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Announcements

• Final Project presentations tomorrow

• Eight minutes per presentation (4 slides max 
including title slide)

• Two-page final project papers due tomorrow at 5 
PM by email (electronic versions only) 

– PDF greatly preferred
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Heat Transfer Mechanisms I
• Conduction

– Transfer medium is stationary
– Heat transfers through vibratory motion of atoms, 

molecules
– Ex: heat sink, thermoelectric generators

• Convection
– Transfer occurs through mass movement – fluid flow 

(liquid or gas) 
– Natural: buoyancy created by temperature gradients 

causes fluid movement
– Forced: mass flow created by pumps or fans
– Ex: most computers use forced convection air cooling
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Heat Transfer Mechanisms II
• Radiation

– Heat energy is converted into electromagnetic radiation
– Spectrum of radiation mostly lies in infrared region
– Can create an ideal radiator using a hole in a heated 

cavity and measure the spectrum of emitted light
• Spectral radiancy S(λ): define such that S(λ)dλ gives 

radiated power per unit area for differential wavelength 
interval λ to λ+dλ

• Conduction and convection most prevalent outside of 
space applications
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Circuit Models for Heat Transfer 
• Analyze heat transfer using same approaches 

(KCL, KVL, eigenvalues) which work for electrical 
circuits

• Applicable when conduction and convection 
dominate radiation
– Radiation is too complex to represent using linear 

circuit analogs
– Design will be conservative since radiation removes 

more heat, unless devices are enclosed
• Static and dynamic models may apply
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Thermal Resistance 

• Rate Q12 at which heat energy is transferred 
from body at temperature T1 to temperature T2
is linear proportional to temperature difference:

• Define a thermal resistance RΘ between bodies
• Analogous to Ohm’s Law
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Thermal Variable Circuit Analogs 

• Q12 corresponds to current i
• T1, T2 corresponds to voltage V1, V2
• RΘ corresponds to resistance R
• Note that the electrical analog of thermal power 

is i, not vi
– If heat leaves a system only through interface 

characterized by RΘ, then Pdiss also corresponds 
to i

– Q12 represents rate at which electrical energy is 
converted to heat

• Thermal management problem is to design RΘ
to constrain ΔT = T1 – T2
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Thermal Variable Units 

• Q has units of power, Watts (W)
• T has units of temperature, degrees Celsius 

(°C)
• Thermal resistance RΘ has units (°C/W)
• Thermal resistances can be combined in series 

and parallel equivalent resistances, just like 
electrical resistance 
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Thermal Resistivity

• Thermal conduction and electrical conduction are 
intimately related
– Good electrical conductors are often good thermal 

conductors (Wiedeman-Franz Law)
• Bulk material property analog of electrical 

resistivity is thermal resistivity ρΘ

– Units are °C-cm/W
• Longitudinal thermal resistance is
• l is material length
• A is cross-sectional area

A
lR Θ

Θ =
ρ
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Thermal Resistivity of Electrical Materials
MATERIAL RESISTIVITY (°C-cm/W)

Still Air 3050
Mylar 635
Silicone grease 520
Mica 150

Alumina (Al2O3) 6.0
Silicon 1.2
Beryllia (BeO) 1.0

Filled silicone grease 130

Aluminum Nitride (AlN) 0.64
Aluminum 0.48
Copper 0.25 • Kassakian, 1991
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Practical Thermal Interfaces
• Mechanical interfaces deviate from ideal flatness

– Surface imperfections (pits, scratches, roughness)
– Run-out: deviation from flatness over a unit lateral 

distance (Ex:  0.008 cm/cm for standard aluminum 
extrusion for heat sinks)

• Thermal grease or “goop” (silicone impregnated 
with metal oxides) used to fill imperfections 
– Misconception: more is better
– Silicone grease very viscous and doesn’t squeeze 

out, in which case a thin high thermal resistance 
layer might be left

– Use grease sparingly (put on, wipe off excess)
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Convective Thermal Resistance 

• Model is somewhat more complicated than 
conduction, but can be described by similar 
relationship

• ν is fluid velocity
• h(T,ν) is film coefficient of heat transfer

– Depends on temperature and fluid velocity
• A is cross-sectional area of interface

)(),( 2112 TTAThQ −= υ
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Film Coefficient of Heat Transfer 
• Over usual temperature range of interest (-40 °C 

to +100 °C), h is fairly constant
• Significant changes in h occur when flow 

regime changes from laminar to turbulent
– Many fan systems use turbulent flow to improve 

convective heat transfer, usually noisy
– Within each flow regime, h is relatively 

independent of velocity
• Within these limits, product hA may be modeled 

as constant
– Equivalent thermal resistance is 

• Similar rules apply hA
R 1

=Θ



R. Amirtharajah, EEC216 Winter 2008 15

Transient Thermal Models
• Temperature transients important during power-

on, duty cycling

– Heat capacity of electronic components creates a 
lowpass filter

– Enables instantaneous power dissipation to be 
higher than predicted by static thermal models

• Heat capacity: energy required to raise the 
temperature of a mass by a specific amount

– SI units: J/°C-kg (Joules per degree Celsius/kg)

– Ex: water at room temperature, 4.2 x 103 J/°C-kg 
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Thermal Capacitance
• Masses in a thermal system constitute thermal 

energy storage devices

– Thermal systems containing mass exhibit dynamic 
behavior

– Analog of electrical capacitance is thermal 
capacitance

– Temperature indicates energy stored in mass

• Simple form: dynamic model for mass being 
supplied with heat energy is an RC circuit

• Mass continuum, model as lumped RC network
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Thermal Circuit Example 

Q

Q T1

TS

RΘCQ

TS

T1

• Mass at temperature T1, being supplied heat Q, in 
contact with sink at temperature TS

• Final (steady-state) temperature: T1 = RΘQ + TS
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Lumped Element Thermal Model 

• Divide large mass into smaller segments (lumps) 
at approximately constant temperature

• Number of lumps depends on bandwidth of Q

• Capture spatial and temporal variations

Q T4

TS

T3 T2 T1
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Lumped Element Circuit Model 

• RC ladder network models thermal dynamics of 
mass continuum

• Step response of any node temperature (voltage) 
is exponential

RΘ

CQ

TS

T4

C

T3 RΘ

C

RΘT2

…
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2003 ITRS Projected Thermal Requirements 

• Gurrum, 2004
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Pure Conduction Limit Model

• Chip embedded in infinite medium, thermal conductivity kmedium

Gurrum, 2004



R. Amirtharajah, EEC216 Winter 2008 22

Pure Conduction Limit Results

• System thermal resistance drops as medium resistance drops
Gurrum, 2004
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Pure Convection Limit Results

• Chip immersed in flowing fluid
Gurrum, 2004
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Microprocessor Package Thermal Circuit

• Heat flows out of top and bottom side of die, with 
two possible thermal resistances

• Edges of die typically too small an area for effective 
heat removal

• Packaging affects thermal resistance of each path
Gurrum, 2004
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Typical Microprocessor Package

• Heat spreader expands thermal interface between die 
and heat sink plate

• Fin spacing on heat sink optimized for air/liquid flow rate

• Thermal conduction through flip-chip bumps and 
package solder balls into PCB (another heat sink)

Gurrum, 2004
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Heat Sink Air Flow

• Critical issue is to ensure fluid flow between heat 
sink fins is turbulent instead of laminar
– Laminar flow implies fluid strata which don’t mix, 

resulting in low value of heat transfer coefficient h
– Turbulent flow implies a lot of mixing, high value of h
– Alternative view: boundary layer next to fin surface 

prevents efficient heat transfer to moving fluid stream
• Relationship among fin spacing, flow rate, and onset 

of turbulence is given by Reynolds Number
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Reynolds Number

• ν = fluid velocity
• w = channel width (fin spacing for heat sink)
• ρ = fluid density
• η = fluid coefficient of viscosity

η
ρνw

=Re

• High Reynolds number is characteristic of turbulent 
flow, low number is typical of laminar flow

• Wider channels enter turbulent flow at lower velocity
– Possibly more efficient than having many fins, small w
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Chip Solder Bump I/Os Thermal Resistance

• Large I/O count, better heat sinking to PCB (numbers quite large)
Gurrum, 2004
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Differential Temperature Sensor

• Voltage difference proportional to T1-T2 and T1+T2 
Alltet, JSSC 2001
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Conclusions
• Model thermal systems using electrical circuit 

analogs
– Thermal resistance can account for conductive and 

convective heat flow
– Thermal capacitance accounts for thermal energy 

storage of any mass
• Heat removal an increasingly  challenging problem 

as technology scales and speed increases
– Variety of mechanisms: heat spreader, heat sink, I/O 

connections from die to package and package to board
– SOI makes problem worse since die substrate thermal 

conductivity poor
• Simulations indicate ITRS targets can be met, but 

requires innovation in PCB thermal interface
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