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Outline

• Announcements

• Review: Heat Transfer, Thermal Circuits, Thermal 
Design Issues
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Review: Heat Transfer Mechanisms
• Conduction

– Transfer medium is stationary
– Heat transfers through vibratory motion of atoms, 

molecules
– Ex: heat sink, thermoelectric generators

• Convection
– Transfer occurs through mass movement – fluid flow 

(liquid or gas) 
– Natural: buoyancy created by temperature gradients 

causes fluid movement
– Forced: mass flow created by pumps or fans
– Ex: most computers use forced convection air cooling
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Review: Thermal Resistance 

• Rate Q12 at which heat energy is transferred 
from body at temperature T1 to temperature T2
is linear proportional to temperature difference:

• Define a thermal resistance RΘ between bodies
• Analogous to Ohm’s Law:  Q12 corresponds to 

current I;  T1, T2 corresponds to voltage V1, V2 ;
RΘ corresponds to resistance R
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Review: Thermal Circuit Example 

Q

Q T1

TS

RΘCQ

TS

T1

• Mass at temperature T1 (thermal capacitance), 
being supplied heat Q, in contact with sink at 
temperature TS

• Final (steady-state) temperature: T1 = RΘQ + TS
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Laser Thermoreflectance Measurement

• Thermoreflectance: variation of the reflection 
coefficient of a material with temperature

• Using laser beam as light source and sensing 
reflected light with a photodiode, variation of diode 
current can be related to temperature change in 
illuminated area:

• Exact value of ψ depends on material (1.35 x 10-4 K-1

for pure Si)
• Fast surface thermometer (dc to 10 MHz) with 1 μm 

spatial resolution large dynamic range (ΔT=10-3 to 
102 K)
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Heat Transfer On-Die Experiment

• Heat source integrated on chip
• Area with no metal, constant ψ since homogeneous 

thickness of passivation and oxide layers
Altet, JSSC 2001
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Thermoreflectance Experiment Results

• Heat source activated at 23 mW for 100 μs
• ΔT plotted along x-axis defined above
• Temperature wave diffuses as if along RC ladder

Altet, JSSC 2001
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Theory Agreement with Experiment Results

• Temperature wave amplitude as function of distance, for 
different heat source frequencies

• Calculated using diffusion equation (RC network limit)
Altet, JSSC 2001
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Review: Typical Microprocessor Package

• Heat spreader expands thermal interface between die 
and heat sink plate (die back side)

• Thermal conduction through flip-chip bumps and 
package solder balls into PCB (another heat sink) on die 
front side

• Two paths with thermal resistances in parallel, back side 
of die path more efficient

Gurrum, 2004
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Principles of Temperature Measurement

• Bipolar devices can be used for temperature 
sensing in CMOS technology
– Lateral BJT: current flow parallel to substrate
– Substrate BJT: current flow into substrate
– Substrate devices have more ideal behavior, less 

sensitive to mechanical stress
• In typical n-well CMOS process, form substrate pnp

transistor by p+ source/drain diffusion in n-well
– Collector formed by substrate

• Main disadvantages: substrate usually grounded,  
low current gain (around 10)
– OK for temperature sensing applications
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Substrate PNP Transistor

• Disadvantages can be relieved by BiCMOS process with 
explicit bipolar devices

Pertijs, 2004
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Temperature Measurement Approach 

• Use BJT base-emitter voltage (VBE) as temperature 
measurement

• Transistor biased in forward-active has exponential 
dependence of collector current IC on VBE:

• k is Boltzmann’s constant, q the electron charge, 
and IS the transistor saturation current
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IS Temperature Dependence

• AE: emitter area
• C and η: process-dependent constants
• Vg0: bandgap voltage extrapolated to 0 K
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Base-Emitter Voltage vs. Collector Current

• Tr and VBE(Tr) are a reference temperature and the 
base-emitter voltage at that temperature:
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Temperature Dependence of VBE

• Almost linear dependence with sensitivity about -2 mV/K
• Curvature nonlinearity can be compensated (see 

bandgap reference circuits)
Pertijs, 2004
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Sensitivity Variation Due to Process

• Since VBE(Tr) process dependent, sensitivity also 
process dependent

Pertijs, 2004
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ΔVBE Temperature Measurement 

• Eliminate process dependence by using differential 
measurement

• Measure ΔVBE between base-emitter voltages of a 
transistor operated at two current densities IC1 and 
IC2 :

• For constant collector current ratio, ΔVBE is PTAT
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ΔVBE Measurement Circuits

• Single diode-connected substrate pnp with 
switched current sources with ratio p

• Two diode-connected substrate pnp’s with current 
ratio p and emitter area ratio r

Pertijs, 2004



R. Amirtharajah, EEC216 Winter 2008 21

Measurement Nonidealities

• Proper matching required to ensure accuracy
– E.g., ratio of emitter areas set by parallel combination of 

identical unit transistors
• Typical value of pr ratio is 10

– Results in sensitivity of ΔVBE around 200 μV/K
– Small sensitivity requires offset-cancellation in readout 

circuitry, A/D converter
• Assuming good matching, accuracy then limited by 

pnp transistor nonidealities
– Ex: Series resistance, current-gain variation, high-level 

injection, Early effect (base width modulation)
– Look at series resistance example
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Substrate PNP With Parasitic Resistances

• Voltage drop across base and emitter resistances 
is added to VBE measured externally

• Results in an offset to PTAT temperature 
dependence of VBE

Pertijs, 2004
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ΔVBE With Series Resistance

• Series resistance RS=RB+RE(βF+1), where βF is the 
transistor current gain in forward active regime

• For typical values, this results in a temperature 
offset of about 0.64 °C

• Offset can be eliminated by measuring VBE at three
transistor bias currents
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ΔVBE With Three Bias Currents

• Two equations in two unknowns can be solved 
for RS and T

• Must ensure matching among three biases
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BiCMOS Differential Temperature Sensor

• Two examples use explicit NPN devices in BiCMOS process

• Better current gain and freedom of collector bias
Alltet, JSSC 2001
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Digital Temperature Measurement Circuit

• Temperature affects ring oscillator frequency and final 
counter value when enabled for fixed duration

• Implemented on FPGA to find hot spots
Lopez-Buedo, 2002
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Frequency vs. Temperature Dependence

• Frequency varies slowly with temperature, must ensure 
counter difference is detectable

Lopez-Buedo, 2002
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Conclusions

• Temperature measurement important for system 
power management
– Monitor local heating to control clock gating, power 

supply voltage scaling
– Helps reliability as well as power reduction 

• Analog circuits rely on temperature dependence of 
bipolar base-emitter voltages at constant current
– Highly accurate measurements even with poor bipolar 

performance (e.g., substrate pnp transistors in CMOS)
– Use many analog compensation techniques to improve 

accuracy, eliminate transistor nonidealities
• Digital circuits also possible but limited in accuracy
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