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Design Issues
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Review: Heat Transfer Mechanisms

e Conduction
— Transfer medium Is stationary

— Heat transfers through vibratory motion of atoms,
molecules

— EX: heat sink, thermoelectric generators

e Convection

— Transfer occurs through mass movement — fluid flow
(liquid or gas)

— Natural: buoyancy created by temperature gradients
causes fluid movement

— Forced: mass flow created by pumps or fans

— EX: most computers use forced convection air cooling
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Review: Thermal Resistance

« Rate Q,, at which heat energy is transferred
from body at temperature T, to temperature T,
IS linear proportional to temperature difference:

_ Tl _Tz
Qe ="

» Define a thermal resistance Rgbetween bodies

 Analogous to Ohm’s Law: Q,, corresponds to
current|; T,, T, corresponds to voltage V,, V,;
Re corresponds to resistance R
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Review: Thermal Circuit Example

Q—» Lt Q C_— Re

T T.

 Mass at temperature T, (thermal capacitance),
being supplied heat Q, in contact with sink at
temperature Tq

* Final (steady-state) temperature: T, = R;Q + Tg
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| aser Thermoreflectance Measurement

Thermoreflectance: variation of the reflection
coefficient of a material with temperature

Using laser beam as light source and sensing
reflected light with a photodiode, variation of diode
current can be related to temperature change in
illuminated area:

L Al

ATWI

Exact value of y depends on material (1.35 x 104 K-1
for pure Si)

Fast surface thermometer (dc to 10 MHz) with 1 pum

spatial resolution large dynamic range (AT=1073to
102 K)
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Heat Transfer On-Die Experiment
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e Heat source integrated on chip
e Area with no metal, constant y since homogeneous
thickness of passivation and oxide layers
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Thermoreflectance Experiment Results
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e Heat source activated at 23 mW for 100 us
o AT plotted along x-axis defined above
« Temperature wave diffuses as if along RC ladder
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Theory Agreement with Experiment Results
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« Temperature wave amplitude as function of distance, for
different heat source frequencies

e Calculated using diffusion equation (RC network limit)
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Review: Typical Microprocessor Package
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material Epreader
Substrate - — Pins

PEE:

 Heat spreader expands thermal interface between die
and heat sink plate (die back side)

 Thermal conduction through flip-chip bumps and
package solder balls into PCB (another heat sink) on die
front side

 Two paths with thermal resistances in parallel, back side

of die path more efficient
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Principles of Temperature Measurement

e Bipolar devices can be used for temperature
sensing in CMOS technology

— Lateral BJT: current flow parallel to substrate
— Substrate BJT: current flow into substrate

— Substrate devices have more ideal behavior, less
sensitive to mechanical stress

e In typical n-well CMOS process, form substrate pnp
transistor by p* source/drain diffusion in n-well

— Collector formed by substrate

 Main disadvantages: substrate usually grounded,
low current gain (around 10)

— OK for temperature sensing applications
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Substrate PNP Transistor
C B E B

e Disadvantages can be relieved by BICMOS process with
explicit bipolar devices
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Temperature Measurement Approach

 Use BJT base-emitter voltage (Vgg) as temperature
measurement

 Transistor biased in forward-active has exponential
dependence of collector current |- on Vg

V
1(1)= 14 Jexp| Ve

 kis Boltzmann’s constant, d the electron charge,
and I the transistor saturation current
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|l Temperature Dependence

1.(T)=A.CT " exp

* Ac: emitter area
« C and n: process-dependent

( q(VBE _VgO )\

. KT

constants

* Vo bandgap voltage extrapolated to 0 K
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Base-Emitter Voltage vs. Collector Current

C e | T T
Vpe(l') = Vo (1 — ;—) + Thu (1)

« T, and Vg(T,) are areference temperature and the
base-emitter voltage at that temperature:

rl, [~(T.)
I'-|g|:_|_fT,.ﬁ_| = 1-'},[] I In ( cl : )

q ApCT/?
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Temperature Dependence of V¢

i
-
i'. HET

Vs

 Almost linear dependence with sensitivity about -2 mV/K

e Curvature nonlinearity can be compensated (see
bandgap reference circuits)
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Sensitivity Variation Due to Process

gl 1) IR ., -

I,

« Since Vgze(T,) process dependent, sensitivity also
process dependent
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AVge Temperature Measurement

 Eliminate process dependence by using differential
measurement

 Measure AV, between base-emitter voltages of a
transistor operated at two current densities |, and

PO

SR
AVige =Vge, = Ve, :k_TIn IC_2

g \|c31/

* For constant collector current ratio, AVge Is PTAT
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AVge Measurement Circuits

 Single diode-connected substrate pnp with
switched current sources with ratio p

« Two diode-connected substrate pnp’s with current
ratio p and emitter arearatio r
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Measurement Nonidealities

« Proper matching required to ensure accuracy

— E.g., ratio of emitter areas set by parallel combination of
iIdentical unit transistors

 Typical value of pr ratio is 10
— Results in sensitivity of AVge around 200 pV/K

— Small sensitivity requires offset-cancellation in readout
circuitry, A/D converter

« Assuming good matching, accuracy then limited by
pnp transistor nonidealities

— EX: Series resistance, current-gain variation, high-level
Injection, Early effect (base width modulation)

— Look at series resistance example
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Substrate PNP With Parasitic Resistances

 Voltage drop across base and emitter resistances
Is added to V;z measured externally

Results in an offset to PTAT temperature
dependence of Vg,
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AVge With Series Resistance

4 \
AVye = (Ig, — 155 )Re + 1 In| tez
0 \|c1/

« Series resistance Rc=Rz+Rc(B:+1), where B¢ Is the
transistor current gain in forward active regime

 For typical values, this results in a temperature
offset of about 0.64 °C

« Offset can be eliminated by measuring Vg at three
transistor bias currents
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AVge With Three Bias Currents

kT (1.,
A\/BE12 :(IBl_ IBZ)RS | In %
g \ 'C1 /
KT . (1.,
A\/BESZ :(IBB_ IBZ)RS | In —=2
g \ICZ/

« Two equations in two unknowns can be solved
for Rgand T

« Must ensure matching among three biases
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BICMOS Differential Temperature Sensor

T Vdd T Vad
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« Two examples use explicit NPNdevices in BICMOS process

e Better current gain and freedom of collector bias
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Digital Temperature Measurement Circuit
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« Temperature affects ring oscillator frequency and final
counter value when enabled for fixed duration

* Implemented on FPGA to find hot spots
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Frequency vs. Temperature Dependence

Mormalized Output Frequency
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* Frequency varies slowly with temperature, must ensure

counter difference is detectable
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Conclusions

« Temperature measurement important for system
power management

— Monitor local heating to control clock gating, power
supply voltage scaling

— Helps reliability as well as power reduction

 Analog circuits rely on temperature dependence of
bipolar base-emitter voltages at constant current

— Highly accurate measurements even with poor bipolar
performance (e.g., substrate pnp transistors in CMOS)

— Use many analog compensation techniques to improve
accuracy, eliminate transistor nonidealities

e Digital circuits also possible but limited in accuracy
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