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Announcements

• PS1 available online tonight
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Power Consumption at the System Level

• 500 MHz Pentium III with 17 in. Monitor: 150-200 W

• Server: 300 W

• Mainframe: 10-20 kW

• Author’s home office: 2 CPUs, 2 monitors, laptop, 3 
printers, scanner, plus misc. peripherals

– Nameplate rating: 2.4 kW

– Max power (incl. peripherals): 700 W

– Typical usage: 150-170 W

– Average over 10 days: 77 W (9% of total consumption)
From B. Hayes, “The Computer and the Dynamo”, American Scientist, Sep-Oct  2001
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Power Consumption at the National Level

• All office equipment consumes 74 TW-hours / year 
(about 2% US total) 

• Adding telecoms increases total to 3.2 %

• Power down and sleep modes could save 23-40 TWh

• Technology has dramatically improved power cost of 
computing

– ENIAC (1940s): 18,000 vacuum tubes, 174 kW, roughly 10 
W / tube

– Today’s microprocessors: 100 M transistors, 100 W, 
roughly 1 μW / transistor (would draw 10 GW if no change 
from 1940s)

From B. Hayes, “The Computer and the Dynamo”, American Scientist, Sep-Oct  2001
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Permissions to Use Conditions & Acknowledgment

• Permission is granted to copy and distribute this slide 
set for educational purposes only, provided that the 
complete bibliographic citation and following credit line 
is included: "Copyright 2002 J. Rabaey et al." 
Permission is granted to alter and distribute this 
material provided that the following credit line is 
included: "Adapted from (complete bibliographic 
citation). Copyright 2002 J. Rabaey et al."
This material may not be copied or distributed for 
commercial purposes without express written 
permission of the copyright holders. 

• Slides 9-20, 22-5 Adapted from CSE477 VLSI Digital 
Circuits Lecture Slides by Vijay Narayanan and Mary 
Jane Irwin, Penn State University
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NOR Gate Transition Probabilities

CL

A

B

BA

P0→1 = P0  x  P1 = (1-(1-PA)(1-PB)) (1-PA)(1-PB)

PA

PB

0

1 0 1

• Switching activity is a strong function of the input 
signal statistics

– PA, PB are the probabilities that inputs A, B are 1
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Transition Probabilities for Basic Gates

(1 - PA)(1 - PB) x (1 - (1 - PA)(1 - PB))OR

(1 - (PA + PB- 2PAPB)) x (PA + PB- 2PAPB)XOR
(1 - PAPB) x PAPBAND
PAPB x (1 - PAPB)NAND

(1 - (1 - PA)(1 - PB)) x (1 - PA)(1 - PB)NOR
P0→1 = Pout=0  x  Pout=1

B

A
Z

X0.5

0.5
For X:  P0→1 =

For Z:  P0→1 =For Z:  P0→1 =

For X:  P0→1 =
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Transition Probabilities for Basic Gates

(1 - PA)(1 - PB) x (1 - (1 - PA)(1 - PB))OR

(1 - (PA + PB- 2PAPB)) x (PA + PB- 2PAPB)XOR
(1 - PAPB) x PAPBAND
PAPB x (1 - PAPB)NAND

(1 - (1 - PA)(1 - PB)) x (1 - PA)(1 - PB)NOR
P0→1 = Pout=0  x  Pout=1

B

A
Z

X0.5

0.5
For X:  P0→1 =

For Z:  P0→1 =For Z:  P0→1 = P0  x  P1 = (1-PXPB) PXPB

For X:  P0→1 = P0  x  P1 = (1-PA) PA = 0.25

= 3/16
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Problems With Input-to-Output Evaluation

For Z:  P0→1 =

For X:  P0→1 =

For Z:  P0→1 =

For X:  P0→1 =

0.5 A
Z

X

• Signal and transition probabilities are progressively 
evaluated from input to output node

– Straightforward approach determined by circuit 
topology

– Does not deal with feedback (for example in sequential 
circuits)

– Assumes input signal probabilities are independent
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Problems With Input-to-Output Evaluation

For Z:  P0→1 =

For X:  P0→1 =

For Z:  P0→1 = P0  x  P1 = (1-PXPA) PXPA

For X:  P0→1 = P0  x  P1 = (1-PA) PA = 0.25

= 0 !

0.5 A
Z

X

• Signal and transition probabilities are progressively 
evaluated from input to output node

– Straightforward approach determined by circuit 
topology

– Does not deal with feedback (for example in sequential 
circuits)

– Assumes input signal probabilities are independent

0=•= AAZ
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Intersignal Correlations
• Determining switching activity is complicated by the 

fact that signals exhibit correlation in space and 
time, e.g. by circuits with reconvergent fanout

B

A

Z

X

Reconvergent fanout:

0.5

0.5
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Intersignal Correlations
• Determining switching activity is complicated by the 

fact that signals exhibit correlation in space and 
time, e.g. by circuits with reconvergent fanout

B

A

Z

X

Reconvergent fanout:

0.5

0.5

P(X=1) = (1-0.5)(1-0.5)x(1-(1-0.5)(1-0.5)) = 3/16

P(Z=1) = (1- 3/16 x 0.5) x (3/16 x 0.5) = 0.085 ?
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Intersignal Correlations
• Determining switching activity is complicated by the 

fact that signals exhibit correlation in space and 
time, e.g. by circuits with reconvergent fanout

B

A

Z

X

P(Z=1) = P(B=1) x P(X=1 | B=1)

Reconvergent fanout:

0.5

0.5

• Have to use conditional probabilities!

P(X=1|B=1) = 1

P(Z=1) = P(X=1|B=1) x P(B=1) = 0.5 !
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Logic Restructuring

• Chain implementation has a lower overall switching 
activity than the tree implementation for random 
inputs

• Ignores glitching effects

• Logic restructuring: changing the topology of a 
logic network to reduce transitions

A
B

C
D F

A
B

C
D Z

F
W

X

Y0.5

0.5

(1-0.25)*0.25 = 3/16

0.5
0.5

0.5

0.5
0.5

0.5

7/64
15/256

3/16

3/16

15/256

AND:  P0→1 = P0  x  P1 = (1 - PAPB) x PAPB
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Input Ordering

A
B

C

X

F

0.5

0.2
0.1

B
C

A

X

F

0.2

0.1
0.5

Beneficial to postpone the introduction of signals 
with a high transition rate (signals with signal 
probability close to 0.5)

Two alternate implementations with inputs 
reordered, same function so output stats identical
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Input Ordering

Beneficial to postpone the introduction of signals 
with a high transition rate (signals with signal 
probability close to 0.5)

A
B

C

X

F

0.5

0.2
0.1

B
C

A

X

F

0.2

0.1
0.5

(1-0.5x0.2)x(0.5x0.2)=0.09 (1-0.2x0.1)x(0.2x0.1)=0.0196

Two alternate implementations with inputs 
reordered, same function so output stats identical
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Time Multiplexing Resources
• Time multiplexing can conserve area at the expense of 

increased switched capacitance

• Consider the case of parallel vs. serial data 
transmission: more transitions due to muxing

LC

LC

A

B
LC

A

BB

A
1≈Ap

0≈Bp

010 ≈→P

010 ≈→P

5.010 ≈→P



R. Amirtharajah, EEC216 Winter 2008 22

Outline

• Announcements

• Aside: Environmental Impact of Electronics

• Finish Lecture 1 Topics

• Intersignal Correlations

• Glitches

• High Level Power Estimation

• Behavioral Level Power Estimation

• Architectural Level Power Estimation



R. Amirtharajah, EEC216 Winter 2008 23

Glitching in Static CMOS Networks

ABC

X

Z

101 000

Unit Delay

A
B

X

ZC

• Gates have a nonzero propagation delay resulting in 
spurious transitions or glitches (dynamic hazards)
– Glitch:  node exhibits multiple transitions in a single cycle before 

settling to the correct logic value
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Glitching In A Ripple Carry Adder
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Balanced Delay Paths to Reduce Glitching

So equalize the lengths of timing paths through logic

Example: F1 and F2 have unit delay

F1

F2

F3

0
0

0

0

1
2

F1

F2

F3

0
0

0
0

1

1

• Glitching is due to a mismatch in the path lengths in 
the logic network;  if all input signals of a gate change 
simultaneously, no glitching occurs
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Switching Activity in Sequential Circuits
• Estimating activity more difficult for sequential than 

combinational circuits
– Due to activity of state nodes typically being unknown at 

beginning of estimation process
– Compute activity assuming steady state

• Assume sequential circuits implement FSM where 
states follow Markov process
– Solve for probabilities of states using state transition 

probabilities
• Best implemented in CAD tools



R. Amirtharajah, EEC216 Winter 2008 28

Some Notes on Tools
• Switch-level simulators (e.g. IRSIM)

– Replace MOSFETs with ideal switch and equivalent 
resistance in series for driver

– Uses capacitors as loads
– Very fast, captures switching activity, not very accurate

• Lookup Table simulators (e.g. PowerMill, Nanosim)
– Create lookup table for device I-V curve from Spice, 

rather than implement IDS equations
– Fast, more accurate than switches, sometimes fails in 

odd operating regimes like subthreshold
• Spice-like analog circuit simulations

– Most accurate accuracy, most time consuming
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Tool Caveats
• Beware of Garbage In-Garbage Out problems

– Rely heavily on process modeling for device I-V curves
– Generating I-V curve lookup tables can introduce errors
– Inconsistent simulations: e.g., circuit works in Spice but 

not in LUT-based tool
• Sanity check simulation outputs

– Make sure peak currents consistent with total device 
width in design by estimating on resistance of every 
pullup/pulldown network in parallel

– Convert power number to equivalent switched 
capacitance and compare to hand estimate of total 
capacitance in design
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Alternative Power Estimation Flows

AverageCircuit
Simulator

Large #
Input 

Patterns

Large #
Current 

Waveforms

PowerAverage
Probabilities

&
Activities

Analysis
Tools

• Top approach very compute-intensive
– Difficult to determine minimum number of simulation 

runs, long time to simulate large designs
– Provides greatest accuracy
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High-Level Power Estimation
• Estimate power early in design process

– Feedback on system partitioning, architecture, 
instruction set choice

– Rough estimate enables optimization of major power 
consuming modules

– Only relative accuracy required
• Final design stages use device-based power 

estimation, absolute accuracy required
– Logic synthesis or custom approach generates design
– Switch-level simulations
– Lookup table based simulations
– SPICE-like analog circuit simulations
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Top Level Power Estimation
• System Level Power Estimation

– Allows designer to analyze power impact of system 
partitioning among software, FPGAs, ASICs, etc.

– Spreadsheet analysis using library of models for entire 
components

– Models created from measurements, low-level power 
estimation

• Instruction Level Power Estimation
– Run assembly instructions on target processor and 

measure power
– Create database of power cost for individual 

instructions, pairs, maybe entire frequently used traces
– Add in cache misses, pipeline stalls, etc.
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Behavioral Level Power Estimation
• Start at the behavioral specification or algorithm level

– Typically assume some architecture for execution
– Must predict memory configuration, number of 

accesses, bus architecture, average wire length, 
number of bus transactions, control path complexity

– Components of power include capacitance and activity
• Physical capacitance can be computed using 

estimated gate count, previous design experiences
• Two styles of activity prediction

– Static: based on estimating access frequency of 
resources

– Dynamic: based on profiling simulations with user 
supplied inputs
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• determined by empirical models (for example, 
benchmarking previous designs)

• Low absolute accuracy but captures general trends
• Dynamic prediction slow since requires many sims

Static Activity Prediction

{ }
∑

∈

=
resourcesbusmemorycontroldatapathallr

rDDr fVCP
,,,

2

rC

rf

• Start with behavioral specification of function (HDL, C)
– Static analysis of control-data flow graph to determine 

frequency of resource accesses
– Fast: requires only one analysis pass through program
– Ignores data dependencies, must use approximations or 

profiling (dynamic activity prediction) results to 
incorporate these
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Architecture Level Power Estimation
• Start at register-transfer (RTL) level

– Primitives are functional units: adders, multipliers, 
controllers, register files, memory arrays

– Gate, circuit, layout level details not yet specified
– Floorplan may not be available, must estimate 

interconnect and clock distribution 
• Two strategies: analytical and empirical methods

– Each technique can be subdivided further
• Goal: Relate power consumption of RTL to physical 

capacitance and switching activity 
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Analytical Method 1: Complexity-Based
• Complexity of a chip architecture can be described in 

terms of “gate equivalents”
– Primitives are specified as the number of reference 

gates required to implement
– Example: 256 AND gates + 256 full adders = 16 x 16 

array multiplier
– Gate-equivalents specified in database or provided by 

user
• Power estimated by multiplying gate equivalent by 

average power per gate

( )
{ }
∑

∈

+=
unitsfunctionali

iDD
i
Ltypi AfVCEGEP 2



R. Amirtharajah, EEC216 Winter 2008 40

• Model Parameters:
– : number of gate equivalents in unit i
– : average energy consumed by gate 
– : average capacitive load incl. fanout & wire
– : activity (average percentage of gates switching

• Improve accuracy by including models for different 
gates, circuit styles, layout techniques, special blocks

Gate Equivalent Average Power

( )
{ }
∑

∈

+=
unitsfunctionali

iDD
i
Ltypi AfVCEGEP 2

iGE
typE
i
LC

iA
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Example: SRAM Array
0

0A

1

12 −n
10 12 −k

1A

pA

0D 1D mD

Memory

Array

npk −=
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Memory Cell Array Power Model

• Model Parameters:
– : Number of cells in a row
– : bit line wire capacitance per unit length
– : length of column (bit line)
– : wordline transistor drain capacitance
– : bit line voltage swing (often very small)

• Can use similar models to optimize memory 
partitioning

( ) fVVClcP blDDcd
n

colw

k

memcell 2
2
2

+=

k2
wc

coll
cdC
blV
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Tradeoffs of Complexity-Based Method
• Requires very little information to obtain estimate

– Energy per gate based on technology parameters
– Number of gate equivalents from library or experience
– Activity factor supplied by user, possibly from 

experience
– Interconnect length and capacitance modeled by 

derivative of Rent’s Rule
• Does not model activity very accurately

– Misses data dependence
– User must supply good estimate per functional unit to 

analyze architectural tradeoffs accurately
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Analytical Method 2: Activity-Based
• Methods attempt to model activity more accurately 

than complexity methods
– Idea is to relate power of functional unit to amount of 

computation performed
– Use information theory concept of entropy as metric for 

computational work
• Power is proportional to:

– Capacitance x Activity
– Area x Entropy

• Output Entropy of Functional Unit with m outputs:

∑
=

=
m

i i
io p

pH
2

1
2

1log
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Area and Entropy Estimates
• Functional unit with n inputs, m outputs:

• Average entropy of all nodes in functional unit (where 
Hi is input entropy, similarly defined):

– Assumes entropy decreases quadratically with logic depth

( )oi HH
mn

Entropy 232
+

+
≈

⎪⎩

⎪
⎨
⎧

≤

∞→∝
10,2

,2

nH

nH
nArea

o
n

o

n
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Activity-Based Power Estimate
• Methodology

1. Run many RTL simulations to measure input and 
output entropies

2. Compute area and average node entropy
3. Compute average power 

• No timing information so glitching power totally 
unaccounted for

• Implicitly assumes capacitance uniformly distributed 
over all circuit nodes

• Methods still topic of research, yet to demonstrate 
practical value
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Empirical Method 1: Fixed Activity
• Relate power consumption of RTL components to 

measured power of existing implementations 
(macromodeling)
– Best suited for library-based design implementation

• Example: Power Factor Approximation

{ }
∑

∈

=
unitsfunctionali

iii fGkP

• Model Parameters:
– : power factor constant
– : hardware complexity metric
– : activation frequency

ik
iG
if
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Power Factor Approximation Example
• Try to estimate power for an N x N array multiplier
• Hardware complexity goes as square of input word 

length N
• Clock frequency fmult specified by algorithm and 

performance constraints
• Power factor kmult determined from past designs 

reported in literature (15 fW/bit2-Hz for 1.2 μm CMOS at 
5 V supply)

• Ex: 32 x 32 multiply at 233 MHz consumes 3.58 mW
• Does not account for data dependence since power 

factor is assumed constant 

multmult fNkP 2=
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Empirical Method 2: Activity Sensitive
• Attempt to incorporate data activity statistics into 

power estimates
– Count number of bit transitions in input vector stream 

and multiply by experimentally determined constant 
fudge factor

– Develop activity model empirically through RTL 
simulations for typical input streams

– Construct multiple models depending on function, for 
example a datapath activity model and a control path 
activity model

• Classic example: Dual-Bit Type (DBT) model
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Dual-Bit Type Model
• Observation: fixed-point, 2’s-complement data streams 

often characterized by two distinct activity regions
– Data bits (LSBs) exhibit activity similar to uniformly 

distributed white noise
– Sign bits (MSBs) depend on sign transition probability, 

which is in turn related to temporal correlation ρ
• Different empirically determined coefficients 

characterize switched (effective) capacitance and 
complexity in data (CU and NU, respectively) and sign 
(CS and NS) regions:

( ) fVCNCNP DDSSUU
2+=
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DBT Data from Landman TCAD 96

multmult fNkP 2=
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Dual-Bit Type Model Breakpoints
• Can derive expressions for different bit region 

breakpoints based on data stream statistics such as 
mean (μ), variance (σ2), and correlation (ρ):

2
1 ),cov( σρ tt XX −=

( )σμ 3log1 2 +=BP

0log0 2 BPBP Δ+= σ

⎥
⎦

⎤
⎢
⎣

⎡
+−=Δ

8
1log0 2

2

ρ
ρBP
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Control Path Activity Model
• Observation: control path words often lack definite 

structure (unlike datapath)
– Words formed by concatenating independent fields or 

boolean flags, condition codes
– Use transition probabilities and activity factors for 

complex gates like we analyzed earlier
– Combine with complexity measurements as well

• Different empirically determined coefficients 
characterize switched (effective) capacitance (CI for 
inputs, CO for outputs) and complexity:

– NI,NO,NM are complexity of input, output, and state transition logic

( ) fVNCNNCNP DDMOOOMIII
2αα +=
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Summary: Architectural Power Estimation
• Bridge gap between physical power estimation and 

conceptual level power estimation
• Start at register-transfer (RTL) level

– Primitives are functional units but gate, circuit, layout, 
floorplan details not yet specified

• Analytical methods aim to estimate power from 
physical primitives
– Estimate capacitance by gate count, area 
– Determine activity from user input, entropy

• Empirical methods based on measurements of 
previous designs or ensemble of simulations
– Model datapath and control activity separately
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Next Topic: Interconnect Power

• Look at estimating interconnect power and driving long 
wires


