EEC 216 Lecture #14: Temperature Measurement Circuits

Rajeevan Amirtharajah University of California, Davis

Outline

• Announcements

• Review: Heat Transfer, Thermal Circuits, Thermal Design Issues

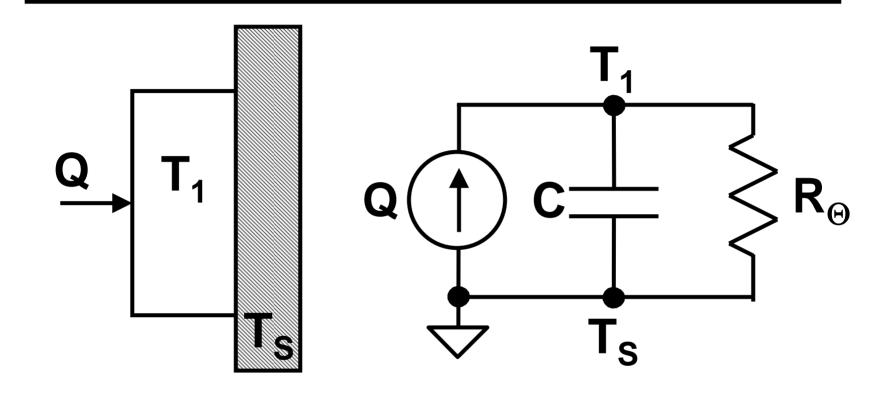
Review: Heat Transfer Mechanisms

Conduction

- Transfer medium is stationary
- Heat transfers through vibratory motion of atoms, molecules
- Ex: heat sink, thermoelectric generators

Convection

- Transfer occurs through mass movement fluid flow (liquid or gas)
- <u>Natural</u>: buoyancy created by temperature gradients causes fluid movement
- Forced: mass flow created by pumps or fans
- Ex: most computers use forced convection air cooling


Review: Thermal Resistance

 Rate Q₁₂ at which heat energy is transferred from body at temperature T₁ to temperature T₂ is linear proportional to temperature difference:

$$Q_{12} = \frac{T_1 - T_2}{R_{\Theta}}$$

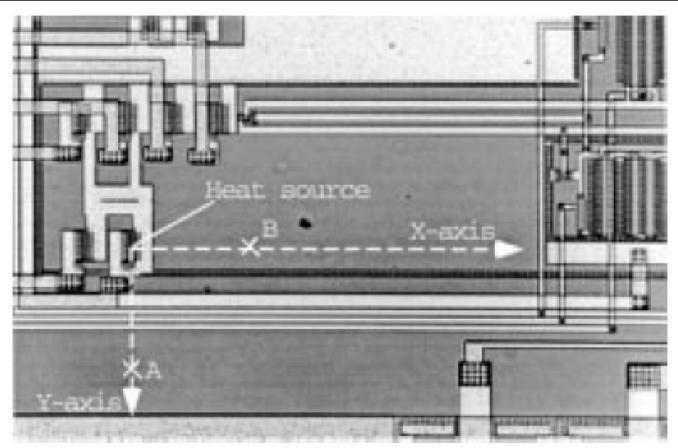
- Define a <u>thermal resistance</u> R_® between bodies
- Analogous to Ohm's Law: Q₁₂ corresponds to current *I*; T₁, T₂ corresponds to voltage V₁, V₂; R_Θ corresponds to resistance *R*

Review: Thermal Circuit Example

 Mass at temperature T₁ (thermal capacitance), being supplied heat Q, in contact with sink at temperature T_s

• Final (steady-state) temperature: $T_1 = R_{\Theta}Q + T_s$

R. Amirtharajah, EEC216 Winter 2008

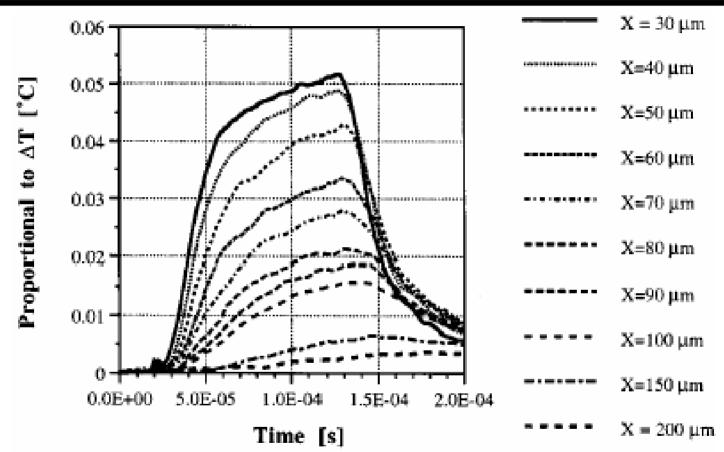

Laser Thermoreflectance Measurement

- <u>Thermoreflectance</u>: variation of the reflection coefficient of a material with temperature
- Using laser beam as light source and sensing reflected light with a photodiode, variation of diode current can be related to temperature change in illuminated area:

$$\Delta T = \psi^{-1} \frac{\Delta I}{I}$$

- Exact value of ψ depends on material (1.35 x 10⁻⁴ K⁻¹ for pure Si)
- Fast surface thermometer (dc to 10 MHz) with 1 μm spatial resolution large dynamic range (ΔT=10⁻³ to 10² K)

Heat Transfer On-Die Experiment

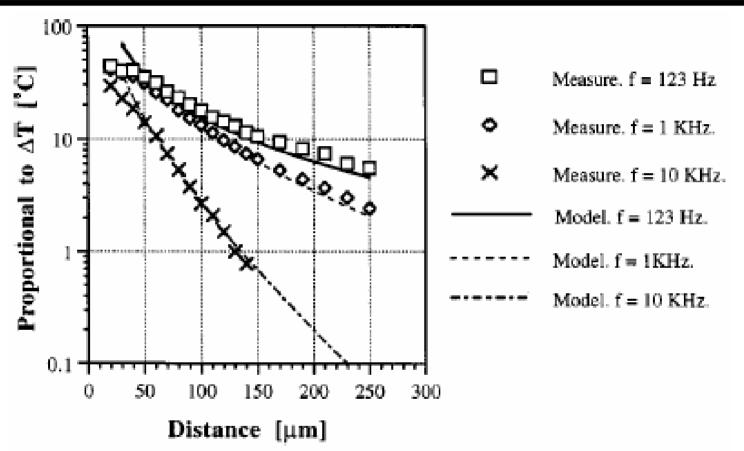


- Heat source integrated on chip
- Area with no metal, constant ψ since homogeneous thickness of passivation and oxide layers

R. Amirtharajah, EEC216 Winter 2008

Altet, JSSC 2001

Thermoreflectance Experiment Results

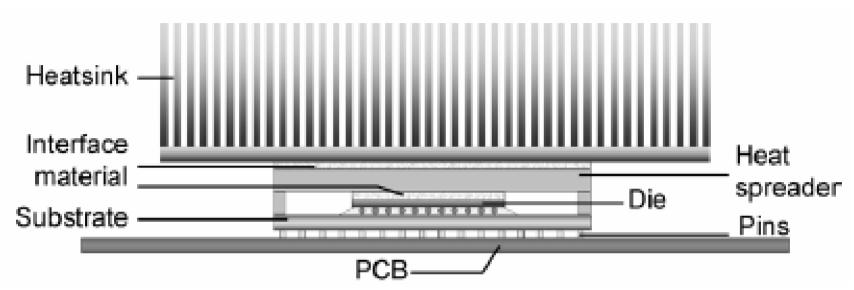


- Heat source activated at 23 mW for 100 μs
- ΔT plotted along x-axis defined above
- Temperature wave diffuses as if along RC ladder

R. Amirtharajah, EEC216 Winter 2008

Altet, JSSC 2001

Theory Agreement with Experiment Results



- Temperature wave amplitude as function of distance, for different heat source frequencies
- Calculated using diffusion equation (RC network limit)

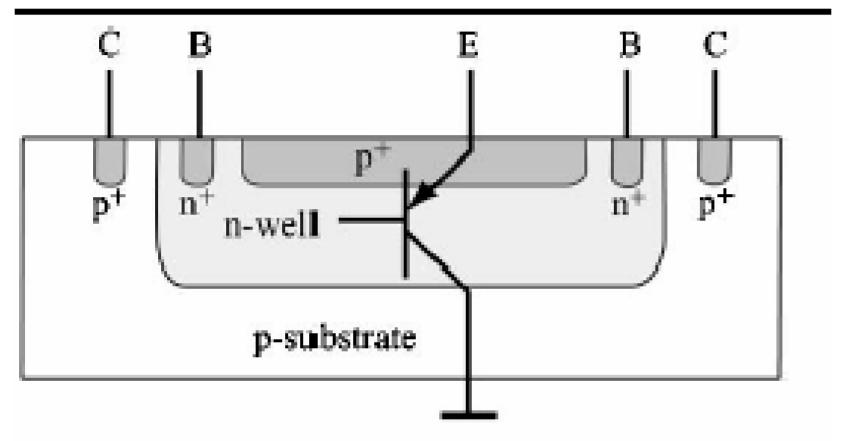
R. Amirtharajah, EEC216 Winter 2008

Altet, JSSC 2001 10

Review: Typical Microprocessor Package

- Heat spreader expands thermal interface between die and heat sink plate (die back side)
- Thermal conduction through flip-chip bumps and package solder balls into PCB (another heat sink) on die front side
- Two paths with thermal resistances in parallel, back side of die path more efficient

R. Amirtharajah, EEC216 Winter 2008


Gurrum, 2004 11

Principles of Temperature Measurement

- Bipolar devices can be used for temperature sensing in CMOS technology
 - Lateral BJT: current flow parallel to substrate
 - Substrate BJT: current flow into substrate
 - Substrate devices have more ideal behavior, less sensitive to mechanical stress
- In typical n-well CMOS process, form substrate pnp transistor by p⁺ source/drain diffusion in n-well
 - Collector formed by substrate
- Main disadvantages: substrate usually grounded, low current gain (around 10)
 - OK for temperature sensing applications

R. Amirtharajah, EEC216 Winter 2008

Substrate PNP Transistor

 Disadvantages can be relieved by BiCMOS process with explicit bipolar devices

R. Amirtharajah, EEC216 Winter 2008

Pertijs, 2004 13

Temperature Measurement Approach

- Use BJT base-emitter voltage (V_{BE}) as temperature measurement
- Transistor biased in forward-active has exponential dependence of collector current I_c on V_{BE}:

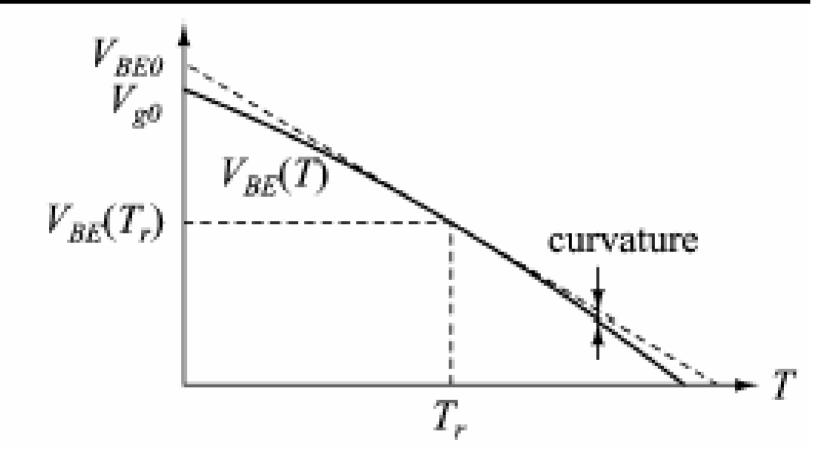
$$I_{C}(T) = I_{S}(T) \exp\left(\frac{qV_{BE}}{kT}\right)$$

 k is Boltzmann's constant, q the electron charge, and I_s the transistor saturation current

I_S Temperature Dependence

$$I_C(T) = A_E C T^{\eta} \exp\left(\frac{q(V_{BE} - V_{g0})}{kT}\right)$$

- A_E: emitter area
- C and η : process-dependent constants
- V_{g0} : bandgap voltage extrapolated to 0 K

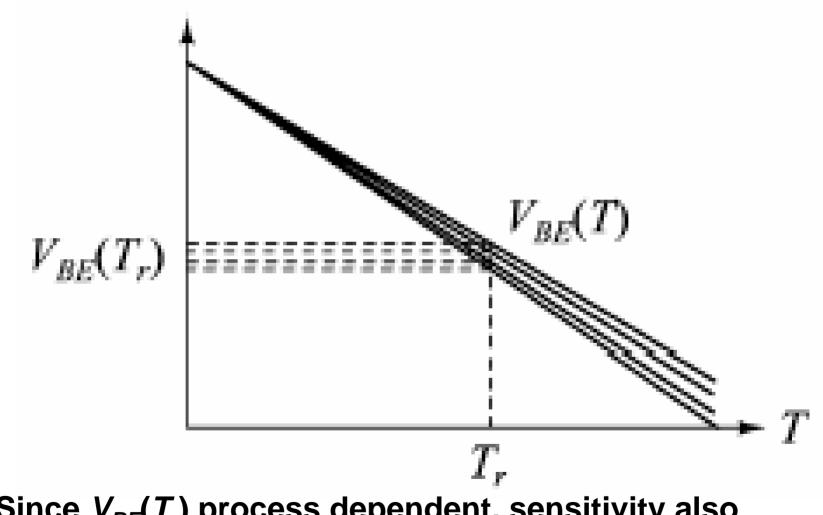

Base-Emitter Voltage vs. Collector Current

$$\begin{split} V_{\rm BE}(T) &= V_{g0} \left(1 - \frac{T}{T_r} \right) + \frac{T}{T_r} V_{\rm BE}(T_r) \\ &- \eta \frac{kT}{q} \ln \left(\frac{T}{T_r} \right) + \frac{kT}{q} \ln \left(\frac{I_C(T)}{I_C(T_r)} \right) \end{split}$$

• T_r and $V_{BE}(T_r)$ are a reference temperature and the base-emitter voltage at that temperature:

$$V_{\rm BE}(T_r) = V_{g0} + \frac{kT_r}{q} \ln\left(\frac{I_C(T_r)}{A_E C T_r^{\eta}}\right)$$

Temperature Dependence of *V***_{BE}**



- Almost linear dependence with sensitivity about -2 mV/K
- Curvature nonlinearity can be compensated (see bandgap reference circuits)

R. Amirtharajah, EEC216 Winter 2008

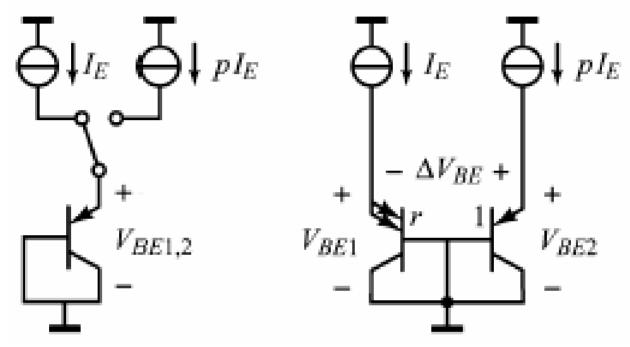
Pertijs, 2004 17

Sensitivity Variation Due to Process

• Since $V_{BE}(T_r)$ process dependent, sensitivity also process dependent

R. Amirtharajah, EEC216 Winter 2008

Pertijs, 2004 18

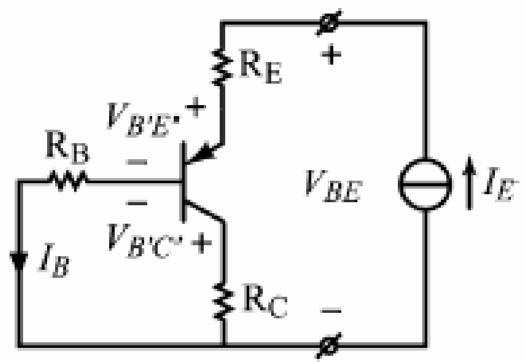

ΔV_{BE} Temperature Measurement

- Eliminate process dependence by using differential measurement
- Measure ΔV_{BE} between base-emitter voltages of a transistor operated at two current densities I_{C1} and I_{C2} :

$$\Delta V_{BE} = V_{BE1} - V_{BE2} = \frac{kT}{q} \ln \left(\frac{I_{C2}}{I_{C1}}\right)$$

• For constant collector current ratio, ΔV_{BE} is PTAT

ΔV_{BE} Measurement Circuits


- Single diode-connected substrate pnp with switched current sources with ratio p
- Two diode-connected substrate pnp's with current ratio *p* and emitter area ratio *r*

Measurement Nonidealities

- Proper matching required to ensure accuracy
 - E.g., ratio of emitter areas set by parallel combination of identical unit transistors
- Typical value of *pr* ratio is 10
 - Results in sensitivity of ΔV_{BE} around 200 μ V/K
 - Small sensitivity requires offset-cancellation in readout circuitry, A/D converter
- Assuming good matching, accuracy then limited by pnp transistor nonidealities
 - Ex: Series resistance, current-gain variation, high-level injection, Early effect (base width modulation)
 - Look at series resistance example

R. Amirtharajah, EEC216 Winter 2008

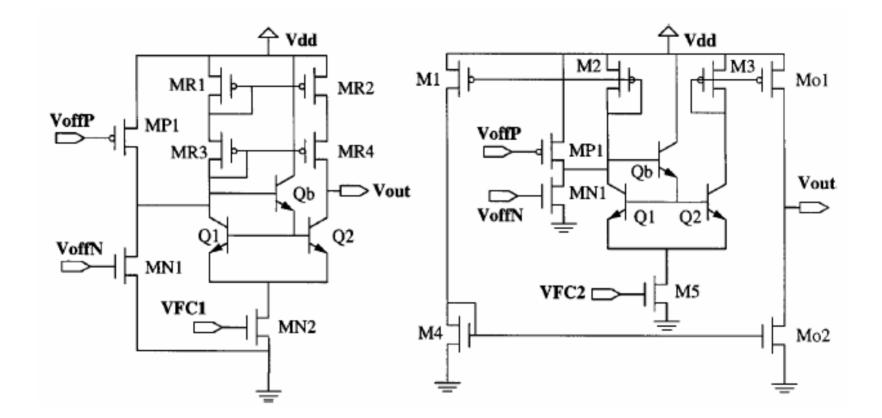
Substrate PNP With Parasitic Resistances

- Voltage drop across base and emitter resistances is added to V_{BE} measured externally
- Results in an offset to PTAT temperature dependence of V_{BE}

ΔV_{BE} With Series Resistance

$$\Delta V_{BE} = (I_{B1} - I_{B2})R_S + \frac{kT}{q} \ln\left(\frac{I_{C2}}{I_{C1}}\right)$$

- Series resistance $R_s = R_B + R_E(\beta_F + 1)$, where β_F is the transistor current gain in forward active regime
- For typical values, this results in a temperature offset of about 0.64 °C
- Offset can be eliminated by measuring V_{BE} at <u>three</u> transistor bias currents

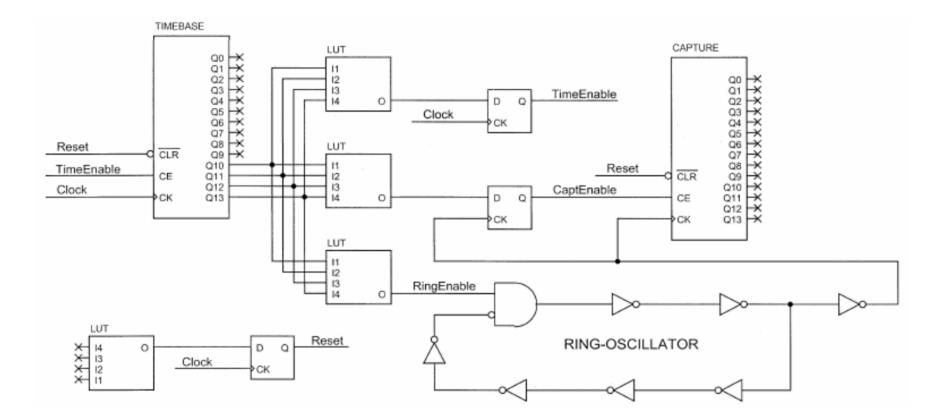

ΔV_{BE} With Three Bias Currents

$$\Delta V_{BE12} = (I_{B1} - I_{B2})R_{S} + \frac{kT}{q} \ln\left(\frac{I_{C2}}{I_{C1}}\right)$$

$$\Delta V_{BE32} = (I_{B3} - I_{B2})R_{S} + \frac{kT}{q} \ln\left(\frac{I_{C3}}{I_{C2}}\right)$$

- Two equations in two unknowns can be solved for R_s and T
- Must ensure matching among three biases

BiCMOS Differential Temperature Sensor

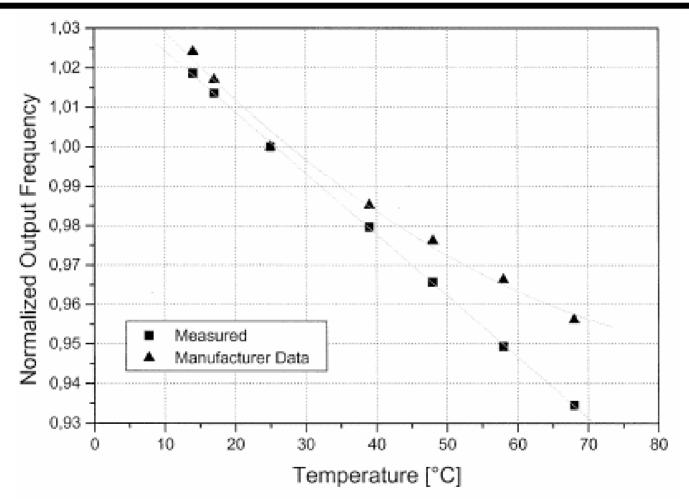

Two examples use explicit NPN devices in BiCMOS process

• Better current gain and freedom of collector bias

R. Amirtharajah, EEC216 Winter 2008

Alltet, JSSC 2001 25

Digital Temperature Measurement Circuit



• Temperature affects ring oscillator frequency and final counter value when enabled for fixed duration

Implemented on FPGA to find hot spots

R. Amirtharajah, EEC216 Winter 2008

Frequency vs. Temperature Dependence

• Frequency varies slowly with temperature, must ensure counter difference is detectable

R. Amirtharajah, EEC216 Winter 2008

Lopez-Buedo, 2002 ₂₇

Conclusions

- Temperature measurement important for system power management
 - Monitor local heating to control clock gating, power supply voltage scaling
 - Helps reliability as well as power reduction
- Analog circuits rely on temperature dependence of bipolar base-emitter voltages at constant current
 - Highly accurate measurements even with poor bipolar performance (e.g., substrate pnp transistors in CMOS)
 - Use many analog compensation techniques to improve accuracy, eliminate transistor nonidealities
- Digital circuits also possible but limited in accuracy