
EEC 216 Lecture #11:
Energy Scavenging

Rajeevan Amirtharajah
University of California, Davis



R. Amirtharajah, EEC216 Winter 2008 2

Outline

• Announcements

• Review: Batteries

• Wrap-Up: Fuel Cells and Power MEMS

• Energy Harvesting

• Example 1: PicoRadio (Rabaey, UCB)

• Example 2: Piezoelectric Benders (Wright, UCB)

• Example 3: Self-Powered Systems (Amirtharajah 
et al., MIT)

• Example 4: Integrated Solar Cells (Guilar et al., 
UCD)



R. Amirtharajah, EEC216 Winter 2008 3

Announcements

• Project progress meetings next week
– Signup sheet on my office door for next Monday

– Preliminary simulations done
• Final project presentations in final exam period 

March 18, 1-3 PM
– Email PowerPoint before 12 PM, March 18

• Final project paper due March 18, 5 P.M. by 
email to ramirtha@ece.ucdavis.edu (soft copy 
only!)
– Two page, two column ISSCC format (1 page 

text, 1 page figures)

mailto:ramirtha@ece.ucdavis.edu
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Recent Battery Scaling and Future Trends

• Battery energy density increasing 8% per year, demand 
increasing 24% per year (the Economist,  January 6, 2005)
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Battery Basics

• Battery consists of several electrochemical cells
– Can be arranged in series (increase output voltage) or 

parallel (increase output current) or combination
– Each cell consists of two terminals (anode and cathode) 

separated by electrolyte
– These constitute cell’s active materials

• When cell connected to load, oxidation-reduction 
reaction occurs
– Electrons transferred from anode to cathode
– Transfer converts chemical energy stored in active 

material to electrical energy
– Flows as current through external load
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Rate Dependent Capacity
• Battery capacity decreases as discharge rate 

increases
– When fully charged, electrode surface has maximum 

concentration of active species
– Under loading, active species consumed by reaction at 

electrode and replenished by diffusion from electrolyte bulk
– Diffusion cannot keep pace with electrochemical reaction, so 

concentration gradient builds up in electrolyte
– As load increases, active species concentration at electrode 

drops below threshold (corresponding to cutoff voltage) and 
reaction cannot be sustained, eliminating current flow

– Eventually cell recovers (charge recovery) as diffusion 
flattens concentration gradient

• For sufficiently low discharge rates, operation 
remains close to ideal
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Power Trends for DSP

• Can we use ambient energy sources to power electronics?
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Sources of Ambient Energy

• Solar Power
– Photovoltaics convert light to electricity
– Very well established (calculators, watches, etc.)

• Electromagnetic Fields
– Usually inductively coupled, sometimes uses antenna
– Used in smart cards, pacemaker charging, RFID tags

• Thermal Gradients
– Woven into clothing, power off skin-air temperature 

gradient (ISSCC 03)
• Fluid Flow
• Mechanical Vibration
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Vibration Based Energy Harvesting

• Embedded sensor applications
– Monitoring of vibrating machinery: turbines, internal 

combustion engines, machine tools
– Monitoring of vehicles: ships, submarines, aircraft
– Monitoring of structures: load-bearing walls, staircases, 

buildings, bridges
– Applications demand long lifetime in environments 

without continuous exposure to incident light
• Wearable devices

– Wrist worn biomedical monitor
– Computers embedded in clothing, smart textiles 
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Self-Powered System Overview

• Generator output (Vin) can vary rapidly
• Delay feedback vs. voltage feedback

– Compensates for temperature, process, and computational 
workload variations

– Allows simple all digital control (Dancy, TVLSI 00)
• Full system implemented and tested (Amirtharajah, JSSC 98)
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Vibration to Electric Energy Converters

Macroscopic Moving Coil MEMS Variable Capacitor

• Estimated output power: 
400 μW

• Estimated output power: 
8.7 μW
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Generator Mechanical Model 

• Second order mechanical system: spring + mass + dashpot
• Driven by amplitude forcing function
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• Forcing amplitude to mass displacement transfer 
function:

• Loss power (dissipated in damper):
• Output power:

Output Power Equation
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Transducer Output Voltage 

• Third order electromechanical system:
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Generator Equivalent Circuit Model

L = m R = bm C = 1/k

N

To electrical 
circuit*inV LC y= − &&

Electromechanical 
coupling

• Currently incorporating parameterizable model into 
Hspice to aid load circuit design
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Model Order Reduction 
• Assuming inductive time constant fast, reduces to 

second order electromechanical system:

• Some parameters known at manufacturing time
• Others estimated by fitting model parameters to 

measured system response
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Estimated Output Power for Wearable 

• Power estimate for forcing function due to walking
• Displacement = 1 inch, frequency = 2 Hz
• Average output power = 400 μW
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Vibration Based Power Generation

Energy Harvesting 
Method

Implementation 
(Previously Reported)

Output 
Power

Electromagnetic Moving Coil Amirtharajah 98 18 μW
Lee 03 830 μW

MEMS Variable Capacitor Meninger 01 8.7 μW
Mur Miranda 03 61 μW

Roundy 02 116 μW
Piezoelectrics (Vibration) Roundy 03 375 μW

Ottman 03 12.9 μW
Glynne-Johns 01 3 μW

MicroStrain, Inc. 03 60 μW
Piezoelectrics (Shoe Inserts) Schenck 01 8.4 μW
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Moving Coil Self-Powered System Overview
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Generator and Output Voltage Waveforms

• Measured for single generator impulse response
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MEMS Variable Capacitor Generator

• Etched fingers form two capacitor plates, movable 
plate slides past fixed plate

• Dual-bar linkages constrain motion in one direction
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MEMS Capacitor Energy Conversion Cycles

• Charge constrained: fix charge at max C, move 
plates decreasing C, remove charge at min C

• Voltage constrained: max voltage set by breakdown
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Charge Constrained Cycle Electronics

• PMOS off, NMOS on: build up inductor current from 
charge reservoir / battery C0

• PMOS on, NMOS off: inductor current charges C1
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Conversion Electronics Operation

• T1, SW2 (NMOS) on: inductor charges 
• T2, SW1 (PMOS) on: variable capacitor charges
• T3: plates move apart, voltage increases
• T4, SW1 (PMOS) on: variable capacitor discharges
• T5, SW2 (NMOS) on: inductor returns charge to C0
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Net Output Power Estimate

• Half circuit estimate would be doubled for both 
movable capacitor plates in operation (each 
capacitor plate one half cycle out of phase) 

• Core logic for power electronics very low
• Losses dominated by switches in this example
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MEMS Self-Powered System Block Diagram

• MEMS implementation compatible with future 
systems-on-a-chip

• Ultra low power DSP enables operation using 
scavenged energy for low throughput applications

• DSP energy scalability enables tradeoff between 
quality and available energy
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Sensor DSP Die Photo

Interface

5000 um

Test Logic

• 0.6 um CMOS
• Area: 4.4 mm x 5.8 mm
• Clock: 1.2 kHz / 250 kHz
• Power Supply: 1.5 V
• 190K transistors
• Predicted MEMS Output: 

4.29 μW
• SensorDSP Chip Power: 

560 nW
• SensorDSP Chip Energy: 

26.6 pJ / sample
• StrongARM SA-1100 

Energy: 11 μJ / sample
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• Typical solar cells 
based on 
crystalline silicon 

• Thin-films offer 
lower costs 
(amorphous Si, 
CdTe, etc.) 

• Would like to 
integrate solar cell 
and capacitor 
cheaply into 
standard CMOS 
logic process

Solar Energy Harvesting

Everlast Mote (Simjee and Chou ISLPED 06)
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Solar Cell Characteristics

• Current-voltage characteristics under optical illumination
• Load resistor determines bias point
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Solar Cell Figure of Merit

• FOM (Fill Factor) = ratio of two areas, less than 1
• A function of light intensity

VmImPmax ⋅=

VocIsc
PmaxFOM

⋅
=
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Integrated Photodiodes: Top View

• Based on passive pixel architecture  
• Total of 11 different diodes fabricated
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Integrated Photodiodes: Side View

• Side view cutaway of diode D2.  Metal connected to p-
and n- diffusions correspond to top and bottom capacitor 
plates, respectively
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Capacitance Characterization

D1 D2 D3 TL1 † SEUB †

Cm (pF) 0.254 0.254 0.216 1.004 0.616

Cdo (pF) 0.070 0.178 0.285 − −

Cd (pF)* 0.113 0.286 0.460 − −

*  Calculated with a junction voltage of 0.55 V, 25 °C, Area = 338 μm2

† [R. Aparicio and A. Hajimiri, “Capacity Limits and Matching           
Properties of Integrated Capacitors,” JSSC, 2002]
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Optical Path (Diode D2)
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Diffraction Grating

• Metal capacitors form optical notch filter

• Resonant wavelength, (ΛO=950 nm →ΛR =1550 nm)*

• Vary duty-cycle, periodicity and grating depth to 
alter filtering effect

RO Λ∝Λ

*[H. Tan et al, A Tunable Subwavelength Resonant Grating Optical Filter, LEOS, 2002]
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• Two Type 3 diodes• Four Type 1 Diodes

Test Chip Die Photographs
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Electrical Power Generation (D1)

• White Light

• Area = 3000 μm2

• 400 nW, 500 kΩ
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Electrical Power Generation (D2)

• White Light

• Area = 3000 μm2

• 600 nW, 400 kΩ
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Electrical Power Generation (D3)

• White Light

• Area = 3000 μm2

• 800 nW, 230 kΩ
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Figure Of Merit (White Light)

• D1 → Better at low light intensity

• D3 → Better at high light intensity
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Ring Oscillator Schematic

• Testing Circuitry (frequency proportional to intensity)

• Could be used to clock energy scalable system
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Measured Results (White Light, D1)

• Knee in curve at 2500 (LUX) = 484 mV
• Frequency spans 40 Hz – 140 KHz 
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Power Generated (Green Laser)

• Raw photodiode D3 measurements
• Dashed line represents linear response
• Lateral photocurrent included in output power
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Differential Results (Green Laser)

D1 D2 D3

Pmax (μW) 5.4 5.7 8.2

Pavg (μW) 3.3 3.4 5.3

η (%) 16 17 24

• Diode area = 338 μm2, λ = 532 nm 

• Total Incident optical power = 9.75 mW (0.54 mm2)

• Top flat approximation, Pin (optical) = 34.2 μW (338 μm2)

• Differential measurements used to calibrate for nonidealities
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Summary of Photodiode Results

Incident white light intensity = 20 kLUX (~100 mW/cm2*), Area = 338 μm2

Parameters D1 D2 D3

Power  (nW) 50 63 76

Energy Stored  (fJ) 26 35 31

FOM  (%) 65 66 62

Capacitance,  Cm (pF) 0.245 0.254 0.216

VOC (mV) 465 525 533

ISC (nA) 165 182 230

* [S. Roundy et al, “Energy Scavenging for Wireless Sensor Networks”, 2004]
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System Lifetime Implications

• Diode area required to generate 5 μW outdoors on a 
sunny day:
– D1: 184 μm x 184 μm
– D2: 164 μm x 164 μm
– D3: 150 μm x 150 μm

• Number of output samples produced by a micropower
DSP* using energy stored in 3 series diodes 
occupying 25 mm2: 
– D1: 687 
– D2: 745
– D3: 903

* [R. Amirtharajah et al, JSSC, 2004]
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Photodiode Summary and Future Work

• Passive pixels can be used as integrated solar cells for 
energy harvesting
– Maximum output power is a function of light intensity and 

load resistance

• On-chip interconnect can be used as integrated energy 
storage (0.75 fF per μm2 in 0.35 μm CMOS) 
– Fundamental tradeoff between energy harvesting and 

storage due to optical filtering
– Exploring this tradeoff at 90nm with new test chip

• Future polysilicon photodiodes on die surface can 
increase harvesting and storage capabilities   
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