}^2 \right) f A_i$$

Gate Equivalent Average Power

$$P = \sum_{i \in \{functional units\}} GE_i \left(E_{typ} + C_L^i V_{DD}^2 \right) f A_i$$

- **Model Parameters:**
 - $-GE_i$: number of gate equivalents in unit i
 - E_{typ} : average energy consumed by gate
 - C_{L}^{i} : average capacitive load incl. fanout & wire A_{i} : activity (average percentage of gates switc : activity (average percentage of gates switching
- Improve accuracy by including models for different gates, circuit styles, layout techniques, special blocks

Example: SRAM Array

Memory Cell Array Power Model

$$P_{memcell} = \frac{2^k}{2} \left(c_w l_{col} + 2^n C_{cd} \right) V_{DD} V_{bl} f$$

- Model Parameters:
 - -2^k : Number of cells in a row
 - $-C_{w}$: bit line wire capacitance per unit length
 - $-l_{col}$: length of column (bit line)
 - $-C_{cd}$: wordline transistor drain capacitance
 - $-V_{bl}^{u}$: bit line voltage swing (often very small)
- Can use similar models to optimize memory partitioning

R. Amirtharajah, EEC216 Winter 2008

Tradeoffs of Complexity-Based Method

- Requires very little information to obtain estimate
 - Energy per gate based on technology parameters
 - Number of gate equivalents from library or experience
 - Activity factor supplied by user, possibly from experience
 - Interconnect length and capacitance modeled by derivative of Rent's Rule

Does not model activity very accurately

- Misses data dependence
- User must supply good estimate per functional unit to analyze architectural tradeoffs accurately

Analytical Method 2: Activity-Based

- Methods attempt to model activity more accurately than complexity methods
 - Idea is to relate power of functional unit to amount of computation performed
 - Use information theory concept of entropy as metric for computational work
- Power is proportional to:
 - Capacitance x Activity
 - Area x Entropy
- Output Entropy of Functional Unit with m outputs:

$$H_{o} = \sum_{i=1}^{2^{m}} p_{i} \log_{2} \frac{1}{p_{i}}$$

• Functional unit with n inputs, m outputs:

Area
$$\propto \begin{cases} \frac{2^n}{n} H_o & , n \to \infty \\ \frac{n}{2^n} H_o & , n \leq 10 \end{cases}$$

 Average entropy of all nodes in functional unit (where *H_i* is input entropy, similarly defined):

Entropy
$$\approx \frac{2/3}{n+m} (H_i + 2H_o)$$

- Assumes entropy decreases quadratically with logic depth

Activity-Based Power Estimate

Methodology

- 1. Run many RTL simulations to measure input and output entropies
- 2. Compute area and average node entropy
- 3. Compute average power
- No timing information so glitching power totally unaccounted for
- Implicitly assumes capacitance uniformly distributed over all circuit nodes
- Methods still topic of research, yet to demonstrate practical value

Empirical Method 1: Fixed Activity

- Relate power consumption of RTL components to measured power of existing implementations (macromodeling)
 - Best suited for library-based design implementation
- Example: Power Factor Approximation

$$P = \sum_{i \in \{functional \ units\}} k_i G_i f_i$$

- Model Parameters:
 - k_i : power factor constant
 - G_i : hardware complexity metric
 - f_i : activation frequency

Power Factor Approximation Example

- Try to estimate power for an N x N array multiplier
- Hardware complexity goes as square of input word length N
- Clock frequency f_{mult} specified by algorithm and performance constraints
- Power factor k_{mult} determined from past designs reported in literature (15 fW/bit²-Hz for 1.2 μm CMOS at 5 V supply)

$$\boldsymbol{P} = k_{mult} N^2 f_{mult}$$

- Ex: 32 x 32 multiply at 233 MHz consumes 3.58 mW
- Does not account for data dependence since power factor is assumed constant

R. Amirtharajah, EEC216 Winter 2008

Empirical Method 2: Activity Sensitive

- Attempt to incorporate data activity statistics into power estimates
 - Count number of bit transitions in input vector stream and multiply by experimentally determined constant fudge factor
 - Develop activity model empirically through RTL simulations for typical input streams
 - Construct multiple models depending on function, for example a datapath activity model and a control path activity model
- Classic example: Dual-Bit Type (DBT) model

Dual-Bit Type Model

- Observation: fixed-point, 2's-complement data streams often characterized by two distinct activity regions
 - Data bits (LSBs) exhibit activity similar to uniformly distributed white noise
 - Sign bits (MSBs) depend on sign transition probability, which is in turn related to temporal correlation ρ
- Different empirically determined coefficients characterize switched (effective) capacitance and complexity in data (C_U and N_U, respectively) and sign (C_s and N_s) regions:

$$P = \left(N_U C_U + N_S C_S\right) V_{DD}^2 f$$

DBT Data from Landman TCAD 96

Fig. 3. Bit transition activity for data streams with varying temporal correlation.

R. Amirtharajah, EEC216 Winter 2008

Dual-Bit Type Model Breakpoints

 Can derive expressions for different bit region breakpoints based on data stream statistics such as mean (μ), variance (σ²), and correlation (ρ):

$$\rho = \operatorname{cov}(X_{t-1}, X_t) / \sigma^2$$

$$BP1 = \log_2(|\mu| + 3\sigma)$$

$$BP0 = \log_2 \sigma + \Delta BP0$$

$$\Delta BP0 = \log_2 \left[\sqrt{1 - \rho^2} + \frac{|\rho|}{8} \right]$$

Control Path Activity Model

- Observation: control path words often lack definite structure (unlike datapath)
 - Words formed by concatenating independent fields or boolean flags, condition codes
 - Use transition probabilities and activity factors for complex gates like we analyzed earlier
 - Combine with complexity measurements as well
- Different empirically determined coefficients characterize switched (effective) capacitance (C₁ for inputs, C₀ for outputs) and complexity:

$$P = \left(N_I \alpha_I C_I N_M + N_O \alpha_O C_O N_M\right) V_{DD}^2 f$$

 $- N_{l}, N_{O}, N_{M}$ are complexity of input, output, and state transition logic R. Amirtharajah, EEC216 Winter 2008 53

Summary: Architectural Power Estimation

- Bridge gap between physical power estimation and conceptual level power estimation
- Start at register-transfer (RTL) level
 - Primitives are functional units but gate, circuit, layout, floorplan details not yet specified
- Analytical methods aim to estimate power from physical primitives
 - Estimate capacitance by gate count, area
 - Determine activity from user input, entropy
- Empirical methods based on measurements of previous designs or ensemble of simulations
 - Model datapath and control activity separately

Next Topic: Interconnect Power

 Look at estimating interconnect power and driving long wires