Outline

• Announcements
• Review: Energy Scavenging
• Wrap-Up: Energy Scavenging Example 3
• Variable-Voltage Design
• Basics of DC/DC Conversion
• Low Resolution Controller Design
Announcements
Final Projects

1. A. Chang, **Sliding Mode Control DC/DC Conversion** (Guilar ‘07)
2. X. Chen, **Power Estimation of LDPC** (Chen ’04)
3. Y. Cheuk, **CPL-Based Dual Supply Adder** (Chatterjee ’04)
4. J. Chieh, **Dual Edge-Triggered Level-Converting Flip-Flops** (Mahmoodi ‘04)
5. C. Chiem, **Gate-Leakage Reduction** (Guindi ’03)
6. S. Hsu, **Subthreshold SRAM** (Verma ’08)
7. N. Irizarry, **Energy-Recovery Adder** (Tzartzanis ’95)
8. X. Jing, **Sliding Mode Control DC/DC Conversion** (Guilar ‘07)
9. S. Le, **Asynchronous Adiabatic Logic** (Arsalan ’07)
10. H. Liao, **Capacitively-Coupled Wire Drivers** (Ho ’07)
11. F. Maker, **Mobile Phone Power Characterization** (Viredaz ‘03)
12. H. Pham, **Maximum Power Point Tracking** (Guilar ‘06)
13. Y. Wang, **Biological Computing Power Estimation** ()
14. Y. Zhang, **Dual Edge-Triggered Flip-Flops** (Llopis ‘96)
Energy Density of Nuclear Materials

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>ENERGY DENSITY (MILLIWATT-HOURS/MILLIGRAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium-ion in a chemical battery</td>
<td>0.3</td>
</tr>
<tr>
<td>Methanol in a fuel cell*</td>
<td>3</td>
</tr>
<tr>
<td>Tritium in a nuclear battery**</td>
<td>850</td>
</tr>
<tr>
<td>Polonium-210 in a nuclear battery**</td>
<td>57 000</td>
</tr>
</tbody>
</table>

*Assuming 50 percent efficiency
**Assuming 8 percent efficiency and 4 years of operation

- How do you exploit this high energy density?

- Fission, fusion not practical

Lal, Spectrum 04
Nuclear Microbatteries

• **Radioisotope thermoelectric generators (RTGs)**
 – Traditional approach from NASA space probes
 – Rely on Seebeck effect: heating one end of metal bar causes electrons with high thermal energy to flow to other end, inducing a voltage
 – Washing machine-sized generator
 – Uses Plutonium-238 (high energy radiation generates enormous heat)
 – Doesn’t scale down well

• **Photodiode based current source**
 – Radioactive material (Ni-63) emits beta particles (e\(^-\)) which induce current in \(pn\) junction
 – Produces 3 nW, still too low for most applications
Cantilever Beam Mechanical Generator

- **Radioactive piezoelectric generator**
- **Converts energy from beta particles to mechanical energy first**
 - Higher efficiency than direct conversion through diodes
 - Compatible with MEMS technology
- **Consists of 4 square mm radioactive material below free end of cantilever Si beam**
 - Piezoelectric material bonded to beam
 - Radiated beta particles (electrons) embed in Si beam, charging it negatively and causing it to bend
 - As beam deforms, piezo material deforms and generates a voltage
 - Beam touches radioactive material and shorts charge, causing cantilever to oscillate and inducing AC voltage
Radioactive Piezoelectric Generator 1

- Energy stored in deformed silicon beam (like stretching a spring)

Lal, Spectrum 04

R. Amirtharajah, EEC216 Winter 2008
Radioactive Piezoelectric Generator 2

- Peak power pulses of 100 mW for one cantilever
- Integrate several for other applications

R. Amirtharajah, EEC216 Winter 2008

Lal, Spectrum 04
Sources of Ambient Energy

• **Solar Power**
 – Photovoltaics convert light to electricity
 – Very well established (calculators, watches, etc.)

• **Electromagnetic Fields**
 – Usually inductively coupled, sometimes uses antenna
 – Used in smart cards, pacemaker charging, RFID tags

• **Thermal Gradients**
 – Woven into clothing, power off skin-air temperature gradient (ISSCC 03)

• **Fluid Flow**

• **Mechanical Vibration**
Energy Scavenging Output Power Examples

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Transducer</th>
<th>Output Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking</td>
<td>Piezoelectric</td>
<td>5 W [15]</td>
</tr>
<tr>
<td>(Direct Conversion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>Thermoelectric</td>
<td>30 mW [36]</td>
</tr>
<tr>
<td>Solar</td>
<td>Photovoltaic Cell</td>
<td>20 mW [35]</td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>Coil</td>
<td>1.5 mW [13]</td>
</tr>
<tr>
<td>Walking</td>
<td>Discrete</td>
<td>400 μW</td>
</tr>
<tr>
<td>(Vibration)</td>
<td>Moving Coil</td>
<td></td>
</tr>
<tr>
<td>High Frequency Vibration</td>
<td>MEMS</td>
<td>100 μW [11]</td>
</tr>
<tr>
<td></td>
<td>Moving Coil</td>
<td></td>
</tr>
<tr>
<td>Small Fluid Flow</td>
<td>Turbine</td>
<td>50 μW</td>
</tr>
<tr>
<td>RF Field</td>
<td>Antenna</td>
<td>5 μW [12]</td>
</tr>
</tbody>
</table>

From Amirtharajah, PhD 99
Vibration Based Energy Harvesting

• **Embedded sensor applications**
 – Monitoring of vibrating machinery: turbines, internal combustion engines, machine tools
 – Monitoring of vehicles: ships, submarines, aircraft
 – Monitoring of structures: load-bearing walls, staircases, buildings, bridges
 – Applications demand long lifetime in environments without continuous exposure to incident light

• **Wearable devices**
 – Wrist worn biomedical monitor
 – Computers embedded in clothing, smart textiles
Outline

• Announcements
• Review: Energy Scavenging
• Wrap-Up: Energy Scavenging Example 3
• Variable-Voltage Design
• Basics of DC/DC Conversion
• Low Resolution Controller Design
Variable Supply Voltage Intuition

• Seen in past lectures that voltage scaling is key to reducing power consumption

• If circuits can operate faster than required throughput, two alternatives for power reduction:
 – Run at full speed until computation is complete and then gate clock for remaining time
 – Reduce voltage and slow down circuit until computation consumes all available time

• **Voltage reduction results in better energy savings**
 – So far have seen systems which fix voltage at design time
 – If throughput requirement varies at runtime, would like to vary voltage as well to minimize power
Expected Power Reduction: DSP Example

\[E(r) = CV_0^2 T_s f_r r \left[\frac{V_T}{V_0} + \frac{r}{2} + \sqrt{r \frac{V_T}{V_0} + \left(\frac{r}{2}\right)^2} \right]^2 \]

- **E(r)** is energy versus normalized sample processing rate
 - **C**: average switched capacitance
 - **T_s**: sample period
 - **f_r**: clock frequency at maximum supply voltage \(V_{\text{ref}} \)
 - **r**: normalized processing rate, i.e. clock speed normalized to \(f_r \)

\[V_0 = \left(\frac{V_{\text{ref}} - V_T}{V_{\text{ref}}} \right)^2 \]
Energy Reduction With Variable Supplies

- From Gutnik, Symp. VLSI Circuits 96
Power Scaling With Variable Supplies

• Fixed voltage (chosen to meet delay constraints in maximum throughput situation):
 – Power decreases linearly due to clock gating as throughput requirement decreases

• Arbitrary voltage levels:
 – Choose arbitrary voltage to minimize power at throughput
 – Minimal power implementation

• Discrete voltage levels
 – Fixed over a range of throughputs, scales linearly over range through clock gating

• Dithered discrete levels
 – Generate intermediate point by switching between levels
Outline

• Announcements
• Review: Energy Scavenging
• Wrap-Up: Energy Scavenging Example 3
• Variable-Voltage Design
• Basics of DC/DC Conversion
• Low Resolution Controller Design
DC / DC (Switching) Converter Fundamentals

\[V_{out} = D(t) \times V_{in} \]

• Output \(V_{out} = \text{duty cycle } D(t) \times V_{in} \)
Example Current and Voltage Waveforms

\[D(t) \]

\[I_L \]

\[V_{out} = \langle V_X \rangle = D V_{DD} \]

\[V_X \]
Switching Converter Tradeoffs

• Passive lowpass filter reduces output ripple
 – Larger L and C, lower cutoff frequency, lower switching frequency, less dynamic power dissipation in FET gates
 – Larger volume and higher cost for inductor and cap

• FET switch sizing tradeoff
 – Wider devices result in less resistive power loss…
 – …but wider gates increase dynamic power dissipation

• Duty cycle waveform generation
 – Analog circuitry allows finest granularity control…
 – …but dissipates static power, consumes area
 (matching, reduce short channel effects)
 – All digital implementation preferred

• Need low power control loop implementation
Duty Cycle PWM Generation Alternatives

- **Traditional approach uses linear voltage ramp and comparator**
 - Two threshold crossings generate leading and trailing edges of duty cycle waveform
 - Varying thresholds modulates duty cycle
 - Requires analog implementation to create voltage ramp, set comparator thresholds

- **Use counter with fast clock to create “digital” linear ramp**
 - Logic generates leading and trailing edges when count reaches thresholds
 - Easy to implement, but granularity limited to counter width
 - Dynamic power dissipation due to high frequency clock
Digital Duty Cycle Waveform Generation

- Use delay line and selector to steer edges for creating $D(t)$ leading and trailing edges
 - Less dynamic power than fast clocked counter approach
 - Glitches potentially an issue if clocking an RS flip-flop as an edge-to-pulse converter

- Digital generation techniques (counter or delay line) can be integrated with digital PID controller
 - Maximum flexibility for setting closed-loop dynamics
 - Eliminates static power associated with analog circuits like opamps
 - Use microcontroller to implement more complex control loops, e.g. adaptive
Digital PWM Generation Circuits

Fig. 10. PWM generator architectures. (a) Fast-clocked counter approach. (b) Pure delay-line approach.

- From Goodman, JSSC 98
PID Controller Transfer Function

Fig. 6. Control-loop frequency-domain model.

- From Wei, JSSC 99
Fast-Clocked Counter PID Controller

Fig. 7. Digital-loop architecture.

From Wei, JSSC 99
Fast-Clocked Counter PID Controller Power

![Graph showing power breakdown at different voltages](Image)

- Fig. 9. Fixed-frequency controller power breakdown.

From Wei, JSSC 99
Delay Line PWM Using DLL Example

Fig. 11. (a) PWM generator block diagram. (b) PWM generator delay line.

• From Goodman, JSSC 98
DLL PWM Waveform Generation

• DLL fixes switching frequency of converter
 – Can adjust to set output ripple requirement (higher frequency, lower ripple)

• Requires analog circuit implementation
 – Static power dissipation for charge-pump current sources
 – If current-starved delay elements with analog control voltages used, they also dissipate static power
 – Voltage headroom required to bias current sources appropriately, increased dynamic power for other nodes

• Look for simpler implementation for energy scavenging applications for less controller overhead
Outline

• Announcements
• Review: Energy Scavenging
• Wrap-Up: Energy Scavenging Example 3
• Variable-Voltage Design
• Basics of DC/DC Conversion
• Low Resolution Controller Design
Coil Example Using Performance Feedback
Performance Feedback Design

• Earlier approaches targeted specific output voltages
 – Requires analog circuits or A/D conversion in feedback loop, implying higher power
 – Maps indirectly to desired optimization: minimal supply voltage for required performance or throughput

• Performance feedback closes loop directly around optimization criteria
 – Compensates for input voltage, temperature, silicon process variations simultaneously
 – Also cope with changes in desired performance (variable supply voltage design)
 – Can implement with all digital control using replica critical path ring oscillators
Low Resolution Digital Control

- Continuous time analog control loops easy to analyze using linear systems theory
 - Analog circuits or A/D converters for mixed-signal controller consume power, require matched components, sensitive to noise generated by integrated digital systems

- Prefer to implement all digital controller with minimum bits of resolution to save power
 - Discrete time system with quantized error and control variables
 - Finite resolution creates nonlinear dynamics
 - Sample rate for error signal and update rate for controller output affect dynamics also (think of it as variable “gain” when integrated using something like a counter)
All digital feedback loop uses frequency comparator to generate error and Up/Down counter as integrator

- \(T_S \) counter used to determine error sample rate
- Sample rate chosen *ad hoc* depending on configuration
Frequency Comparator

- **3 Bit Counter**
 - Input: f_{vco}
 - Output: Q1

- **2 Bit Counter**
 - Input: f_{clk}
 - Output: Q0<2>

- **Register**
 - Input: Q1, Q0<2>
 - Output: N

<table>
<thead>
<tr>
<th>N</th>
<th>Frequency Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0 \leq f_v \leq \frac{f_0}{2}$</td>
</tr>
<tr>
<td>1</td>
<td>$0 \leq f_v \leq f_0$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{f_0}{2} \leq f_v \leq \frac{3f_0}{2}$</td>
</tr>
<tr>
<td>3</td>
<td>$f_0 \leq f_v \leq 2f_0$</td>
</tr>
<tr>
<td>≥ 4</td>
<td>$\frac{3f_0}{2} \leq f_v$</td>
</tr>
</tbody>
</table>

Waveforms
- f_{clk}
- f_{vco}
• Free running oscillator must be guaranteed to run sufficiently fast compared to LC cutoff frequency
 – Eliminates overhead of DLL in exchange for real-time variable switching frequency, output voltage ripple
• **Bootstrap Circuit**

 Boot circuit switches between backup supply and regulator output for controller circuits

 – Enable derived from frequency comparator error signal
Low Resolution Regulator Step Response

- Limit cycle caused by low resolution error feedback
• Switches controller from backup voltage V_{bk} to V_{out}
Voltage Regulation in Operation

• Note charge packets injected by stimulated generator
DC / DC Converter Test Chip

- Integrates regulator, power FETs, test load DSP circuit
DC / DC Converter Test Chip Specifications

<table>
<thead>
<tr>
<th>Area</th>
<th>2609 μm x 2609 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistor Count</td>
<td>5 K</td>
</tr>
<tr>
<td>Process</td>
<td>0.8 μm CMOS</td>
</tr>
<tr>
<td>NMOS Threshold Voltage</td>
<td>$V_{tN} = 0.70$ V</td>
</tr>
<tr>
<td>PMOS Threshold Voltage</td>
<td>$V_{tP} = -0.87$ V</td>
</tr>
<tr>
<td>Controller Power</td>
<td>5.71 μW ($f_{ref} = 500$kHz, $V_{dd} = 1$V)</td>
</tr>
<tr>
<td>Subband Filter Power</td>
<td>4.75 μW ($f_{ref} = 500$kHz, $V_{out} = 1$V)</td>
</tr>
<tr>
<td>Switch Drive Power</td>
<td>7.50 μW ($V_{in} = 1.07$V)</td>
</tr>
<tr>
<td>1 Generator Excitation</td>
<td>23 ms of valid DSP operation</td>
</tr>
<tr>
<td></td>
<td>11,700 cycles</td>
</tr>
<tr>
<td></td>
<td>2,340 operations</td>
</tr>
</tbody>
</table>

- Operates for 23 ms with single moving-coil generator excitation
- Power consumption much less than 400 μW average expected output for vibration due to walking