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Outline

• Announcements

• Limits of Low Power Design

• Last Words: Thermodynamics of Computation
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Meindl’s Hierarchy of Limits
• Fundamental limits

– Set by laws of thermodynamics, quantum mechanics, 
and electromagnetism

– Applicable to any fabrication process
• Material limits

– Determined by semiconductor, interconnect, and 
dielectric materials

• Device Limits
– Set by device structure, doping profile

• Circuit Limits
– Set by choice of circuit style

• System Limits
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Theoretical and Practical Limits
• Theoretical limits

– Limits can be derived for each category from first 
principles

– Can lead to unrealistic lower bounds
• Practical limits

– Cost is determining factor for practicality
– Requiring exotic materials may preclude reaching 

theoretical limit
– Incorporating design margins to enhance yield and 

reliability will pressure designs away from hard limits
• No one really knows above fundamental limits

– Single electron device, atomic size, in vacuum
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CMOS Inverter Gain Example
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CMOS Inverter Gain in Weak Inversion
• Gain at transfer curve midpoint:

• To satisfy gain much greater than 1:

• At room temperature, minimum supply near 0.1 V
– At lower temperatures, can use lower supply voltages
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CMOS Inverter Transfer Curves

• VT’s = 160 mV, Swanson and Meindl 1972
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Resistor Thermal Noise
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• k is Boltzmann’s constant, BW is node bandwidth
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Thermal Noise Limit

• Noise power available at node N:

• Signal power must be larger for reliable bit 
storage at node N:

• Switching energy transfer in node N transition:

• Greater energy implies lower BER:
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Thermal Noise Limit Example
• Assume γ = 4, T = 300 K:

• Energy required to move a single electron through 
a potential difference of 100 mV
– Applicable in single electron transistor limit, minimum 

supply voltage likely to be 0.1 V
– Current energies about 106 - 107 times as large
– Translates into very good BER on circuit nodes (at least 

with respect to thermal noise)

201066.1 −×≥sE
104.0≥ eV

Joules



R. Amirtharajah, EEC216 Winter 2008 11

Heisenberg Uncertainty Principle Limit
• Physical measurement associated with a 

switching transition over time Δt obeys 
Heisenberg uncertainty principle:

– h is Planck’s constant
• Equivalent power transfer during a switching 

transition of a single electron wave packet:

• Both limits refer to rate of energy transfer, not 
necessarily of energy dissipation
– Adiabatic techniques can reduce dissipation

thE Δ≥Δ

( )2thP Δ≥
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Power Transfer vs. Transition Interval

• Meindl 95
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Material Limits
• Semiconductor properties determine key material 

limits
– Carrier mobility μ
– Carrier saturation velocity vs

– Self-ionizing (breakdown) electric field Ec

– Thermal conductivity K
• Compare different bulk materials (Si, GaAs, SiGe, 

carbon nanotubes, etc.)
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Material Electrostatic Limit
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• Consider cube of undoped silicon in bulk
– Limit on maximum energy stored in electric field across 

material set by self-ionization voltage
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Material Thermal Limit

• Meindl 95

• Consider isolated hemispherical device with radius 
ri = vstd / 2 attached to ideal heat sink at T = T0

• From Fourier’s law of heat conduction:

ds TtKvP Δ= π
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Various MOSFET Structures

• Meindl 95
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Device Energy Limit
• Minimum energy limit suggested by minimum 

channel length Lm for MOSFET

• C0 is unit area gate capacitance, V0 is minimum 
power supply voltage

• FETs using spacer gate fabrication techniques 
have been demonstrated below 10 nm
– Other novel structures under development

• Delay determined by channel length and velocity 
saturated carrier mobility
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Conclusions

• Hierarchy of limits set by a variety of 
considerations
– Fundamental limits form loose lower bound on any type 

of physical implementation
• Thermodynamics of computation

– Can analyze computation in a thermodynamic (energy, 
entropy) context

– Bit erasure requires work and energy dissipation
– Reversible thermodynamic process provides ultimate 

energy efficient computation
– Implications for quantum computing
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EEC 216 Course Objectives

• To develop an understanding of power dissipation 
in modern digital integrated circuits, including the 
power implications of state-of-the-art architectural 
and circuit techniques 

• To learn architectural and circuit design 
techniques to decrease power consumption at a 
fixed performance or trade power for performance

• To develop an understanding of issues related to 
power delivery and heat removal in electronic 
systems, including basic power electronics design 
and thermal system analysis
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